Recurrence and transience of excited random walks on \$Z^d\$ and strips

Martin P.W. Zerner, University of Tuebingen

Abstract

We investigate excited random walks on $\$ Z^{\wedge} d$, dge $1, \$$ and on planar strips $\$$ Ztimes $\{0,1$, Idots, L-1 $\}$ \$ which have a drift in a given direction. The strength of the drift may depend on a random i.i.d. environment and on the local time of the walk. We give exact criteria for recurrence and transience, thus generalizing results by Benjamini and Wilson for once-excited random walk on $\$ Z^{\wedge} d \$$ and by the author for multi-excited random walk on $\$ Z \$$.

Full text: PDF | PostScript Pages: 118-128 Published on: July 7, 2006 | Research Support Tool |
| :---: |
| Capture Cite
 View Metadata
 Printer Friendly |
| F Context |
| Author Address |
| \% Action |
| Email Author
 Email Others |

Research Support Tool

Capture Cite View Metadata Printer Friendly F Context Author Address

Email Author Email Others

Bibliography

1. G. Amir, I. Benjamini and G. Kozma. Excited random walk against a wall. Preprint available at http://arxiv.org/abs/math. PR/0509464 (2005). Math. Review number not available.
2. T. Antal and S. Redner. The excited random walk in one dimension. J. Phys. A: Math. Gen. 38 (2005), 2555--2577. Math. Review 2005k: 82026
3. I. Benjamini and D.B. Wilson. Excited random walk. Elect. Comm. Probab. 8 (2003), 86--92. Math. Review 2004b: 60120
4. G. Kozma. Excited random walk in three dimensions has positive speed. Preprint available at http://arxiv.org/abs/math. PR/0310305 (2003). Math. Review number not available.
5. G. Kozma. Excited random walk in two dimensions has linear speed. Preprint available at http://arxiv.org/abs/math.PR/0512535 (2005). Math. Review number not available.
6. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. (1993) Springer. Math. Review 95j: 60103
7. A.G. Pakes. On the critical Galton-Watson process with immigration. J. Austral. Math. Soc. 12 (1971), 476--482. Math. Review 0307370
8. T. Sellke. Reinforced random walk on the d-dimensional integer lattice. Technical report \#94-26, Dept. of Statistics, Purdue University. (1994) Math. Review number not available.
9. A.-S. Sznitman and M.P.W. Zerner. A law of large numbers for random walks in random environment. Ann. Probab. 27, No. 4 (1999), 1851--1869. Math. Review 2001f: 60116
10. M.P.W. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005), 98--122. Math. Review 2197139
11. M.P.W. Zerner and F. Merkl. A zero-one law for planar random walks in random environment. Ann. Probab. 29 (2001), 1716--1732. Math. Review 2003a: 60144
12. A. Zubkov. The life spans of a branching process with immigration. Theory Prob. Appl. 17 (1972), 174--183. Math. Review 0300351

Home | Contents | Submissions, editors, etc.| Login | Search | EJP Electronic Communications in Probability. ISSN: 1083-589X

