
ar
X

iv
:1

20
9.

15
88

v1
  [

st
at

.M
E

] 
 7

 S
ep

 2
01

2 Identification and well-posedness in

nonparametric models with independence

conditions

Victoria Zinde-Walsh∗

McGill University and CIREQ

victoria.zinde-walsh@mcgill.ca

September 10, 2012

∗The support of the Social Sciences and Humanities Research Council of Canada
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Abstract

This paper provides a nonparametric analysis for several classes of mod-

els, with cases such as classical measurement error, regression with errors in

variables, and other models that may be represented in a form involving con-

volution equations. The focus here is on conditions for existence of solutions,

nonparametric identification and well-posedness in the space S∗ of general-

ized functions (tempered distributions). This space provides advantages over

working in function spaces by relaxing assumptions and extending the results

to include a wider variety of models, for example by not requiring existence

of density. Classes of (generalized) functions for which solutions exist are

defined; identification conditions, partial identification and its implications

are discussed. Conditions for well-posedness are given and the related issues

of plug-in estimation and regularization are examined.

1 Introduction

Many statistical and econometric models involve independence (or condi-

tional independence) conditions that can be expressed via convolution. Ex-

amples are independent errors, classical measurement error and Berkson er-

ror, regressions involving data measured with these types of errors, common

factor models and models that conditionally on some variables can be repre-

sented in similar forms, such as a nonparametric panel data model with errors

conditionally on observables independent of the idiosyncratic component.
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Although the convolution operator is well known, this paper provides ex-

plicitly convolution equations for a wide list of models for the first time. In

many cases the analysis in the literature takes Fourier transforms as the start-

ing point, e.g. characteristic functions for distributions of random vectors (as

in the famous Kotlyarski lemma, 1967). The emphasis here on convolution

equations for the models provides the opportunity to explicitly state non-

parametric classes of functions defined by the model for which such equations

hold, in particular, for densities, conditional densities and regression func-

tions. The statistical model may give rise to different systems of convolution

equations and may be over-identified in terms of convolution equations; some

choices may be better suited to different situations, for example, here in Sec-

tion 2 two sets of convolution equations (4 and 4a in Table 1) are provided for

the same classical measurement error model with two measurements; it turns

out that one of those allows to relax some independence conditions, while the

other makes it possible to relax a support assumption in identification. Many

of the convolution equations derived here are based on density-weighted con-

ditional averages of the observables.

The main distinguishing feature is that here all the functions defined

by the model are considered within the space of generalized functions S∗,

the space of so-called tempered distributions (they will be referred to as

generalized functions). This is the dual space, the space of linear continuous

functionals, on the space S of well-behaved functions: the functions in S are

infinitely differentiable and all the derivatives go to zero at infinity faster
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than any power. An important advantage of assuming the functions are

in the space of generalized functions is that in that space any distribution

function has a density (generalized function) that continuously depends on

the distribution function, so that distributions with mass points and fractal

measures have well-defined generalized densities.

Any regular function majorized by a polynomial belongs to S∗; this in-

cludes polynomially growing regression functions and binary choice regres-

sion as well as many conditional density functions. Another advantage is

that Fourier transform is an isomorphism of this space, and thus the usual

approaches in the literature that employ characteristic functions are also

included. Details about the space S∗ are in Schwartz (1966) and are sum-

marized in Zinde-Walsh (2012).

The model classes examined here lead to convolution equations that are

similar to each other in form; the main focus of this paper is on existence,

identification, partial identification and well-posedness conditions. Existence

and uniqueness of solutions to some systems of convolution equations in the

space S∗ were established in Zinde-Walsh (2012). Those results are used

here to state identification in each of the models. Identification requires

examining support of the functions and generalized functions that enter into

the models; if support excludes an open set then identification at least for

some unknown functions in the model fails, however, some isolated points

or lower-dimensional manifolds where the e.g. the characteristic function

takes zero values (an example is the uniform distribution) does not preclude
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identification in some of the models. This point was made in e.g. Carrasco

and Florens (2010), Evdokimov and White (2011) and is expressed here in

the context of operating in S∗. Support restriction for the solution may imply

that only partial identification will be provided. However, even in partially

identified models some features of interest (see, e.g. Matzkin, 2007) could

be identified thus some questions could be addressed even in the absence

of full identification. A common example of incomplete identification which

nevertheless provides important information is Gaussian deconvolution of a

blurred image of a car obtained from a traffic camera; the filtered image is

still not very good, but the licence plate number is visible for forensics.

Well-posedness conditions are emphasized here. The well-known defini-

tion by Hadamard (1923) defines well-posedness via three conditions: exis-

tence of a solution, uniqueness of the solution and continuity in some suitable

topology. The first two are essentially identification. Since here we shall be

defining the functions in subclasses of S∗ we shall consider continuity in the

topology of this generalized functions space. This topology is weaker than

the topologies in functions spaces, such as the uniform or Lp topologies; thus

differentiating the distribution function to obtain a density is a well-posed

problem in S∗, by contrast, even in the class of absolutely continuous distri-

butions with uniform metric where identification for density in the space L1

holds, well-posedness however does not obtain (see discussion in Zinde-Walsh,

2011). But even though in the weaker topology of S∗ well-posedness obtains

more widely, for the problems considered here some additional restrictions
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may be required for well-posedness.

Well-posedness is important for plug-in estimation since if the estimators

are in a class where the problem is well-posed they are consistent, and con-

versely, if well-posedness does not hold consistency will fail for some cases.

Lack of well-posedness can be remedied by regularization, but the price is

often more extensive requirements on the model and slower convergence. For

example, in deconvolution (see e.g. Fan, 1991, and most other papers cited

here) spectral cut-off regularization is utilized; it crucially depends on know-

ing the rate of the decay at infinity of the density.

Often non-parametric identification is used to justify parametric or semi-

parametric estimation; the claim here is that well-posedness should be an

important part of this justification. The reason for that is that in estimat-

ing a possibly misspecified parametric model, the misspecified functions of

the observables belong in a nonparametric neighborhood of the true func-

tions; if the model is non-parametrically identified, the unique solution to

the true model exists, but without well-posedness the solution to the para-

metric model and to the true one may be far apart.

For deconvolution An and Hu (2012) demonstrate well-posedness in spaces

of integrable density functions when the measurement error has a mass point;

this may happen in surveys when probability of truthful reporting is non-

zero. The conditions for well-posedness here are provided in S∗; this then

additionally does not exclude mass points in the distribution of the mis-

measured variable itself; there is some empirical evidence of mass points in
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earnings and income. The results here show that in S∗ well-posedness holds

more generally: as long as the error distribution is not super-smooth.

The solutions for the systems of convolution equations can be used in

plug-in estimation. Properties of nonparametric plug-in estimators are based

on results on stochastic convergence in S∗ for the solutions that are stochastic

functions expressed via the estimators of the known functions of the observ-

ables.

Section 2 of the paper enumerates the classes of models considered here.

They are divided into three groups: 1. measurement error models with classi-

cal and Berkson errors and possibly an additional measurement, and common

factor models that transform into those models; 2. nonparametric regression

models with classical measurement and Berkson errors in variables; 3. mea-

surement error and regression models with conditional independence. The

corresponding convolution equations and systems of equations are provided

and discussed. Section 3 is devoted to describing the solutions to the convolu-

tion equations of the models. The main mathematical aspect of the different

models is that they require solving equations of a similar form. Section 4 pro-

vides a table of identified solutions and discusses partial identification and

well-posedness. Section 5 examines plug-in estimation. A brief conclusion

follows.
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2 Convolution equations in classes of models

with independence or conditional indepen-

dence

This section derives systems of convolution equations for some important

classes of models. The first class of model is measurement error models with

some independence (classical or Berkson error) and possibly a second mea-

surement; the second class is regression models with classical or Berkson type

error; the third is models with conditional independence. For the first two

classes the distributional assumptions for each model and the corresponding

convolution equations are summarized in tables; it is indicated which of the

functions are known and which unknown; a brief discussion of each model

and derivation of the convolution equations follows. The last part of this sec-

tion discusses convolution equations for two specific models with conditional

independence; one is a panel data model studied by Evdokimov (2011), the

other a regression model where independence of measurement error of some

regressors obtains conditionally on a covariate.

The general assumption made here is that all the functions in the convo-

lution equations belong to the space of generalized functions S∗.

Assumption 1. All the functions defined by the statistical model are in

the space of generalized functions S∗.

This space of generalized function includes functions from most of the

8



function classes that are usually considered, but allows for some useful gen-

eralizations. The next subsection provides the necessary definitions and some

of the implications of working in the space S∗.

2.1 The space of generalized functions S∗.

The space S∗ is the dual space, i.e. the space of continuous linear function-

als on the space S of functions. The theory of generalized functions is in

Schwartz (1966); relevant details are summarized in Zinde-Walsh (2012). In

this subsection the main definitions and properties are reproduced.

Recall the definition of S.

For any vector of non-negative integers m = (m1, ...md) and vector t ∈ Rd

denote by tm the product tm1
1 ...tmd

d and by ∂m the differentiation operator

∂m1

∂x
m1
1
... ∂

md

∂x
md

d

; C∞ is the space of infinitely differentiable (real or complex-

valued) functions on Rd. The space S ⊂ C∞ of test functions is defined

as:

S =
{

ψ ∈ C∞(Rd) : |tl∂kψ(t)| = o(1) as t→ ∞
}

,

for any k = (k1, ...kd), l = (l1, ...ld), where k = (0, ...0) corresponds to the

function itself, t → ∞ coordinate-wise; thus the functions in S go to zero

at infinity faster than any power as do their derivatives; they are rapidly

decreasing functions. A sequence in S converges if in every bounded region

each
∣

∣tl∂kψ(t)
∣

∣ converges uniformly.

Then in the dual space S∗ any b ∈ S∗ represents a linear functional on
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S; the value of this functional for ψ ∈ S is denoted by (b, ψ) . When b is an

ordinary (point-wise defined) real-valued function, such as a density of an

absolutely continuous distribution or a regression function, the value of the

functional on real-valued ψ defines it and is given by

(b, ψ) =

∫

b(x)ψ(x)dx.

If b is a characteristic function it may be complex-valued, then the value of

the functional b applied to ψ ∈ S where S is the space of complex-valued

functions, is

(b, ψ) =

∫

b(x)ψ(x)dx,

where overbar denotes complex conjugate. The integrals are taken over the

whole space Rd.

The generalized functions in the space S∗ are continuously differentiable

and the differentiation operator is continuous; Fourier transforms and their

inverses are defined for all b ∈ S∗, the operator is a (continuos) isomorphism

of the space S∗. However, convolutions and products are not defined for all

pairs of elements of S∗, unlike, say, the space L1; on the other hand, in L1

differentiation is not defined and not every distribution has a density that is

an element of L1.

Assumption 1 places no restrictions on the distributions, since in S∗ any

distribution function is differentiable and the differentiation operator is con-

tinuous. The advantage of not restricting distributions to be absolutely con-
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tinuous is that mass points need not be excluded; distributions representing

fractal measures such as the Cantor distribution are also allowed. This means

that mixtures of discrete and continuous distributions e.g. such as those ex-

amined by An and Hu (2012) for measurement error in survey responses,

some of which may be error-contaminated, but some may be truthful lead-

ing to a mixture with a mass point distribution are included. Moreover, in

S∗ the case of mass points in the distribution of the mismeasured variable

is also easily handled; in the literature such mass points are documented

for income or work hours distributions in the presence of rigidities such as

unemployment compensation rules (e.g. Green and Riddell, 1997). Fractal

distributions may arise in some situations, e.g. Karlin’s (1958) example of

the equilibrium price distribution in an oligopolistic game.

For regression functions the assumption g ∈ S∗ implies that growth at

infinity is allowed but is somewhat restricted. In particular for any ordinary

point-wise defined function b ∈ S∗ the condition

∫

...

∫

Πd
i=1

(

(1 + t2i
)−1

)mi |b(t)| dt1...dtd <∞, (1)

needs to be satisfied for some non-negative valued m1, ..., md. If a locally

integrable function g is such that its growth at infinity is majorized by a

polynomial, then b ≡ g satisfies this condition. While restrictive this still

widens the applicability of many currently available approaches. For example

in Berkson regression the common assumption is that the regression function
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be absolutely integrable (Meister, 2009); this excludes binary choice, linear

and polynomial regression functions that belong to S∗ and satisfy Assump-

tion 1. Also, it is advantageous to allow for functions that may not belong to

any ordinary function classes, such as sums of δ−functions (”sum of peaks”)

or (mixture) cases with sparse parts of support, such as isolated points; such

functions are in S∗. Distributions with mass points can arise when the re-

sponse to a survey questions may be only partially contaminated; regression

”sum of peaks” functions arise e.g. in spectroscopy and astrophysics where

isolated point supports are common.

2.2 Measurement error and related models

Current reviews for measurement error models are in Carrol et al, (2006),

Chen et al (2011), Meister (2009).

Here and everywhere below the variables x, z, x∗, u, ux are assumed to be

in Rd; y, v are in R1; all the integrals are over the corresponding space; density

of ν for any ν is denoted by fv; independence is denoted by ⊥; expectation

of x conditional on z is denoted by E(x|z).

2.2.1 List of models and corresponding equations

The table below lists various models and corresponding convolution equa-

tions. Many of the equations are derived from density weighted conditional

expectations of the observables.
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Recall that for two functions, f and g convolution f ∗ g is defined by

(f ∗ g) (x) =

∫

f(w)g(x− w)dw;

this expression is not always defined. A similar expression (with some abuse

of notation since generalized functions are not defined pointwise) may hold

for generalized functions in S∗; similarly, it is not always defined. With As-

sumption 1 for the models considered here we show that convolution equa-

tions given in the Tables below hold in S∗.

Table 1. Measurement error models: 1. Classical measurement error; 2.

Berkson measurement error; 3. Classical measurement error with additional

observation (with zero conditional mean error); 4., 4a. Classical error with

additional observation (full independence).
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Model
Distributional

assumptions

Convolution

equations

Known

functions

Unknown

functions

1.
z = x∗ + u

x∗⊥u
fx∗ ∗ fu = fz fz, fu fx∗

2.
z = x∗ + u

z⊥u
fz ∗ f−u = fx∗ fz, fu fx∗

3.

z = x∗ + u;

x = x∗ + ux

x∗⊥u;

E(ux|x
∗, u) = 0;

E ‖z‖ <∞;E ‖u‖ <∞.

fx∗ ∗ fu = fz;

hk ∗ fu = wk,

with hk(x) ≡ xkfx∗(x);

k = 1, 2...d

fz, wk,

k = 1, 2...d
fx∗ ; fu

4.

z = x∗ + u;

x = x∗ + ux; x
∗⊥u;

x∗⊥ux;E(ux) = 0;

u⊥ux;

E ‖z‖ <∞;E ‖u‖ <∞.

fx∗ ∗ fu = fz;

hk ∗ fu = wk;

fx∗ ∗ fux
= fx;

with hk(x) ≡ xkfx∗(x);

k = 1, 2...d

fz, fx;w;wk

k = 1, 2...d
fx∗ ; fu, fux

4a.

Same model as 4.,

alternative

equations:

fx∗ ∗ fu = fz;

fux
∗ f−u = w;

hk ∗ f−u = wk,

with hk(x) ≡ xkfux
(x);

k = 1, 2...d

–”– –”–

Notation: k = 1, 2, ..., d; in 3. and 4, wk = E(xkfz(z)|z); in 4a w =

fz−x;wk = E(xkw(z − x)| (z − x)).
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Theorem 1. Under Assumption 1 for each of the models 1-4 the corre-

sponding convolution equations of Table 1 hold in the generalized functions

space S∗.

The proof is in the derivations of the following subsection.

Assumption 1 requires considering all the functions defined by the model

as elements of the space S∗, but if the functions (e.g. densities, the con-

ditional moments) exist as regular functions, the convolutions are just the

usual convolutions of functions, on the other hand, the assumption allows to

consider convolutions for cases where distributions are not absolutely contin-

uous.

2.2.2 Measurement error models and derivation of the correspond-

ing equations.

1. The classical measurement error model.

The case of the classical measurement error is well known in the literature.

The concept of error independent of the variable of interest is applicable to

many problems in seismology, image processing, where it may be assumed

that the source of the error is unrelated to the signal. In e.g. Cunha et

al. (2010) it is assumed that some constructed measurement of ability of

a child derived from test scores fits into this framework. As is well-known

in regression a measurement error in the regressor can result in a biased

estimator (attenuation bias).
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Typically the convolution equation

fx∗ ∗ fu = fz

is written for density functions when the distribution function is absolutely

continuous. The usual approach to possible non-existence of density avoids

considering the convolution and focuses on the characteristic functions. Since

density always exists as a generalized function and convolution for such gen-

eralized functions is always defined it is possible to write convolution equa-

tions in S∗ for any distributions in model 1. The error distribution (and thus

generalized density fu) is assumed known thus the solution can be obtained

by ”deconvolution” (Carrol et al (2006), Meister (2009), the review of Chen

et al (2011) and papers by Fan (1991), Carrasco and Florens(2010) among

others).

2. The Berkson error model.

For Berkson error the convolution equation is also well-known. Berkson

error of measurement arises when the measurement is somehow controlled

and the error is caused by independent factors, e.g. amount of fertilizer

applied is given but the absorption into soil is partially determined by factors

independent of that, or students’ grade distribution in a course is given in

advance, or distribution of categories for evaluation of grant proposals is

determined by the granting agency. The properties of Berkson error are very

different from that of classical error of measurement, e.g. it does not lead to
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attenuation bias in regression; also in the convolution equation the unknown

function is directly expressed via the known ones when the distribution of

Berkson error is known. For discussion see Carrol et al (2006), Meister (2009),

and Wang (2004).

Models 3. and 4. The classical measurement error with another observa-

tion.

In 3., 4. in the classical measurement error model the error distribution is

not known but another observation for the mis-measured variable is available;

this case has been treated in the literature and is reviewed in Carrol et al

(2006), Chen et al (2011). In econometrics such models were examined by Li

and Vuong (1998), Li (2002), Schennach (2004) and subsequently others (see

e.g. the review by Chen et al, 2011). In case 3 the additional observation

contains an error that is not necessarily independent, just has conditional

mean zero.

Note that here the multivariate case is treated where arbitrary depen-

dence for the components of vectors is allowed. For example, it may be of

interest to consider the vector of not necessarily independent latent abilities

or skills as measured by different sections of an IQ test, or the GRE scores.

Extra measurements provide additional equations. Consider for any k =

1, ...d the function of observables wk defined by density weighted expecta-

tion E(xkfz(z)|z) as a generalized function; it is then determined by the

values of the functional (wk, ψ) for every ψ ∈ S. Note that by assumption

E(xkfz(z)|z) = E(x∗kfz(z)|z); then for any ψ ∈ S the value of the functional:
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(E(x∗kfz(z)|z), ψ) =

∫

[

∫

x∗kfx∗,z(x
∗, z)dx∗]ψ(z)dz =

∫ ∫

x∗kfx∗,z(x
∗, z)ψ(z)dx∗dz =

∫ ∫

x∗kψ(x
∗ + u)fx∗,u(x

∗, u)dx∗du =
∫ ∫

x∗kfx∗(x∗)fu(u)ψ(x
∗ + u)dx∗du = (hk ∗ fu, ψ).

The third expression is a double integral which always exists if E ‖x∗‖ <

∞; this is a consequence of boundedness of the expectations of z and u. The

fourth is a result of change of variables (x∗, z) into (x∗, u) , the fifth uses

independence of x∗and u, and the sixth expression follows from the corre-

sponding expression for the convolution of generalized functions (Schwartz,

1967, p.246). The conditions of model 3 are not sufficient to identify the

distribution of ux; this is treated as a nuisance part in model 3.

The model in 4 with all the errors and mis-measured variable independent

of each other was investigated by Kotlyarski (1967) who worked with the joint

characteristic function. In 4 consider in addition to the equations written for

model 3 another that uses the independence between x∗ and ux and involves

fux
.

In representation 4a the convolution equations involving the density fux

are obtained by applying the derivations that were used here for the model

in 3.:

z = x∗ + u;

x = x∗ + ux,
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to the model in 4 with x − z playing the role of z, ux playing the role of

x∗, −u playing the role of u, and x∗ playing the role of ux. The additional

convolution equations arising from the extra independence conditions provide

extra equations and involve the unknown density fux
. This representation

leads to a generalization of Kotlyarski’s identification result similar to that

obtained by Evdokimov (2011) who used the joint characteristic function.

The equations in 4a make it possible to identify fu, fux
ahead of fx∗ ; for

identification this will require less restrictive conditions on the support of

the characteristic function for x∗.

2.2.3 Some extensions

A. Common factor models.

Consider a model z̃ = AU, with A a matrix of known constants and z̃ a

m×1 vector of observables, U a vector of unobservable variables. Usually, A

is a block matrix and AU can be represented via a combination of mutually

independent vectors. Then without loss of generality consider the model

z̃ = Ãx∗ + ũ, (2)

where Ã is a m × d known matrix of constants, z̃ is a m × 1 vector of ob-

servables, unobserved x∗ is d × 1 and unobserved ũ is m × 1. If the model

(2) can be transformed to model 3 considered above, then x∗ will be identi-

fied whenever identification holds for model 3. Once some components are
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identified identification of other factors could be considered sequentially.

Lemma 1. If in (2) the vectors x∗ and ũ are independent and all the

components of the vector ũ are mean independent of each other and are mean

zero and the matrix A can be partitioned after possibly some permutation of

rows as







A1

A2






with rankA1 = rankA2 = d, then the model (2) implies

model 3.

Proof. Define z = T1z̃, where conformably to the partition of A the

partitioned T1 =







T̃1

0






, with T̃1A1x

∗ = x∗ (such a T̃1 always exists by the

rank condition); then z = x∗ + u, where u = T1ũ is independent of x∗. Next

define T2 =







0

T̃2






similarly with T̃2A2x

∗ = x∗.

Then x = T2z̃ is such that x = x∗ + ux, where ux = T2ũ and does not

include any components from u. This implies Eux|(x
∗, u) = 0.Model 3 holds.

�

Here dependence in components of x∗ is arbitrary. A general structure

with subvectors of U independent of each other but with components which

may be only mean independent (as ũ here) or arbitrarily dependent (as in

x∗) is examined by Ben-Moshe (2012). Models of linear systems with full

independence were examined by e.g. Li and Vuong (1998). These models lead

to systems of first-order differential equations for the characteristic functions.

It may be that there are no independent components x∗ and ũ for which

the conditions of Lemma 1 are satisfied. Bonhomme and Robin (2010) pro-
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posed to consider products of the observables to increase the number of equa-

tions in the system and analyzed conditions for identification; Ben-Moshe

(2012) provided necessary and sufficient conditions under which this strat-

egy leads to identification when there may be some dependence.

B. Error correlations with more observables.

The extension to non-zero E(ux|z) in model 3 is trivial if this expectation

is a known function. A more interesting case results if the errors ux and u

are related, e.g.

ux = ρu+ η; η⊥z.

With an unknown parameter (or function of observables) ρ if more obser-

vations are available more convolution equations can be written to identify

all the unknown functions. Suppose that additionally a observation y is

available with

y = x∗ + uy;

uy = ρux + η1; η1⊥, η, z.

Without loss of generality consider the univariate case and define wx =

E(xf(z)|z);wy = E(yf(z)|z). Then the system of convolution equations ex-

pands to

21

























fx∗ ∗ fu = w;

(1− ρ)hx∗ ∗ fu +ρzf(z) = wx;

(1− ρ2)hx∗ ∗ fu +ρ2zf(z) = wy.

(3)

The three equations have three unknown functions, fx∗ , fu and ρ. Assum-

ing that support of ρ does not include the point 1, ρ can be expressed as a

solution to a linear algebraic equation derived from the two equations in (3)

that include ρ :

ρ = (wx − zf(z))−1 (wy − wx) .

2.3 Regression models with classical and Berkson er-

rors and the convolution equations

2.3.1 The list of models

The table below provides several regression models and the corresponding

convolution equations involving density weighted conditional expectations.

Table 2. Regression models: 5. Regression with classical measurement error

and an additional observation; 6. Regression with Berkson error (x, y, z are

observable); 7. Regression with zero mean measurement error and Berkson

instruments.
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Model
Distributional

assumptions

Convolution

equations

Known

functions

Unknown

functions

5.

y = g(x∗) + v

z = x∗ + u;

x = x∗ + ux

x∗⊥u;E(u) = 0;

E(ux|x
∗, u) = 0;

E(v|x∗, u, ux) = 0.

fx∗ ∗ fu = fz;

(gfx∗) ∗ fu = w,

hk ∗ fu = wk;

with hk(x) ≡ xkg(x)fx∗(x);

k = 1, 2...d

fz; w;wk fx∗ ; fu; g.

6.

y = g(x) + v

z = x+ u;E(v|z) = 0;

z⊥u;E(u) = 0.

fx = f−u ∗ fz;

g ∗ f−u = w
fz; fx, w fu; g.

7.

y = g(x∗) + v;

x = x∗ + ux;

z = x∗ + u; z⊥u;

E(v|z, u, ux) = 0;

E(ux|z, v) = 0.

g ∗ fu = w;

hk ∗ fu = wk,

with hk(x) ≡ xkg(x);

k = 1, 2...d

w, wk fu; g.

Notes. Notation: k = 1, 2...d; in model 5.w = E(yfz(z)|z);wk = E(xkfz(z)|z);

in model 6. w = E(y|z); in model 7. w = E(y|z);wk = E(xky|z).

Theorem 2. Under Assumption 1 for each of the models 5-7 the corre-

sponding convolution equations hold.

The proof is in the derivations of the next subsection.

2.3.2 Discussion of the regression models and derivation of the
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convolution equations.

5. The nonparametric regression model with classical measurement error and

an additional observation.

This type of model was examined by Li (2002) and Li and Hsiao (2004);

the convolution equations derived here provide a convenient representation.

Often models of this type were considered in semiparametric settings. Bu-

tucea and Taupin (2008) (extending the earlier approach by Taupin, 2001)

consider a regression function known up to a finite dimensional parameter

with the mismeasured variable observed with independent error where the

error distribution is known. Under the latter condition the model 5 here

would reduce to the two first equations

fx∗ ∗ fu = fz; (gfx∗) ∗ fu = w,

where fu is known and two unknown functions are g (here nonparametric)

and fx∗ .

The model 5 incorporates model 3 for the regressor and thus the convolu-

tion equations from that model apply. An additional convolution equation is

derived here; it is obtained from considering the value of the density weighted

conditional expectation in the dual space of generalized functions, S∗, applied

to arbitrary ψ ∈ S,

(w, ψ) = (E(f(z)y|z), ψ) = (E(f(z)g(x∗)|z), ψ);
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this equals

∫ ∫

g(x∗)fx∗,z(x
∗, z)ψ(z)dx∗dz

=

∫ ∫

g(x∗)fx∗,u(x
∗, u)ψ(x∗ + u)dx∗du

=

∫

g(x∗)fx∗(x∗)fu(u)dx
∗ψ(x∗ + u)dx∗du = ((gfx∗) ∗ fu, ψ).

Conditional moments for the regression function need not be integrable

or bounded functions of z; we require them to be in the space of generalized

functions S∗.

6. Regression with Berkson error.

This model may represent the situation when the regressor (observed) x

is correlated with the error v, but z is a (vector) possibly representing an

instrument uncorrelated with the regression error.

Then as is known in addition to the Berkson error convolution equation

the equation

w = E(y|z) = E(g(x)|z) =

∫

g(x)
fx,z(x, z)

fz(z)
dx =

∫

g(z− u)fu(u)dx = g ∗ fu

holds. This is stated in Meister (2008); however, the approach there is to

consider g to be absolutely integrable so that convolution can be defined in

the L1 space. Here by working in the space of generalized functions S∗ a much

wider nonparametric class of functions that includes regression functions with

polynomial growth is allowed.
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7. Nonparametric regression with error in the regressor, where Berkson

type instruments are assumed available.

This model was proposed by Newey (2001), examined in the univarite

case by Schennach (2007) and Zinde-Walsh (2009), in the multivariate case

in Zinde-Walsh (2012), where the convolution equations given here in Table

2 were derived.

2.4 Convolution equations in models with conditional

independence conditions.

All the models 1-7 can be extended to include some additional variables where

conditionally on those variables, the functions in the model (e.g. conditional

distributions) are defined and all the model assumptions hold conditionally.

Evdokimov (2011) derived the conditional version of the model 4 from

a very general nonparametric panel data model. Model 8 below describes

the panel data set-up and how it transforms to conditional model 4 and 4a

and possibly model 3 with relaxed independence condition (if the focus is on

identifying the regression function).

Model 8. Panel data model with conditional independence.

Consider a two-period panel data model with an unknown regression func-
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tion m and an idiosyncratic (unobserved) α :

Yi1 = m(Xi1, αi) + Ui1;

Yi2 = m(Xi2, αi) + Ui2.

To be able to work with various conditional characteristic functions cor-

responding assumptions ensuring existence of the conditional distributions

need to be made and in what follows we assume that all the conditional

density functions and moments exist as generalized functions in S∗.

In Evdokimov (2011) independence (conditional on the corresponding

period X ′s) of the regression error from α, and from the X ′s and error of the

other period is assumed:

ft = fUit|Xit,αi,Xi(−t),Ui(−t)
(ut|x, ...) = fUit|Xit

(ut|x), t = 1, 2

with f·|· denoting corresponding conditional densities. Conditionally onXi2 =

Xi1 = x the model takes the form 4

z = x∗ + u;

x = x∗ + ux

with z representing Y1, x representing Y2, x
∗ standing in for m(x, α), u for U1

and ux for U2. The convolution equations derived here for 4 or 4a now apply

to conditional densities.
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The convolution equations in 4a are similar to Evdokimov; they allow for

equations for fu, fux
that do not rely on fx∗ . The advantage of those lies

in the possibility of identifying the conditional error distributions without

placing the usual non-zero restrictions on the characteristic function of x∗

(that represents the function m for the panel model).

The panel model can be considered with relaxed independence assump-

tions. Here in the two-period model we look at forms of dependence that

assume zero conditional mean of the second period error, rather than full

independence of the first period error:

fUi1|Xi1,αi,Xi2,Ui2(ut|x, ...) = fUi1|Xi1(ut|x);

E(Ui2|Xi1, αi, Xi2, Ui1) = 0;

fUi2|αi,Xi2=Xi1=x(ut|x, ...) = fUi2|Xi2(ut|x).

Then the model maps into the model 3 with the functions in the convolution

equations representing conditional densities and allows to identify distribu-

tion of x∗ (function m in the model). But the conditional distribution of the

second-period error in this set-up is not identified.

Evdokimov introduced parametric AR(1) or MA(1) dependence in the

errors U and to accommodate that extended the model to three periods.

Here this would lead in the AR case to the equations in (3) .

Model 9. Errors in variables regression with classical measurement error

conditionally on covariates.
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Consider the regression model

y = g(x∗, t) + v,

with a measurement of unobserved x∗ given by z̃ = x∗ + ũ, with x∗⊥ũ

conditionally on t. Assume that E(ũ|t) = 0 and that E(v|x∗, t) = 0. Then

redefining all the densities and conditional expectations to be conditional

on t we get the same system of convolution equations as in Table 2 for

model 5 with the unknown functions now being conditional densities and the

regression function, g.

Conditioning requires assumptions that provide for existence of condi-

tional distribution functions in S∗.

3 Solutions for the models.

3.1 Existence of solutions

To state results for nonparametric models it is important first to clearly

indicate the classes of functions where the solution is sought. Assumption 1

requires that all the (generalized) functions considered are elements in the

space of generalized functions S∗. This implies that in the equations the

operation of convolution applied to the two functions from S∗ provides an

element in the space S∗. This subsection gives high level assumptions on

the nonparametric classes of the unknown functions where the solutions can
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be sought: any functions from these classes that enter into the convolution

provide a result in S∗.

No assumptions are needed for existence of convolution and full generality

of identification conditions in models 1,2 where the model assumptions im-

ply that the functions represent generalized densities. For the other models

including regression models convolution is not always defined in S∗. Zinde-

Walsh (2012) defines the concept of convolution pairs of classes of functions

in S∗ where convolution can be applied.

To solve the convolution equations a Fourier transform is usually em-

ployed, so that e.g. one transforms generalized density functions into charac-

teristic functions. Fourier transform is an isomorphism of the space S∗. The

Fourier transform of a generalized function a ∈ S∗, Ft(a), is defined as fol-

lows. For any ψ ∈ S, as usual Ft(ψ)(s) =
∫

ψ(x)eisxdx; then the functional

Ft(a) is defined by

(Ft(a), ψ) ≡ (a, F t(ψ)).

The advantage of applying Fourier transform is that integral convolution

equations transform into algebraic equations when the ”exchange formula”

applies:

a ∗ b = c⇐⇒ Ft(a) · Ft(b) = Ft(c). (4)

In the space of generalized functions S∗, the Fourier transform and inverse

Fourier transform always exist. As shown in Zinde-Walsh (2012) there is a di-

chotomy between convolution pairs of subspaces in S∗ and the corresponding
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product pairs of subspaces of their Fourier transforms.

The classical pairs of spaces (Schwartz, 1966) are the convolution pair

(S∗, O∗
C) and the corresponding product pair (S∗, OM) , where O∗

C is the

subspace of S∗ that contains rapidly decreasing (faster than any polynomial)

generalized functions and OM is the space of infinitely differentiable functions

with every derivative growing no faster than a polynomial at infinity. These

pairs are important in that no restriction is placed on one of the generalized

functions that could be any element of space S∗; the other belongs to a space

that needs to be correspondingly restricted. A disadvantage of the classical

pairs is that the restriction is fairly severe, for example, the requirement that

a characteristic function be in OM implies existence of all moments for the

random variable. Relaxing this restriction would require placing constraints

on the other space in the pair; Zinde-Walsh (2012) introduces some pairs

that incorporate such trade-offs.

In some models the product of a function with a component of the vector

of arguments is involved,such as d(x) = xka(x), then for Fourier transforms

Ft(d) (s) = −i ∂
∂sk
Ft(a)(s); the multiplication by a variable is transformed

into (−i) times the corresponding partial derivative. Since the differentia-

tion operators are continuous in S∗ this transformation does not present a

problem.

Assumption 2. The functions a ∈ A, b ∈ B, are such that (A,B) form

a convolution pair in S∗.

Equivalently, Ft(a), F t(b) are in the corresponding product pair of spaces.
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Assumption 2 is applied to model 1 for a = fx∗ , b = fu; to model 2 with

a = fz, b = fu; to model 3 with a = fx∗, b = fu and with a = hk, b = fu, for

all k = 1, ..., d; to model 4a for a = fx∗ , or fux
, or hk for all k and b = fu; to

model 5 with a = fx∗ , or gfx∗, or hkfx∗ and b = fu; to model 6 with a = fz,

or g and b = fu; to model 7 with a = g or hk and b = fu.

Assumption 2 is a high-level assumption that is a sufficient condition for

a solution to the models 1-4 and 6-7 to exist. Some additional conditions are

needed for model 5 and are provided below.

Assumption 2 is automatically satisfied for generalized density functions,

so is not needed for models 1 and 2. Denote by D̄ ⊂ S∗ the subset of general-

ized derivatives of distribution functions (corresponding to Borel probability

measures in Rd) then in models 1 and 2 A = B = D̄; and for the character-

istic functions there are correspondingly no restrictions; denote the set of all

characteristic functions, Ft
(

D̄
)

⊂ S∗, by C̄.

Below a (non-exhaustive) list of nonparametric classes of generalized func-

tions that provide sufficient conditions for existence of solutions to the models

here is given. The classes are such that they provide minimal or often no

restrictions on one of the functions and restrict the class of the other in order

that the assumptions be satisfied.

In models 3 and 4 the functions hk are transformed into derivatives of

continuous characteristic functions. An assumption that either the charac-

teristic function of x∗ or the characteristic function of u be continuously

differentiable is sufficient, without any restrictions on the other to ensure
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that Assumption 2 holds. Define the subset of all continuously differentiable

characteristic functions by C̄(1).

In model 5 equations involve a product of the regression function g with

fx∗ . Products of generalized functions in S∗ do not always exist and so addi-

tional restrictions are needed in that model. If g is an arbitrary element of

S∗, then for the product to exist, fx∗ should be in OM . On the other hand,

if fx∗ is an arbitrary generalized density it is sufficient that g and hk belong

to the space of d times continuously differentiable functions with derivatives

that are majorized by polynomial functions for gfx∗, hkfx∗ to be elements of

S∗. Indeed, the value of the functional hkfx∗ for an arbitrary ψ ∈ S is defined

by

(hkfx∗ , ψ) = (−1)d
∫

Fx∗(x)∂(1,...,1)(hk(x)ψ(x))dx;

here F is the distribution (ordinary bounded) function and this integral ex-

ists because ψ and all its derivatives go to zero at infinity faster than any

polynomial function. Denote by S̄B,1 the space of continuously differentiable

functions g ∈ S∗ such that the functions hk(x) = xkg(x) are also continu-

ously differentiable with all derivatives majorized by polynomial functions.

Since the products are in S∗ then the Fourier transforms of the products

are defined in S∗. Further restrictions requiring the Fourier transforms of

the products gfx∗ and hkfx∗ to be continuously differentiable functions in S∗

would remove any restrictions on fu for the convolution to exist. Denote the

space of all continuously differentiable functions in S∗ by S̄(1).

33



If g is an ordinary function that represents a regular element in S∗ the

infinite differentiability condition on fx∗ can be relaxed to simply requiring

continuous first derivatives.

In models 6 and 7 if the generalized density function for the error, fu,

decreases faster than any polynomial (all moments need to exist for that),

so that fu ∈ O∗
C , then g could be any generalized function in S∗; this will

of course hold if fu has bounded support. Generally, the more moments the

error is assumed to have, the fewer restrictions on the regression function g are

needed to satisfy the convolution equations of the model and the exchange

formula. The models 6, 7 satisfy the assumptions for any error u when

support of generalized function g is compact (as for the ”sum of peaks”),

then g ∈ E∗ ⊂ S∗, where E∗ is the space of generalized functions with

compact support. More generally the functions g and all the hk could belong

to the space O∗
C of generalized functions that decrease at infinity faster than

any polynomial, and still no restrictions need to be placed on u.

Denote for any generalized density function f· the corresponding charac-

teristic function, Ft(f·), by φ·. Denote Fourier transform of the (generalized)

regression function g, F t(g), by γ.

The following table summarizes some fairly general sufficient conditions

on the models that place restrictions on the functions themselves or on the

characteristic functions of distributions in the models that will ensure that

Assumption 2 is satisfied and a solution exists. The nature of these assump-

tions is to provide restrictions on some of the functions that allow the others
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to be completely unrestricted for the corresponding model.

Table 3. Some nonparametric classes of generalized functions for which

the convolution equations of the models are defined in S∗.

Model Sufficient assumptions

1 no restrictions: φx∗ ∈ C̄;φu ∈ C̄

2 no restrictions: φx∗ ∈ C̄;φu ∈ C̄

Assumptions A Assumptions B

3 any φx∗ ∈ C̄;φu ∈ C̄(1) any φu ∈ C̄;φx∗ ∈ C̄(1)

4 any φux
, φx∗ ∈ C̄;φu ∈ C̄(1) any φu, φx∗ ∈ C̄;φux

∈ C̄(1)

4a any φux
, φx∗ ∈ C̄;φu ∈ C̄(1) any φu, φux

∈ C̄;φx∗ ∈ C̄(1)

5 any g ∈ S∗; fx∗ ∈ OM ; fu ∈ O∗
C any fx∗ ∈ D̄; g, hk ∈ S̄B,1; fu ∈ O∗

C

6 any g ∈ S∗; fu ∈ O∗
C g ∈ O∗

C ; any fu : φu ∈ C̄

7 any g ∈ S∗; fu ∈ O∗
C g ∈ O∗

C; any fu : φu ∈ C̄

The next table states the equations and systems of equations for Fourier

transforms that follow from the convolution equations.

Table 4. The form of the equations for the Fourier transforms:
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Model Eq’s for Fourier transforms Unknown functions

1 φx∗φu = φz; φx∗

2 φx∗ = φzφ−u; φx∗

3











φx∗φu = φz;

(φx∗)
′
k φu = εk, k = 1, ..., d.

φx∗ , φu

4























φx∗φu = φz;

(φx∗)
′
k φu = εk, k = 1, ..., d;

φx∗φux
= φx.

φx∗ , φu, φux

4a























φux
φu = φz−x;

(

φux

)′

k
φu = εk, k = 1, ..., d.

φx∗φux
= φx.

–”–

5























φx∗φu = φz;

Ft (gfx∗)φu = ε

(Ft (gfx∗))′k φu = εk, k = 1, ..., d.

φx∗ , φu, g

6











φx = φ−uφz;

Ft(g)φ−u = ε.
φu, g

7











Ft(g)φu = ε;

(Ft (g))′k φu = εk, k = 1, ..., d.
φu, g

Notes. Notation (·)′k denotes the k-th partial derivative of the function.

The functions ε are Fourier transforms of the corresponding w, and εk =

−iF t(wk) defined for the models in Tables 1 and 2.

Assumption 2 (that is fulfilled e.g. by generalized functions classes of
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Table 3) ensures existence of solutions to the convolution equations for models

1-7; this does not exclude multiple solutions and the next section provides a

discussion of solutions for equations in Table 4.

3.2 Classes of solutions; support and multiplicity of

solutions

Typically, support assumptions are required to restrict multiplicity of solu-

tions; here we examine the dependence of solutions on the support of the

functions. The results here also give conditions under which some zeros, e.g.

in the characteristic functions, are allowed. Thus in common with e.g. Car-

rasco and Florens (2010), Evdokimov and White (2011), distributions such

as the uniform or triangular for which the characteristic function has isolated

zeros are not excluded. The difference here is the extension of the considera-

tion of the solutions to S∗ and to models such as the regression model where

this approach to relaxing support assumptions was not previously considered.

Recall that for a continuous function ψ(x) on Rd support is defined as

the set W =supp(ψ), such that

ψ(x) =











a 6= 0 for x ∈ W

0 for x ∈ Rd\W.

Support of a continuous function is an open set.

Generalized functions are functionals on the space S and support of a
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generalized function b ∈ S∗ is defined as follows (Schwartz, 1967, p. 28).

Denote by (b, ψ) the value of the functional b for ψ ∈ S. Define a null set for

b ∈ S∗ as the union of supports of all functions in S for which the value of

the functional is zero: Ω = {∪supp(ψ) , ψ ∈ S, such that (b, ψ) = 0}. Then

supp(b) = Rd\Ω. Note that a generalized function has support in a closed

set, for example, support of the δ − function is just one point 0.

Note that for model 2 Table 4 gives the solution for φx∗ directly and the

inverse Fourier transform can provide the (generalized) density function, fx∗ .

In Zinde-Walsh (2012) identification conditions in S∗ were given for mod-

els 1 and 7 under assumptions that include the ones in Table 3 but could

also be more flexible.

The equations in Table 3 for models 1,3, 4, 4a, 5, 6 and 7 are of two

types, similar to those solved in Zinde-Walsh (2012). One is a convolution

with one unknown function; the other is a system of equations with two

unknown functions, each leading to the corresponding equations for their

Fourier transforms.

3.2.1 Solutions to the equation αβ = γ.

Consider the equation

αβ = γ, (5)

with one unknown function α; β is a given continuous function. By assump-

tion 2 the non-parametric class for α is such that the equation holds in S∗ on
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Rd; it is also possible to consider a nonparametric class for α with restricted

support, W̄ . Of course without any restrictions W̄ = Rd. Recall the differ-

entiation operator, ∂m, for m = (m1, ...md)̇ and denote by supp(β, ∂) the

set ∪∞
Σmi=0supp(∂

mβ); where supp(∂mβ) is an open set where a continuous

derivative ∂mβ exists. Any point where β is zero belongs to this set if some

finite-order partial continuous derivative of β is not zero at that point (and

in some open neighborhood); for β itself supp(β) ≡ supp(β, 0).

Define the functions

α1 = β−1γI (supp(β, ∂)) ;α2(x) =











1 for x ∈ supp(β, ∂);

α̃ for x ∈ W̄\(supp(β, ∂))
(6)

with any α̃ such that α1α2 ∈ Ft (A) .

Consider the case when α, β and thus γ are continuous. For any point x0

if β(x0) 6= 0, there is a neighborhood N(x0) where β 6= 0, and division by β

is possible. If β(x0) has a zero, it could only be of finite order and in some

neighborhood, N(x0) ∈ supp(∂mβ) a representation

β = η(x)Πd
i=1 (xi − x0i)

mi (7)

holds for some continuous function η in S∗, such that η > cη > 0 on

supp(η).Then η−1γ in N(x0) is a non-zero continuous function; division of

such a function by Πd
i=1 (xi − x0i)

mi in S∗ is defined (Schwartz, 1967, pp.

125-126), thus division by β is defined in this neighborhood N(x0). For the
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set supp(β, ∂) consider a covering of every point by such neighborhoods, the

possibility of division in each neighborhood leads to possibility of division

globally on the whole supp(β, ∂). Then a1 as defined in (6) exists in S∗.

In the case where γ is an arbitrary generalized function, if β is infinitely

differentiable then then by (Schwartz, 1967, pp.126-127) division by β is

defined on supp(β, ∂) and the solution is given by (6) .

For the cases where γ is not continuous and β is not infinitely differen-

tiable the solution is provided by

α1 = β−1γI (supp(β, 0)) ;α2(x) =











1 for x ∈ supp(β, 0);

α̃ for x ∈ W̄\(supp(β, 0))

with any α̃ such that α1α2 ∈ Ft (A) .

Theorem 2 in Zinde-Walsh (2012) implies that the solution to (5) is

a = Ft−1(α1α2); the sufficient condition for the solution to be unique is

supp(β, 0) ⊃ W̄ ; if additionally either γ is a continuous function or β is an

infinitely continuously differentiable function it is sufficient for uniqueness

that supp(β, ∂) ⊃ W̄ .

This provides solutions for models 1 and 6 where only equations of this

type appear.
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3.2.2 Solutions to the system of equations

For models 3,4,5 and 7 a system of equations of the form

αβ = γ;

αβ ′
k = γk,

(8)

k = 1, ..., d.

(with β continuously differentiable) arises. Theorem 3 in Zinde-Walsh (2012)

provides the solution and uniqueness conditions for this system of equations.

It is first established that a set of continuous functions κk, k = 1, ..., d, that

solves the equation

κkγ − γk = 0 (9)

in the space S∗ exists and is unique onW = supp(γ) as long as supp(β) ⊃W.

Then β′
kβ

−1 = κk and substitution into (9) leads to a system of first-order

differential equations in β.

Case 1. Continuous functions; W is an open set.

For the models 3 and 4 the system (8) involves continuous characteristic

functions thus there W is an open set. In some cases W can be an open

set under conditions of models 5 and 7, e.g. if the regression function is

integrable in model 7.

For this case represent the open set W as a union of (maximal) connected

components ∪vWv.

Then by the same arguments as in the proof of Theorem 3 in Zinde-
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Walsh (2012) the solution can be given uniquely on W as long as at some

point ζ0v ∈ (Wv ∩W ) the value β (ζ0ν) is known for each of the connected

components . Consider then β1(ζ) = Σν [β (ζ0ν) exp
∫ ζ

ζ0

d
∑

k=1

κk(ξ)dξ]I(Wν),

where integration is along any arc within the component that connects ζ to

ζ0ν . Then α1 = β−1
1 γ, and α2, β2 are defined as above by being 1 on ∪vWv

and arbitrary outside of this set.

When β(0) = 1 as is the case for the characteristic function, the function

is uniquely determined on the connected component that includes 0.

Evdokimov and White (2012) provide a construction that permits in the

univariate case to extend the solution β (ζ0ν) [exp
∫ ζ

ζ0

d
∑

k=1

κk(ξ)dξ]I(Wν) from

a connected component of support where β (ζ0ν) is known (e.g. at 0 for a

characteristic function) to a contiguous connected component when on the

border between the two where β = 0, at least some finite order derivative of

β is not zero. In the multivariate case this approach can be extended to the

same construction along a one-dimensional arc from one connected compo-

nent to the other. Thus identification is possible on a connected component

of supp(β, ∂).

Case 2. W is a closed set.

Generally for models 5 and 7, W is the support of a generalized function

and is a closed set. It may intersect with several connected components of

support of β. Denote by Wv here the intersection of a connected component

of support of β andW. Then similarly β1(ζ) =
∑

ν

[β (ζ0ν) exp
∫ ζ

ζ0

d
∑

k=1

κk(ξ)dξ]I(Wν),

where integration is along any arc within the component that connects ζ to
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ζ0ν . Then α1 = β−1
1 ε, and α2, β2 are defined as above by being 1 on ∪vWv

and arbitrary outside of this set. The issue of the value of β at some point

within each connected component arises. In the case of β being a character-

istic function if there is only one connected component, W and 0 ∈ W the

solution is unique, since then β(0) = 1.

Note that for model 5 the solution to equations of the type (8) would

only provide Ft(gfx∗) and φu; then from the first equation for this model in

Table 4 φx∗ can be obtained; it is unique if suppφx∗ =suppφz. To solve for g

find g = Ft−1 (Ft (gfx∗)) · (fx∗)−1
.

4 Identification, partial identification and well-

posedness

4.1 Identified solutions for the models 1-7

As follows from the discussion of the solutions uniqueness in models 1,2,3,4,4a,5,6

holds (in a few cases up to a value of a function at a point) if all the Fourier

transforms are supported over the whole Rd; in many cases it is sufficient

that supp(β, ∂) = Rd.

The classes of functions could be defined with Fourier transforms sup-

ported on some known subset W̄ of Rd, rather than on the whole space; if

all the functions considered have W̄ as their support, and the support con-

sists of one connected component that includes 0 as an interior point then
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identification for the solutions holds. For the next table assume that W̄ is a

single connected component with 0 as an interior point; again W̄ could coin-

cide with supp(β, ∂). For model 5 under Assumption B assume additionally

that the value at zero: Ft(gfx∗)(0) is known; similarly for model 7 under

assumption B additionally assume that Ft(g)(0) is known.

Table 5. The solutions for identified models on W̄ .
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Model
Solution to

equations

1. fx∗ = Ft−1
(

φ−1
u φz

)

.

2. fx∗ = Ft−1
(

φ−uφz

)

.

3.

Under Assumption A

fx∗ = Ft−1(exp
∫ ζ

ζ0

d
∑

k=1

κk(ξ)dξ),

where κk solves κkφz − [(φz)
′
k − εk] = 0;

fu = Ft−1(φ−1
x∗ ε).

Under Assumption B

fu = Ft−1(exp
∫ ζ

ζ0

d
∑

k=1

κk(ξ)dξ);

κk solves κkφz − εk = 0;

fx∗ = Ft−1(φ−1
u ε).

4
fx∗ , fu obtained similarly to those in 3.;

φux
= φ−1

x∗ φx.

4a.
fux

, fu obtained similarly to φx∗ , φu in 3.;

φx∗ = φ−1
ux
φx.

5.

Three steps:

1. (a) Get Ft(gfx∗), φu similarly to φx∗ , φu in model 3

(under Assumption A use Ft(gfx∗)(0));

2. Obtain φx∗ = φ−1
u φz;

3. Get g = [Ft−1 (φx∗)]
−1
Ft−1(Ft(gfx∗)).

6. φ−u = φ−1
z φx and g = Ft−1(φ−1

x φzε).

7.
φx∗ , F t(g)obtained similarly to φx∗ , φuin 3

(under Assumption A use Ft(g)(0)).45



4.2 Implications of partial identification.

Consider the case of Model 1. Essentially lack of identification, say in the

case when the error distribution has characteristic function supported on

a convex domain Wu around zero results in the solution for φx∗ = φ1φ2,

with φ1 non-zero and unique on Wu, and thus captures the lower-frequency

components of x∗, and with φ2 is a characteristic function of a distribution

with arbitrary high frequency components. Transforming back to densities

provides a corresponding model with independent components

z = x∗1 + x∗2 + u,

where x∗1 uniquely extracts the lower frequency part of observed z. The more

important the contribution of x∗1 to x∗ the less important is lack of identifi-

cation.

If the feature of interest as discussed e.g. by Matzkin (2007) involves only

low frequency components of x∗, it may still be fully identified even when

the distribution for x∗ itself is not. An example of that is a deconvolution

applied to an image of a car captured by a traffic camera; although even after

deconvolution the image may still appear blurry the licence plate number may

be clearly visible. In nonparametric regression the polynomial growth of the

regression or the expectation of the response function may be identifiable

even if the regression function is not fully identified.

Features that are identified include any functional, Φ, linear or non-linear
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on a class of functions of interest, such that in the frequency domain Φ is

supported on Wu.

4.3 Well-posedness in S∗

Conditions for well-posedness in S∗ for solutions of the equations entering in

models 1-7 were established in Zinde-Walsh (2012). Well-posedness is needed

to ensure that if a sequence of functions converges (in the topology of S∗) to

the known functions of the equations characterizing the models 1-7 in tables

1 and 2, then the corresponding sequence of solutions will converge to the

solution for the limit functions. A feature of well-posedness in S∗ is that the

solutions are considered in a class of functions that is a bounded set in S∗.

The properties that differentiation is a continuous operation, and that

the Fourier transform is an isomorphism of the topological space S∗, make

conditions for convergence in this space much weaker than those in functions

spaces, say, L1, L2. Thus for density that is given by the generalized deriva-

tive of the distribution function well-posedness holds in spaces of generalized

functions by the continuity of the differentiation operator.

For the problems here however, well-posedness does not always obtain.

The main sufficient condition is that the inverse of the characteristic function

of the measurement error satisfy the condition (1) with b = φ−1
u on the

corresponding support. This holds if either the support is bounded or if

the distribution is not super-smooth. If φu has some zeros but satisfies the

identification conditions so that it has local representation (7) where (1) is
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satisfied for b = η−1 well-posedness will hold.

Example in Zinde-Walsh (2012) demonstrates that well-posedness of de-

convolution will not hold even in the weak topology of S∗ for super-smooth

(e.g. Gaussian) distributions on unbounded support. On the other hand,

well-posedness of deconvolution in S∗ obtains for ordinary smooth distribu-

tions and thus under less restrictive conditions than in function spaces, such

as L1 or L2 usually considered.

In the models 3-7 with several unknown functions, more conditions are

required to ensure that all the operations by which the solutions are obtained

are continuous in the topology of S∗. It may not be sufficient to assume (1)

for the inverses of unknown functions where the solution requires division;

for continuity of the solution the condition may need to apply uniformly.

Define a class of ordinary functions on Rd, Φ(m, V ) (with m a vector of

integers, V a positive constant) where b ∈ Φ(m, V ) if

∫

Π
(

(1 + t2i )
−1
)mi |b(t)| dt < V <∞. (10)

Then in Zinde-Walsh (2012) well-posedness is proved for model 7 as long

as in addition to Assumption A or B, for some Φ(m, V ) both φu and φ−1
u

belong to the class Φ(m, V ). This condition is fulfilled by non-supersmooth

φu; this could be an ordinary smooth distribution or a mixture with some

mass point.

A convenient way of imposing well-posedness is to restrict the support of
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functions considered to a bounded W̄ . If the features of interest are associated

with low-frequency components only, then if the functions are restricted to

a bounded space the low-frequency part can be identified and is well-posed.

5 Implications for estimation

5.1 Plug-in non-parametric estimation

Solutions in Table 5 for the equations that express the unknown functions

via known functions of observables give scope for plug-in estimation. As seen

e.g. in the example of Model 4, 4 and 4a are different expressions that will

provide different plug-in estimators for the same functions.

The functions of the observables here are characteristic functions and

Fourier transforms of density-weighted conditional expectations and in some

cases their derivatives, that can be estimated by non-parametric methods.

There are some direct estimators, e.g. for characteristic functions. In the

space S∗ the Fourier transform and inverse Fourier transform are continuous

operations thus using standard estimators of density weighted expectations

and applying the Fourier transform would provide consistency in S∗; the

details are provided in Zinde-Walsh (2012). Then the solutions can be ex-

pressed via those estimators by the operations from Table 5 and, as long

as the problem is well-posed, the estimators will be consistent and the con-

vergence will obtain at the appropriate rate. As in An and Hu (2012), the

convergence rate may be even faster for well-posed problems in S∗ than the
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usual nonparametric rate in (ordinary) function spaces. For example, as

demonstrated in Zinde-Walsh (2008) kernel estimators of density that may

diverge if the distribution function is not absolutely continuous, are always

(under the usual assumptions on kernel/bandwidth) consistent in the weak

topology of the space of generalized functions, where the density problem is

well-posed. Here, well-posedness holds for deconvolution as long as the error

density is not super-smooth.

5.2 Regularization in plug-in estimation

When well-posedness cannot be ensured, plug-in estimation will not provide

consistent results and some regularization is required; usually spectral cut-off

is employed for the problems considered here. In the context of these non-

parametric models regularization requires extra information: the knowledge

of the rate of decay of the Fourier transform of some of the functions.

For model 1 this is not a problem since φu is assumed known; the regular-

ization uses the information about the decay of this characteristic function to

construct a sequence of compactly supported solutions with support increas-

ing at a corresponding rate. In S∗ no regularization is required for plug-in

estimation unless the error distribution is super-smooth. Exponential growth

in φ−1
u provides a logarithmic rate of convergence in function classes for the

estimator (Fan, 1991). Below we examine spectral cut-off regularization for

the deconvolution in S∗ when the error density is super-smooth.

With super-smooth error in S∗ define a class of generalized functions
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Φ(Λ, m, V ) for some non-negative-valued function Λ; a generalized function

b ∈ Φ(Λ, m, V ) if there exists a function b̄(ζ) ∈ Φ(m, V ) such that also

b̄(ζ)−1 ∈ Φ(m, V ) and b = b̄(ζ) exp (−Λ(ζ)) . Note that a linear combination

of functions in Φ(Λ, m, V ) belongs to the same class. Define convergence: a

sequence of bn ∈ Φ(Λ, m, V ) converges to zero if the corresponding sequence

b̄n converges to zero in S∗.

Convergence in probability for a sequence of random functions, εn, in S
∗ is

defined as follows: (εn−ε) →p 0 in S
∗ if for any set ψ1, ..., ψv ∈ S the random

vector of the values of the functionals converges: ((εn − ε, ψ1), ..., (εn − ε, ψv)) →p

0.

Lemma 2. If in model 1 φu = b ∈ Φ(Λ, m, V ), where Λ is a polynomial

function of order no more than k, and εn is a sequence of estimators of ε that

are consistent in S∗ : rn(εn − ε) →p 0 in S∗ at some rate rn → ∞, then for

any sequence of constants B̄n : 0 < B̄n < (ln rn)
1
k and the corresponding set

Bn =
{

ζ : ‖ζ‖ < B̄n

}

the sequence of regularized estimators φ−1
u (εn−ε)I(Bn)

converges to zero in probability in S∗.

Proof. For n the value of the random functional

(φ−1
u (εn − ε)I(Bn), ψ) =

∫

b̄−1(ζ)rn(εn − ε)r−1
n I(Bn) exp (Λ(ζ))ψ(ζ)dζ.

Multiplication by b̄−1 ∈ Φ(m, V ), that corresponds to φu = b does not affect

convergence thus b̄−1(ζ)rn(εn − ε) converges to zero in probability in S∗. To

show that (φ−1
u (εn−ε)I(Bn), ψ) converges to zero it is sufficient to show that
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the function r−1
n I(Bn) exp (Λ(ζ))ψ(ζ) is bounded. It is then sufficient to find

Bn such that r−1
n I(Bn) exp (Λ(ζ)) is bounded (by possibly a polynomial),

thus it is sufficient that sup
Bn

|exp (Λ(ζ)) r−1
n | be bounded. This will hold if

exp
(

B̄k
n

)

< rn, B̄
k
n < ln rn.�

Of course an even slower growth for spectral cut-off would result from Λ

that grows faster than a polynomial. The consequence of the slow growth

of the support is usually a correspondingly slow rate of convergence for

φ−1
u εnI(Bn). Additional conditions (as in function spaces) are needed for

the regularized estimators to converge to the true γ.

It may be advantageous to focus on lower frequency components and

ignore the contribution from high frequencies when the features of interest

depend on the contribution at low frequency.

6 Concluding remarks

Working in spaces of generalized functions extends the results on nonpara-

metric identification and well-posedness for a wide class of models. Here

identification in deconvolution is extended to generalized densities in the

class of all distributions from the usually considered classes of integrable den-

sity functions. In regression with Berkson error nonparametric identification

in S∗ holds for functions of polynomial growth, extending the usual results

obtained in L1; a similar extension applies to regression with measurement

error and Berkson type measurement; this allows to consider binary choice
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and polynomial regression models. Also, identification in models with sum-

of-peaks regression function that cannot be represented in function spaces

is included. Well-posedness results in S∗ also extend the results in the lit-

erature provided in function spaces; well-posedness of deconvolution holds

as long as the characteristic function of the error distribution does not go

to zero at infinity too fast (as e.g. super-smooth) and a similar condition

provides well-posedness in the other models considered here.

Further investigation of the properties of estimators in spaces of general-

ized functions requires deriving the generalized limit process for the function

being estimated and investigating when it can be described as a generalized

Gaussian process. A generalized Gaussian limit process holds for kernel esti-

mator of the generalized density function (Zinde-Walsh, 2008). Determining

the properties of inference based on the limit process for generalized ran-

dom functions requires both further theoretical development and simulations

evidence.
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