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We consider distributed estimation of the inverse covariance matrix, also 
called the concentration matrix, in Gaussian graphical models. Traditional 
centralized estimation often requires iterative and expensive global inference 
and is therefore difficult in large distributed networks. In this paper, we 
propose a general framework for distributed estimation based on a maximum 
marginal likelihood (MML) approach. Each node independently computes a 
local estimate by maximizing a marginal likelihood defined with respect to data 
collected from its local neighborhood. Due to the non-convexity of the MML 
problem, we derive and consider solving a convex relaxation. The local 
estimates are then combined into a global estimate without the need for 
iterative message-passing between neighborhoods. We prove that this relaxed 
MML estimator is asymptotically consistent. Through numerical experiments on 
several synthetic and real-world data sets, we demonstrate that the two-hop 
version of the proposed estimator is significantly better than the one-hop 
version, and nearly closes the gap to the centralized maximum likelihood 
estimator in many situations. 
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