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Many problems of recent interest in statistics and machine learning can be posed in the
framework of convex optimization. Due to the explosion in size and complexity of modern
datasets, it is increasingly important to be able to solve problems with a very large number of

features, training examples, or both. As a result, both the decentralized collection or storage of
these datasets as well as accompanying distributed solution methods are either necessary or at
least highly desirable. In this paper, we argue that the alternating direction method of
multipliers is well suited to distributed convex optimization, and in particular to large-scale
problems arising in statistics, machine learning, and related areas. The method was developed in
the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms,
such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's
method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for 
problems, proximal methods, and others. After briefly surveying the theory and history of the
algorithm, we discuss applications to a wide variety of statistical and machine learning problems
of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance
selection, support vector machines, and many others. We also discuss general distributed
optimization, extensions to the nonconvex setting, and efficient implementation, including some
details on distributed MPI and Hadoop MapReduce implementations.
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