# Stationary random graphs with prescribed iid degrees on a spatial Poisson process 

Maria Deijfen, Stockholm University


#### Abstract

Let $\$[$ mathcal $\{P\}] \$$ be the points of a Poisson process on $\$ R R \wedge$ d $\$$ and $\$ F \$$ a probability distribution with support on the non-negative integers. Models are formulated for generating translation invariant random graphs with vertex set $\$[$ mathcal $\{P\}] \$$ and iid vertex degrees with distribution $\$ F \$$, and the length of the edges is analyzed. The main result is that finite mean for the total edge length per vertex is possible if and only if $\$ F \$$ has finite moment of order $\$(d+1) / d \$$.


Full text: PDF | PostScript
Pages: 81-89
Published on: February 16, 2009

Research
Support Tool

## Bibliography

1. Bollobas, B., Riordan, O., Spencer, J. and Tusnady, G. (2001): The degree sequence of a scale-free random graph process, Rand. Struct. Alg. 18, 279290. Math. Review 2002b: 05121
2. Bollobas, B., Janson, S. and Riordan, O. (2006): The phase transition in inhomogeneous random graphs, Rand. Struct. Alg. 31, 3-122. Math. Review 2008e:05124
3. Chung, F. and Lu, L. (2002:1): Connected components in random graphs with given degrees sequences, Ann. Comb. 6, 125-145. Math. Review 2003k:05123
4. Chung, F. and Lu, L. (2002:2): The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. 99, 15879-15882. Math. Review 2003k:05124
5. Daley, D.J. and Vere-Jones, D. (2002): An introduction to the theory of point processes, 2nd edition, vol. I, Springer. Math. Review 2004c: 60001
6. Deijfen, M. and Jonasson, J. (2006): Stationary random graphs on $\$ Z \$$ with prescribed iid degrees and finite mean connections, Electr. Comm. Probab. 11, 336-346. Math. Review 2007j:05194
7. Deijfen, M. and Meester, R. (2006): Generating stationary random graphs on \$mathbb\{Z\}\$ with prescribed iid degrees, Adv. Appl. Probab. 38, 287-298. Math. Review 2007k: 05197
8. Durrett, R. (2006): Random graph dynamics, Cambridge University Press. Math. Review 2008c: 05167
9. Gale, D. and Shapely, L. (1962): College admissions and stability of marriage, Amer. Math. Monthly 69, 9-15. Math. Review MR1531503
10. Hoffman, C., Holroyd, A. and Peres, Y. (2006): A stable marriage of Poisson and Lebesgue, Ann. Probab. 34, 1241-1272. Math. Review 2007k: 60034
11. Holroyd, A., Pemantle, R., Peres, Y. and Schramm, O. (2008): Poisson matching, Ann. Inst. Henri Poincare, to appear.
12. Holroyd, A. and Peres, Y. (2003): Trees and matchings from point processes, Elect. Comm. Probab. 8, 17-27. Math. Review 2004b: 60127
13. Jonasson, J. (2007): Invariant random graphs with iid degrees in a general geology, Probab. Th. Rel. Fields, to appear.
14. Kallenberg, O. (1997): Foundations of modern probability, Springer. Math. Review 99e:60001
15. Molloy, M. and Reed, B. (1995): A critical point for random graphs with a given degree sequence, Rand. Struct. Alg. 6, 161-179. Math. Review 97a: 05191
16. Molloy, M. and Reed, B. (1998): The size of the giant component of a random graphs with a given degree sequence, Comb. Probab. Comput. 7, 295-305. Math. Review 2000c: 05130

Home | Contents | Submissions, editors, etc.| Login | Search | EJP
Electronic Communications in Probability. ISSN: 1083-589X

