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On nonparametric inference fét( X < Y') for paired
variables

J. A. Montoyaand F. J. Rubib

Abstract

We propose a class of nonparametric point estimator$ fer P(X < Y') for the
case wheréX,Y) are paired, possibly dependent, continuous random vasgakiVe make
use of the pairing structure for linking the estimationdofith the estimation of the sur-
vival function and density function daf — X. We consider the use of bootstrap to obtain
confidence intervals fof based on the proposed estimators. The performance of these
estimators is illustrated using simulated and real datae &ample with real data shows
that not accounting for pairing and dependence might leatiffierent conclusions about
the relationship betweel andY’.
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1 Introduction

The study of stress—strength models have received coabigeattention for many years due
to its applicability in diverse areas. The main interesthis kind of models is the quantity
0 = P(X <Y),whereX andY are random variables. In medicine for exampleXifand
Y are the outcomes of a control and an experimental treatnespectively, the parametér
can be interpreted as the effectiveness of treatm’eé&lenlua_el_dl.LZQil). This quantity is
also related to the Receiver Operating Characteristic (Réd@ves, wherd is interpreted as
an index of accurac 08). In engineering and riiiglstudiesd is also a quantity of
interest because it may represent the probability thattteagth of a component() exceeds
the stressX) coming from external factosz_LKle_eﬂAlu_Zﬁl)OS’,).

Stress-strength models were introduceb_b;LBLmd)@m_tl\QEﬁ)proposed anonparametric
estimator ford based on the Mann-Whitney statistic for the case whém@ndY” are indepen-

dent. There is a large amount of literature related to theystd point and interval estimation
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of ¢ using different approaches (sle_e_Ko_tz_eltl_al_.._iZOOB for a gaogky on this). For instance,

in the case wher& andY are independerﬁ, Sun eII aLI._(;b98) proposes a Bayesianaabpro
using reference priorJi:_&aklizLand_EidblLs_(ZbOG) propasestimator based on kernel esti-
mators of the densities of andY (which can be straightforwardly generalised to the use of
other nonparametric density estimat 008)@sep the use of bootstrap and asymp-
totic intervaIsJi_ng_el_élll_(;QbQ) estimatesing the empirical IikeIihooJi:MoﬂgyEi;d%) and
Diaz—Francés and Montc )Jﬁ_(&blZ) propose the use of thiéeplikelihood for conducting in-
ference about; and|ALem.ur_a_el_41Il_(2Q]ll) propose the use of Bayesian imdere/ith Jeffreys
and matching priors as well as modified profile likelihoodstfte cases wher& andY are
normal or exponential random variables.

It is important to mention that the parametemay not be available in a closed form in

many cases (se}:_e_AzzaUnLand_Qhﬂdna_ZbOMLand_Gupla_andﬁmJl for an example of

this). This makes difficult (if at all feasible) to find a repareterisation involving, which
complicates the use of the classical approach. In partictila use of the profile likelihood

might be difficult if this reparameterisation is not aval{Diaz—Francés and MQhI&)J@LblZ).

Alternative inferential approaches that overcome thifiatifty are Bayesian inference, non-

parametric estimation, and bootstrap; given that usingetla@proaches it is possible to obtain

bootstrap confidence intervals and credible intervals fioencorresponding samples find

9, respectivelyk&@ﬂdﬂ@“&idmwdﬁmm-zy
New interest has been focused on the estimatiofiiofthe case wher& andY are de-

pendent random variables. For exan‘{pje_&atbikim_dZOll)’rmmat(X, Y’) are jointly nor-

mally distributedl Rubio and S];Hzl (2d)12) suppose fKi@ndY are marginally distributed as
skewed scale mixture of normals and construct the correpgroint distribution using a

Gaussian CopulWMlZa) construcoitedistribution of( X, Y") us-

ing a Farlie-Gumbel-Morgenstern copula with marginalriistions belonging to the Burr sys-
tem; boma_a_cLG_o_d_al'lb_(_OiZb) consider Dagum distri inals and construct their
joint distribution using a Frank copula; among other M&dl@. In
these papers, the importance of taking the assumption atiemce betweeX andY into
account is illustrated using simulated and real data sets.

We propose a class of nonparametric estimatorsfof the case wheréX, Y') are paired,
possibly dependent, continuous random variables. Thisasizeis of interest given that paired
observations are produced in many experimental desigese(gla_s_pﬂtLloﬂ)O alhd Cox and éeid,

for examples of this). The estimators proposed herbased on nonparametric estima-
tors of the survival function and density function Bf— X. This approach avoids making
distributional assumptions ovéX, Y') and allows interval estimation df via nonparamet-

ric bootstrap. In addition, this method can be easily imgetad in R using already existing
packages. In Sectidd 2 we introduce these estimators aadsdisome of their properties. In
Sectior B we present two examples, using simulated and a¢a| @hich illustrate the impor-



tance of accounting for pairing and dependence of the obgens when conducting inference
aboutd.

2 Nonparametric estimator s of 6

Let (X,Y’) be a pair of continuous random variables. [ety) be a sample froni.X,Y") of
sizen and suppose that these observations are collected in squple;), i = 1, ..., n. Define
the variableZ = Y — X and the vector of differences= y — x. By definition, we have that

0 :P(Z > 0) =1 —Fz(O) = Sz(O),

where F; and Sy are the cumulative distribution function and the surviwaidtion of 7, re-
spectively. IfF; or S, are replaced by a nonparametric estimator, then we find aredrate
connection between the nonparametric estimation of theu@tive distribution function (or
the survival function) ofZ and the nonparametric estimationfbfBased on this, we propose
the following algorithm for estimating.

Algorithm 1
1: Calculate the differences=y — x.
2: Using the sample construct a nonparametric estimafor of the distribution function of
Z and define the estimatér= 1 — F,(0).

It is possible to define an alternative estimatotah Step2 of Algorithm[1 by construct-
ing a nonparametric estimatgy, of the density ofZ, based on the sample and defining
the estimatof = fO fZ )dz. Several nonparametric estimatdrs and /, can be consid-
ered for this purpose. For instance, kernel density estira rEg_lSZ) the empirical
distribution function, shape-restricted density estons L_ZQ:[O and recently pro-
posed smoothed versions of thels_e_(Qumb_e_g_and_RJfbagd [mmxmh_ojz). Note that
the asymptotic properties of the estimafaare inherited from those of the estimatos eval-
uated at). For example, if we use the empirical distribution function estimatingFZ(O),
then we have thal 3 6 asn — oo. The use of nonparametric bootstrap on the sample
together with Algorithnil allows us to obtain a variety of b&toap confidence intervals fér
(DiCiccio and Efroh, 1996).

Note that this class of estimators avoids making assumparthe distribution of X, Y)
and the sort of dependence between the variallesxdY. The relationship between these

variables, which can be either dependent or independembpiscitly included by modelling
the differences between the observations which only requirpairing of the observations.



3 Examples

In this section, we illustrate the implementation of theéreators proposed in Sectiéh 2. In the
first example we use a sample simulated from a bivariateaiosinh distributior{ (Jones and Peﬂsey,
). As detailed ilLlOﬁe_S_aﬂd_PQMllil:_e;LdZOOQ), this disioibcontains parameters that con-
trol skewness, kurtosis and correlation of the marginalgs €xample illustrates the influence
of the assumptions of pairing and dependence on the baowis&ibutions ofd in terms of
their location and spread. In the second example we use da&aket and show that not in-
cluding the assumptions of pairing and dependence may degpltosite conclusions about the
relationship betweeX andY'.

In both examples, we consider the following 6 types of estiimsaofd. Estimators based
on Algorithm[d withd = 1 — ﬁZ(O): (1) The estimator “Kernel”, based on a Gaussian kernel
estimator ofF;; and (2) The estimator “ECDF”, based on the empirical disitibn function
for estimating/”;. Estimators based on Algorithim 1 with= [ f;(z)dz: (3) The estima-
tor “MLE”, where f is the shape-restricted density estimator described i . 0);
and (4) The estimator “SMLE”, wherg; is the smooth-shape-restricted density estimator pro-

posed il’lﬁumb_em_aﬂd_l?m&h (2011). For comparison pagpege also consider two esti-

mators based on the assumption of independendeaidY: (5) The estimator “Independent”
proposed iljn_B_alsLizLand_EdeJuE_(Zdom, based on a Gaussiarelkestimator of the marginal
densities ofX andY’; and (6) The estimator “Paired”, based on a Gaussian kestieh&tor
of the marginal densities of andY’ ﬁa@aﬂdﬁd_o_dm& but taking the pairing of the
observations into account in the bootstrap sampling.

Nonparametric density estimation is conducted using theaékages ‘LogConcDEAD’
_Q_uls_e_t_a.'.l_zo_d9) and ‘Iogcondenls’_(D_umbﬂng_and_Ruﬂbladli). Bootstrap samples and
bootstrap confidence intervals (Normal, Basic, PerceatiBCa) were obtained using the R
packages ‘boot’ (Canty and RipHMlZ) and ‘simpleb@;&. R source code for
these examples is available upon request.

3.1 Simulated data

In this example we use a simulated sample of size 100 from a bivariate sinh-arcsinh distri-
bution L]_Qnﬂs_and_P_eMMsngbow with paramétersr,, p, €1, €2, 91, 02) = (1,1,0.75,0,1, 1, 2).
Figure[la shows a contour plot of the corresponding denHitig is a complex scenario where
the entries present departure from normality and corwiatiThe population correlation co-
efficient of this sample i9.737 and the theoretical correlation (s743. The parametef in
this family of distributions is not generally tractable. éltheoretical value of, obtained by
numerical integration, i8.78. Figure[1b shows the bootstrap distributionfofising several
nonparametric estimators. We can observe a considerdhlenne of the assumptions of pair-
ing and dependence in the location and spread of the bgo@istaibutions o). We can also




notice the influence of these assumptions in the point egirmiand bootstrap confidence in-
tervals shown in Tablg 1. In this case, not including thesamptions leads to underestimating
6.
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Figure 1:(a) Contour plot: sinh-arcsinh distribution; (b) Simuthtgata: bootstrap distributions 6f
using different estimators; “Independent” (bold-dashied)| “Paired” (bold line), “Kernel” (solid line),
“ECDF" (dashed line), “MLE” (dotted line), “SMLE" (dotteddashed line).

Estimator 0 Normal Basic Percentile BCa

Independent 0.65 (0.560,0.724) (0.559,0.723) (0.568,0.732) (0.562,0.727)
Paired 0.65 (0.606,0.695) (0.606,0.696) (0.607,0.697) (0.604,0.694)
Kernel 0.76 (0.690,0.825) (0.692,0.827) (0.690,0.824) (0.684,0.819)
ECDF 0.81 (0.734,0.886) (0.740,0.890) (0.730,0.880) (0.720,0.870)
MLE 0.78 (0.707,0.853) (0.709,0.854) (0.705,0.850) (0.701,0.847)
SMLE 0.77 (0.704,0.844) (0.707,0.847) (0.694,0.835) (0.694,0.835)

Table 1:Simulated data: Estimators aft% bootstrap confidence intervals.



3.2 Real data

In this section we study the data set presentla_d_lnienkatmma_&edgkl&f%), which contains

72 lesion scores obtained using both a clinical scheme with@ermoscopeX Test), and a
dermoscopic scoring schem¥ (Test). Their main interest is to assess the information pro-
vided by the use of the dermoscope. Here, we analyse thetsaflisE non-diseased patients
(diagnosed using a biopsy) and compare the nonparameteieices ford obtained under
three assumptions: independence, pairing and indepeadand dependence of the tests us-
ing the estimators described in the introduction of thidieac It is important to note that the
population correlation coefficient of this sample)i§94, which suggests that the entries are
correlated.

Table[2 shows point estimators and four types of bootstrafidence intervals of. Figure
2 shows the bootstrap distributions @fcorresponding to the models described in Table 2.
We can note a discrepancy of the point estimators under thergsions of dependence and
independence of the tests. Interval inference is alsordifte in the cases where pairing and
dependence are not considered we can note that the gaie).5 is included in some of
the bootstrap confidence intervals, leading to differemtctesions about the relationship of

the tests. This is in line with the conclusionsj_in_RubstamElEtZQl]Z) and emphasises the

importance of the dependence and pairing assumptions.

Estimator 0 Normal Basic Percentile BCa
Independent 0.55 (0.469,0.678) (0.467,0.672) (0.450,0.656) (0.474,0.691)
Paired 0.55 (0.498,0.597) (0.497,0.596) (0.501,0.601) (0.499,0.598)
Kernel  0.63 (0.5245,0.737) (0.525,0.738) (0.528,0.741) (0.519,0.732)
ECDF  0.69 (0.559,0.813) (0.569,0.823) (0.549,0.804) (0.529,0.784)
MLE 0.65 (0.543,0.776) (0.544,0.776) (0.532,0.765) (0.537,0.768)
SMLE  0.64 (0.538,0.756) (0.539,0.757) (0.527,0.744) (0.533,0.749)

Table 2:Melanoma data: Estimators aAd% bootstrap confidence intervals.
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Figure 2:Melanoma data: bootstrap distributionséafising different estimators; “Independent” (bold-
dashed line), “Paired” (bold line), “Kernel” (solid line)ECDF” (dashed line), “MLE” (dotted line),
“SMLE” (dotted—dashed line).

4 Discussion

We presented a class of nonparametric estimatorg forP(X < Y') for the case of paired,
possibly dependent, observations. This class of estimataids making assumptions on the
distribution and the dependence structur¢ ®fY"), which are implicitly included in the esti-
mation by modelling the differences of the observationsnf@ence intervals fof, based on
these estimators, can be obtained using bootstrap methudk are easy to implement in R.
It was illustrated, using a real data set, that not accogrfin these assumptions might lead
to opposite conclusions aboéit= 0.5, and consequently about the relationship between the
variablesX andY'.

A possible extension of this work consists of estimating the context of censored and
missing observations. The ideas presented here can bedegtém these scenarios by using
that

Y
o — / / Fry (@, y)dzdy,
R J—0

and replacing the joint densitfx y with a nonparametric density estimator. The use of kernel
density estimators in these contexts has been studied xéon@e, in| Titterington and Mlll

_L9_8_i) ancﬁ Wells and YH)_(;Q%).
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