

Search or Artic

arXiv.org > math > arXiv:1303.2209

Mathematics > Statistics Theory

Aggregation of autoregressive random fields and anisotropic long memory

Donata Puplinskaite, Donatas Surgailis

(Submitted on 9 Mar 2013)

We introduce the notion of anisotropic long memory for random fields on $\$ mathbb{Z}^2\$ whose partial sums on incommensurate rectangles with sides growing at different rates O(n) and $O(n^{H_1/H_2})$, $H_1 \in H_2$ tend to an operator scaling random field on <math>\$ mathbb{R}^2\$ with two scaling indices H_1, H_2. The random fields with such behavior are obtained by aggregating independent copies of a random-coefficient nearest-neighbor autoregressive random fields on $\$ with i.i.d. innovations belonging to the domain of attraction of $\$ the spectral radius of the corresponding autoregressive operator) having a regularly varying probability density near the `unit root' A=1. The proofs are based on a study of scaling limits of the corresponding lattice Green functions.

Subjects: Statistics Theory (math.ST) Cite as: arXiv:1303.2209 [math.ST] (or arXiv:1303.2209v1 [math.ST] for this version)

Submission history

From: Donata Puplinskaitė [view email] [v1] Sat, 9 Mar 2013 13:40:53 GMT (54kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

e-id	(<u>Help</u> <u>Advanced search</u>)
	All papers 🚽 Go!
	Download: • PDF • PostScript • Other formats
	Current browse context: math.ST < prev next > new recent 1303
	Change to browse by: math stat
	References & Citations NASA ADS
	Bookmark(what is this?)