

Cornell University Library

Search or Articl

arXiv.org > stat > arXiv:1106.5175

Statistics > Machine Learning

## Sparse Inverse Covariance Estimation via an Adaptive Gradient-Based Method

## Suvrit Sra, Dongmin Kim

(Submitted on 25 Jun 2011)

We study the problem of estimating from data, a sparse approximation to the inverse covariance matrix. Estimating a sparsity constrained inverse covariance matrix is a key component in Gaussian graphical model learning, but one that is numerically very challenging. We address this challenge by developing a new adaptive gradient-based method that carefully combines gradient information with an adaptive step-scaling strategy, which results in a scalable, highly competitive method. Our algorithm, like its predecessors, maximizes an \$\ell\_1\$-norm penalized log-likelihood and has the same per iteration arithmetic complexity as the best methods in its class. Our experiments reveal that our approach outperforms state-of-the-art competitors, often significantly so, for large problems.

Comments:13 pagesSubjects:Machine Learning (stat.ML)Cite as:arXiv:1106.5175 [stat.ML]<br/>(or arXiv:1106.5175v1 [stat.ML] for this version)

## Submission history

From: Suvrit Sra [view email] [v1] Sat, 25 Jun 2011 21:38:55 GMT (915kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

| e-id | ( <u>Help</u>   <u>Advanced searc</u>                                        |
|------|------------------------------------------------------------------------------|
|      | All papers y Go!                                                             |
| _    | Download: <ul> <li>PDF</li> <li>Other formats</li> </ul>                     |
|      | Current browse context:<br>stat.ML<br>< prev   next ><br>new   recent   1106 |
|      | Change to browse by:<br>stat                                                 |
|      | References & Citations <ul> <li>NASA ADS</li> </ul>                          |
|      | Bookmark(what is this?)                                                      |