Mathematics > Statistics Theory

Consistent Model Selection of Discrete Bayesian Networks from Incomplete Data

Nikolay Balov

(Submitted on 23 May 2011 (v1), last revised 20 Feb 2012 (this version, v2))
A maximum likelihood based model selection of discrete Bayesian networks is considered. The model selection is performed through scoring function $\$ S \$$, which, for a given network $\$ \mathrm{G} \$$ and $\$ \mathrm{n} \$$-sample \$D_n\$, is defined to be the maximum log-likelihood $\$ 1 \$$ minus a penalization term $\$ \backslash \operatorname{lambda_ n~h\$ ~}$ proportional to network complexity $\$ \mathrm{~h}(\mathrm{G}) \$$, $\$ \$ \mathrm{~S}\left(\mathrm{G} \mid \mathrm{D} _\mathrm{n}\right)=\mathrm{I}\left(\mathrm{G} \mid \mathrm{D} _\mathrm{n}\right)$ - Vambda_n $\mathrm{h}(\mathrm{G})$. \$\$ The data is allowed to have missing values at random that has prompted, to improve the efficiency of estimation, a replacement of the standard log-likelihood with the sum of sample average node log-likelihoods. The latter avoids the exclusion of most partially missing data records and allows the comparison of models fitted to different samples.
Provided that a discrete Bayesian network is identifiable for a given missing data distribution, we show that if the sequence $\$ \backslash \operatorname{lambdan} n \$$ converges to zero at a slower rate than $\$ n^{\wedge}\{-\{1 / 2\}\} \$$ then the estimation is consistent. Moreover, we establish that BIC model selection (\$lambda_n=0.5\og(n)/n\$) applied to the node-average log-likelihood is in general not consistent. This is in contrast to the complete data case where BIC is known to be consistent. The conclusions are confirmed by numerical examples.

Subjects: Statistics Theory (math.ST)
MSC classes: 62F12
Cite as: arXiv:1105.4507 [math.ST]
(or arXiv:1105.4507v2 [math.ST] for this version)

Submission history

From: Nikolay Balov [view email]
[v1] Mon, 23 May 2011 14:08:55 GMT (57kb)
[v2] Mon, 20 Feb 2012 18:52:41 GMT (76kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.ST
 < prev | next > new | recent | 1105

Change to browse b math
stat
References \& Citatic

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

