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Abstract

Hallin and Ley (2012) investigate and fully characterize the Fisher singularity phe-

nomenon in univariate and multivariate families of skew-symmetric distributions. This

paper proposes a refined analysis of the (univariate) Fisher degeneracy problem, show-

ing that it can be more or less severe, inducing n1/4 (“simple singularity”), n1/6 (“dou-

ble singularity”), or n1/8 (“triple singularity”) consistency rates for the skewness pa-

rameter. We show, however, that simple singularity (yielding n1/4 consistency rates),

if any singularity at all, is the rule, in the sense that double and triple singularities are

possible for generalized skew-normal families only. We also show that higher-order

singularities, leading to worse-than-n1/8 rates, cannot occur.
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1. Introduction.

The skew-symmetric families, originally proposed in Azzalini and Capitanio (2003)

and Wang et al. (2004), are, in their univariate version, parametric families of proba-

bility density functions (pdfs) of the form

x 7→ fΠ
ϑϑϑ (x) := 2 σ−1f(σ−1(x− µ))Π(σ−1(x− µ), δ), x ∈ R, (1.1)

where
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(a) ϑϑϑ = (µ, σ, δ)′, with µ ∈ R a location parameter, σ ∈ R
+
0 a scale parameter, while

δ ∈ R plays the role of a skewness parameter ;

(b) f : R → R
+
0 , the symmetric kernel, is a symmetric nonvanishing pdf (such that,

for any z ∈ R, 0 6= f(−z) = f(z)), and

(c) Π : R× R → [0, 1] is a skewing function, that is, satisfies

Π(−z, δ) + Π(z, δ) = 1, z, δ ∈ R, and Π(z, 0) = 1/2, z ∈ R, (1.2)

and, in case (z, δ) 7→ Π(z, δ) admits a derivative of order s at δ = 0 for all z ∈ R,

∂szΠ(z, δ)|δ=0 = 0, z ∈ R and, for s even, ∂sδΠ(z, δ)|δ=0 = 0, z ∈ R. (1.3)

While condition (1.2) is classical, (1.3), which involves the derivatives of Π, is less

usual. The main justification for it lies in the analogy with skewing functions of the

form Π(z, δ) = Π(δz), by far the most common ones. If Π is s times continuously

differentiable, ∂szΠ(δz) = δs(∂sΠ)(δz) obviously vanishes at δ = 0. Similarly, the fact

that Π(−y) + Π(y) = 1 implies that ∂sΠ(δz) cancels at δ = 0 for even values of s.

All skewing functions considered in the literature, as well as those appearing in the

examples developed in this paper and in Hallin and Ley (2012), satisfy (1.3). Further

comments on the skewing functions of the form Π(z, δ) = Π(δz) can be found in

Section 5.5.

The skew-normal family of Azzalini (1985), for which the symmetric kernel f is

the standard Gaussian pdf φ and the skewing function Π(z, δ) = Φ(δz) for Φ the stan-

dard Gaussian cumulative distribution function (cdf), is the oldest and most popular

example of such a skew-symmetric family; varying f and Π, however, yields a vir-

tually infinite number of them. Traditional examples include the skew-exponential

power distributions of Azzalini (1986), the skew-Cauchy distributions of Arnold and

Beaver (2000), the skew-t densities of Azzalini and Capitanio (2003), or the gener-

alized skew-normal distributions of Loperfido (2004). We refer to Genton (2004),

Azzalini (2005) or Ley (2012) for background reading, details and examples.

Since the pioneering paper by Azzalini (1985), it is well known that the scalar skew-

normal distribution suffers from a Fisher information singularity problem at δ = 0.

More precisely, the Fisher information matrix for the three-parameter density (1.1)

in the scalar skew-normal case is singular—typically, with rank 2 instead of 3—in

the vicinity of symmetry, that is, at δ = 0. Such a singularity violates the standard

assumptions for root-n asymptotic inference, and skew-normal distributions there-

fore are problematic from an inferential point of view; in particular, any nontrivial

traditional test of the null hypothesis of symmetry, at first sight, seems impossible.
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That degeneracy problem has been discussed at length in a number of papers,

among which Azzalini and Capitanio (1999), Pewsey (2000), DiCiccio and Monti (2004),

Chiogna (2005), Azzalini and Genton (2008) or Ley and Paindaveine (2010); see Hallin

and Ley (2012) for a detailed account. While all authors were pointing at some spe-

cial status for normal kernels, hence skew-normal distributions, Hallin and Ley (2012)

have shown that this information deficiency has no special relation to the skew-normal

case, but actually originates in an unfortunate mismatch between f and Π—more pre-

cisely, between two densities, the kernel f and an exponential density gΠ associated

with the skewing function Π (see Section 2.1).

The deficiency of the Fisher information matrix results in slower consistency rates

in the estimation of the skewness parameter (at δ = 0)—equivalently, it yields slower

local alternative rates (contiguity rates) in tests of the null hypothesis of symme-

try (δ = 0). That impact of singular Fisher information on consistency/contiguity

rates has been studied, in a general context, for the particular case of a deficiency of

order one, by Rotnitzky et al. (2000), who unify and reinforce earlier proposals by,

e.g., Cox and Hinkley (1974, pp. 117–118) or Lee and Chesher (1986).

The typical rate, corresponding to a “simple singularity”, would be n1/4. However,

it is well-known from e.g. Chiogna (2005) that, for skew-normal distributions, that

rate (for the estimation of δ at δ = 0) drops down to n1/6. In order to understand

and explain this intriguing phenomenon, we pursue and refine, in the present paper,

the analysis of Fisher singularity initiated in Hallin and Ley (2012). We show that

this deterioration from n1/4 to n1/6 is explained by a “double singularity” property (a

terminology that will become clear in the course of this paper)—the double sin of the

skew-normal. That n1/6 rate in turn possibly can drop further down to n1/8, a case

of “triple singularity”. This, however, as we show in Theorem 4.1, is the worst case:

“fourfold singularities”—quadruple sins—yielding n1/10 rates or worse, are impossible.

Our aim is to characterize, in the spirit of Hallin and Ley (2012), among all

families of univariate skew-symmetric distributions suffering from Fisher singularity,

those exhibiting that double/triple singularity phenomenon, and to show that there

exist no higher-order ones. It turns out that only Gaussian kernels can exhibit double

(hence, also triple) degeneracy. The skew-normal family is one example; other ones

are found in the class of generalized skew-normal distributions (Loperfido 2004). We

also provide (in the spirit of Rotnitzky et al. 2000) the reparametrizations and the

scores taking care of simple, double and triple singularities and achieving the n1/4, n1/6

and n1/8 consistency/contiguity rates, respectively.
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The paper is organized as follows. Section 2 deals with the simple singularity case,

Section 3 with double singularity. Section 4 analyzes the triple singularity case and

shows that higher-order ones are excluded. Examples for each type of singularity, and

a discussion of the most standard type of skewing function are provided in Section 5.

2. The simple singularity case.

In this section, we first briefly revisit the main result of Hallin and Ley (2012); we

then show how to remove the singularity problem via an adequate reparametrization

leading, in general, to n1/4 consistency rates for the skewness parameter in the vicinity

of symmetry.

2.1. Simple singularity: a mismatch between f and Π.

Throughout, we consider the skew-symmetric distributions with pdf (1.1), along

with regularity assumptions on f and Π that will be tightened from section to section.

The minimal regularity assumptions we need are those of Hallin and Ley (2012).

Assumption (A1). (i) The symmetric kernel f is a standardized symmetric pdf. (ii)

The mapping z 7→ f(z) is continuously differentiable, with derivative ḟ , at all z ∈ R.

(iii) Letting ϕf := −ḟ /f , the information quantities σ−2If for location and σ−2Jf for

scale, with

If :=

∫ ∞

−∞
ϕ2
f (z)f(z)dz and Jf :=

∫ ∞

−∞
(zϕf (z)− 1)2f(z)dz,

are finite.

Assumption (A2). (i) The mapping (z, δ) 7→ Π(z, δ) is continuously differentiable at

δ = 0 for all z ∈ R; (ii) the derivative ∂δΠ(z, δ)|δ=0 =: ψ(z) admits a primitive Ψ; (iii)

the quantity
∫∞
−∞ ψ2(z)f(z)dz is finite.

Regarding Assumption (A1)(i), the term “standardized” means that the scale

parameter (not necessarily a standard error, so that finite second-order moments are

not required) of the symmetric kernel equals one—an identification constraint for σ

that does not imply any loss of generality; see Hallin and Ley (2012) for a discussion

of possible choices of scale parameters. All other assumptions ensure the existence

and finiteness of Fisher information for the original parametrization.

Under Assumptions (A1) and (A2), the score vector ℓℓℓf ;ϑϑϑ, at (µ, σ, 0)
′ =: ϑϑϑ0, takes
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the form

ℓℓℓf ;ϑϑϑ0(x) := gradϑϑϑ log f
Π
ϑϑϑ (x)

∣

∣

ϑϑϑ0
=:
(

ℓ1f ;ϑϑϑ0
(x), ℓ2f ;ϑϑϑ0

(x), ℓ3f ;ϑϑϑ0
(x)
)′

=









σ−1ϕf(σ
−1(x− µ))

σ−1(σ−1(x− µ)ϕf(σ
−1(x− µ))− 1)

2ψ(σ−1(x− µ))









,

where the factor 2 in ℓ3f ;ϑϑϑ0
follows from the fact that Π(z, 0) = 1/2 for all z ∈ R. We

attract the reader’s attention to the fact that the skewing function Π plays no role

in the score functions for µ and σ at δ = 0. The resulting 3 × 3 Fisher information

matrix then exists, is finite, and takes the form

ΓΓΓf ;ϑϑϑ0 := σ−1

∫ ∞

−∞
ℓℓℓf ;ϑϑϑ0(x)ℓℓℓ

′
f ;ϑϑϑ0

(x)f(σ−1(x− µ))dx =:







γ11f ;ϑϑϑ0
0 γ13f ;ϑϑϑ0

0 γ22f ;ϑϑϑ0
0

γ13f ;ϑϑϑ0
0 γ33f ;ϑϑϑ0






,

with

γ11f ;ϑϑϑ0
= σ−2If , γ22f ;ϑϑϑ0

= σ−2Jf , γ33f ;ϑϑϑ0
= 4

∫ ∞

−∞
ψ2(z)f(z)dz,

and

γ13f ;ϑϑϑ0
= 2σ−1

∫ ∞

−∞
ϕf(z)ψ(z)f(z)dz.

The zeroes in ΓΓΓf ;ϑϑϑ0 are easily obtained by noting that ℓ1f ;ϑϑϑ0
and ℓ3f ;ϑϑϑ0

are odd functions

of (x−µ), whereas ℓ2f ;ϑϑϑ0
is even with respect to the same quantity. Consequently, Fisher

singularity only can be caused by the collinearity of ℓ1f ;ϑϑϑ0
and ℓ3f ;ϑϑϑ0

. Starting from that

elementary observation, Hallin and Ley (2012) show that the family of densities (1.1)

characterized by a couple (f,Π) suffers from Fisher singularity at δ = 0 if and only if

the symmetric kernel f belongs to the exponential family

EΨ :=
{

ga := exp(−aΨ)/

∫ ∞

−∞
exp(−aΨ(z))dz

∣

∣

∣
a ∈ A

}

(2.4)

withminimal sufficient statistic Ψ, natural parameter−a, and natural parameter space

A :=
{

a ∈ R such that

∫ ∞

−∞
exp(−aΨ(z))dz <∞

}

,

yielding

γ11f ;ϑϑϑ0
= σ−2a2

∫ ∞

−∞
ψ2(z)f(z)dz and γ13f ;ϑϑϑ0

= 2σ−1a

∫ ∞

−∞
ψ2(z)f(z)dz. (2.5)

We refer the reader to the end of Section 2.1 in Hallin and Ley (2012) for comments

and a discussion on the existence of couples (f,Π) such that f ∈ EΨ for given f and

for given Π, respectively.
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2.2. Towards a singularity-free reparametrization: orthogonalization.

A natural way to handle this singularity problem consists in reparametrizing (1.1)

in the spirit of Rotnitzky et al. (2000). Assume that f and Π are such that f ∈ EΨ.
The collinearity between the score for location and the score for skewness can be taken

care of by a Gram-Schmidt orthogonalization process applied to the three components

of ℓℓℓf ;ϑϑϑ0 . This process projects, in the L2 geometry of the information matrix, the score

for skewness ℓ3f ;ϑϑϑ0
onto the subspace orthogonal (at ϑϑϑ0) to the scores for location and

scale ℓ1f ;ϑϑϑ0
and ℓ2f ;ϑϑϑ0

, so that the score for skewness becomes orthogonal to the score

for location (since it is already orthogonal to ℓ2f ;ϑϑϑ0
). The resulting score for skewness

is

ℓ
3(1)
f ;ϑϑϑ0

= ℓ3f ;ϑϑϑ0
− ℓ1f ;ϑϑϑ0

Cov(ℓ1f ;ϑϑϑ0
, ℓ3f ;ϑϑϑ0

)/Var(ℓ1f ;ϑϑϑ0
),

while the other two scores remain unchanged: ℓ
1(1)
f ;ϑϑϑ0

= ℓ1f ;ϑϑϑ0
, ℓ

2(1)
f ;ϑϑϑ0

= ℓ2f ;ϑϑϑ0
. As expected,

in view of (2.5),

ℓ
3(1)
f ;ϑϑϑ0

(x) = 2ψ(σ−1(x− µ))− σ−1aψ(σ−1(x− µ))
2σ−1a

∫∞
−∞ ψ2(z)f(z)dz

σ−2a2
∫∞
−∞ ψ2(z)f(z)dz

= 0. (2.6)

This orthogonal system of scores is associated (at ϑϑϑ0) with the reparametriza-

tion ϑϑϑ(1) := (µ(1), σ(1), δ(1))′, with

µ(1) = µ+ 2δσ/a, σ(1) = σ, and δ(1) = δ,

hence with

fΠ
ϑϑϑ(1)(x) := 2 (σ(1))−1f((x−µ(1)+2δ(1)σ(1)/a)/σ(1))Π((x−µ(1)+2δ(1)σ(1)/a)/σ(1), δ(1));

it is easily checked, indeed, that ∂δ(1)f
Π
ϑϑϑ(1)(x)|δ=δ(1)=0 = ℓ

3(1)
f ;ϑϑϑ0

(x). Note that, under

δ = δ(1) = 0 (but not in a neighborhood thereof) ϑϑϑ(1) and ϑϑϑ = ϑϑϑ0 coincide.

Since this reparametrization, which only affects the location parameter, cancels

(at ϑϑϑ
(1)
0 := (µ(1), σ(1), 0)′ = (µ, σ, 0)′ = ϑϑϑ0) the score for skewness, second derivatives

with respect to δ(1) = δ naturally come into the picture in the Taylor expansion of the

log-likelihood. To be precise, the score ℓ3
f ;ϑϑϑ

(1)
0

(x) = ℓ
3(1)
f ;ϑϑϑ0

(x) = ∂δ log f
Π
ϑϑϑ(1)(x)|ϑϑϑ(1)

0
is sup-

posed to provide a linear term τ3ℓ
3

f ;ϑϑϑ
(1)
0

(x) in the Taylor expansion of log fΠ

ϑϑϑ
(1)
0 +(0,0,τ3)′

(x)

about log fΠ

ϑϑϑ
(1)
0

(x). Since that linear term happens to be zero, the best approximation is

provided by the quadratic term
τ23
2
∂2δ log f

Π
ϑϑϑ(1)(x)|ϑϑϑ(1)

0
. The quantity 1

2
∂2δ log f

Π
ϑϑϑ(1)(x)|ϑϑϑ(1)

0

thus plays the role of a score function in that approximation, at ϑϑϑ
(1)
0 —not for δ(1),

though, but for (δ(1))2. Note indeed that, in view of (2.6),

E
ϑϑϑ
(1)
0

[

∂2δ log f
Π
ϑϑϑ(1)(X)|

ϑϑϑ
(1)
0

]

= −E
ϑϑϑ
(1)
0

[(

∂δ log f
Π
ϑϑϑ(1)(X)|

ϑϑϑ
(1)
0

)2]

= 0,
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which is an essential property of score functions. As a result, if the impact, on the

log-likelihood of an i.i.d. sample of size n, of a perturbation τ3 of δ = 0 is to exhibit

the central-limit magnitude of n−1/2, τ3 itself has to be of magnitude n−1/4 only;

moreover, information about its sign is lost (a phenomenon which is also stressed by

Rotnitzky et al. 2000). This is the structural reason for slower-than-n1/2 consistency

rates (at ϑϑϑ
(1)
0 = ϑϑϑ0) for the skewness parameter δ in the singular case: see the next

section for details.

2.3. Towards a singularity-free reparametrization: second-order scores.

Second-order derivatives thus quite naturally enter the scene in case of degener-

ate Fisher information. The existence of derivatives of order two, however, requires

reinforcing the regularity assumptions (A1) and (A2) on f and Π.

The reinforced regularity assumptions we need to reparametrize (at ϑϑϑ
(1)
0 = ϑϑϑ0) the

family (1.1) are as follows—recall that we only address the case under which f and

Π are such that f = ga ∈ EΨ for some a ∈ A (see (2.4)): f thus is now entirely

determined by Π and the constant a, and we only need strengthening (A2).

Assumption (A2+). Same as (A2) but moreover (i) the mapping (z, δ) 7→ Π(z, δ)

is twice continuously differentiable at (z, 0), z ∈ R; (ii) denoting by z 7→ ψ̇(z) =

∂δ∂zΠ(z, δ)|δ=0 the derivative of ψ, the quantities
∫∞
−∞ ψ2(z)z2f(z)dz and

∫∞
−∞(2a−1ψ̇(z)−

2ψ2(z))2f(z)dz are finite.

Assumption (A2+)(i) ensures the existence of the second derivative ∂2δf
Π
ϑϑϑ(1)(x)|ϑϑϑ(1)

0
,

while Assumption (A2+)(ii) guarantees finiteness of the corresponding covariance ma-

trix. Assumption (A2+)(i) also entails ∂δ∂zΠ(z, δ)|δ=0 = ∂z∂δΠ(z, δ)|δ=0 for all z ∈ R,

so that this mixed derivative indeed coincides with ψ̇(z) (see (A2+)(ii)). As already

pointed out, Assumption (A2+) not only reinforces (A2) but also, via the requirement

that f = ga ∈ EΨ for some a ∈ A, entails (A1), which is no longer needed.

Now, in line with Section 2.1, and under Assumption (A2+), let

ℓℓℓ
f ;ϑϑϑ

(1)
0
(x) :=

(

ℓ1
f ;ϑϑϑ

(1)
0

(x), ℓ2
f ;ϑϑϑ

(1)
0

(x), ℓ3
f ;ϑϑϑ

(1)
0

(x)
)′

(2.7)

:=









∂µ(1) log fΠ
ϑϑϑ(1)(x)|ϑϑϑ(1)

0

∂σ(1) log fΠ
ϑϑϑ(1)(x)|ϑϑϑ(1)

0

1
2
∂2
δ(1)

log fΠ
ϑϑϑ(1)(x)|ϑϑϑ(1)

0









=









σ−1aψ(σ−1(x− µ))

σ−1
(

σ−1(x− µ)aψ(σ−1(x− µ))− 1
)

2
a
ψ̇(σ−1(x− µ))− 2ψ2(σ−1(x− µ))








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with covariance

ΓΓΓ
f ;ϑϑϑ

(1)
0

:= σ−1

∫ ∞

−∞
ℓℓℓ
f ;ϑϑϑ

(1)
0
(x)ℓℓℓ′

f ;ϑϑϑ
(1)
0

(x)f(σ−1(x− µ))dx =:











γ11
f ;ϑϑϑ

(1)
0

0 0

0 γ22
f ;ϑϑϑ

(1)
0

γ23
f ;ϑϑϑ

(1)
0

0 γ23
f ;ϑϑϑ

(1)
0

γ33
f ;ϑϑϑ

(1)
0











where (finiteness of the integrals below follows from (A2+)(ii))

γ11
f ;ϑϑϑ

(1)
0

= a2σ−2

∫ ∞

−∞
ψ2(z)f(z)dz, γ22

f ;ϑϑϑ
(1)
0

= σ−2

∫ ∞

−∞
(aψ(z)z − 1)2f(z)dz,

γ33
f ;ϑϑϑ

(1)
0

= 4

∫ ∞

−∞
(a−1ψ̇(z)− ψ2(z))2f(z)dz,

and

γ23
f ;ϑϑϑ

(1)
0

= 2σ−1

∫ ∞

−∞
(aψ(z)z − 1)(a−1ψ̇(z)− ψ2(z))f(z)dz.

First, let us assume that ΓΓΓ
f ;ϑϑϑ

(1)
0

has full rank. Denoting by X1, . . . , Xn an i.i.d.

sample of size n from fΠ

ϑϑϑ
(1)
0

, the vector ℓℓℓ
f ;ϑϑϑ

(1)
0

defined in (2.7) provides a linear term,

of the form (τ1, τ2, τ
2
3 )
∑n

i=1 ℓℓℓf ;ϑϑϑ(1)
0
(Xi), to the Taylor expansion of the log-likelihood

∑n
i=1 log f

Π

ϑϑϑ
(1)
0 +(τ1,τ2,τ3)′

(Xi) with respect to
∑n

i=1 log f
Π

ϑϑϑ
(1)
0

(Xi). In order for that lin-

ear term to exhibit the required traditional central-limit behavior, the perturba-

tion τττ := (τ1, τ2, τ3)
′ has to be of the order (n−1/2, n−1/2, n−1/4)′, hence must be

of the form τττ = (n−1/2t1, n
−1/2t2, n

−1/4t3)
′, yielding (t1, t2, t

2
3)n

−1/2
∑n

i=1 ℓℓℓf ;ϑϑϑ(1)
0
(Xi)

which, in view of the fact that ℓℓℓ
f ;ϑϑϑ

(1)
0
(Xi) has expectation zero and finite full-rank

variance ΓΓΓ
f ;ϑϑϑ

(1)
0
, is asymptotically normal under ϑϑϑ

(1)
0 , as should be for the linear term

of local log-likelihood expansions under the assumptions of the classical MLE theory.

This also naturally suggests a test rejecting the null hypothesis of symmetry (in

favor of an asymmetry of unspecified sign) whenever the quadratic statistic (of the

Lagrange Multiplier type; ϑ̂ϑϑ
(1)

0 = (µ̂, σ̂, 0) stands for a root-n consistent estimator

of ϑϑϑ
(1)
0 under δ = 0)

n−1
n
∑

i=1

(

ℓ3
f ;ϑ̂ϑϑ

(1)
0

(Xi)− (γ23
f ;ϑ̂ϑϑ

(1)
0

/γ22
f ;ϑ̂ϑϑ

(1)
0

)ℓ2
f ;ϑ̂ϑϑ

(1)
0

(Xi)
)2(

γ33
f ;ϑ̂ϑϑ

(1)
0

− (γ23
f ;ϑ̂ϑϑ

(1)
0

)2/γ22
f ;ϑ̂ϑϑ

(1)
0

)−1

exceeds the chi-square quantile (one degree of freedom) of order (1−α). For all those

reasons, the terminology “score vector” adequately can be used for ℓℓℓ
f ;ϑϑϑ

(1)
0
.

However, score vectors, in the classical MLE theory as well as in Le Cam’s theory

of locally asymptotically normal experiments, enjoy stronger properties, ensuring, in

particular, the optimal nature of the test just described. Those properties rely on the
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quadratic approximation (as n → ∞, under ϑϑϑ
(1)
0 ) of local log-likelihood ratios which,

in the present case, should take the form

n
∑

i=1

log fΠ
ϑϑϑ(1)+(n−1/2t1,n−1/2t2,n−1/4t3)′

(Xi)

=

n
∑

i=1

log fΠ

ϑϑϑ
(1)
0

(Xi)+(t1, t2, t
2
3)n

−1/2
n
∑

i=1

ℓℓℓ
f ;ϑϑϑ

(1)
0
(Xi)−

1

2
(t1, t2, t

2
3)ΓΓΓf ;ϑϑϑ

(1)
0
(t1, t2, t

2
3)

′+oP(1)

where ΓΓΓ
f ;ϑϑϑ

(1)
0

is the covariance matrix of ℓℓℓ
f ;ϑϑϑ

(1)
0
. This quadratic approximation does not

hold here without additional assumptions on higher-order log-likelihood derivatives

of orders three and four. This point is investigated in detail in Hallin, Ley and

Monti (2012), for the particular case of the skew-normal, and we will not pursue it

any further here.

We have assumed, so far, that ΓΓΓ
f ;ϑϑϑ

(1)
0

has full rank. In most cases, the com-

ponents of the new score vector (ℓ1
f ;ϑϑϑ

(1)
0

, ℓ2
f ;ϑϑϑ

(1)
0

, ℓ3
f ;ϑϑϑ

(1)
0

)′ are not collinear anymore, so

that ΓΓΓ
f ;ϑϑϑ

(1)
0

indeed is non-singular; our objective of a singularity-free parametrization

then is achieved, with consistency rate (for δ, at ϑϑϑ0) n
1/4 = (n1/2)1/2. But this is not

a general rule: in the case of the skew-normal family, for instance, Chiogna (2005)

showed that the correct rate is only n1/6. The explanation, as we shall see, lies in

a double singularity phenomenon, which occurs when ℓ2
f ;ϑϑϑ

(1)
0

and ℓ3
f ;ϑϑϑ

(1)
0

in turn are

collinear (by construction, the location score ℓ1
f ;ϑϑϑ

(1)
0

is orthogonal to the other two).

3. The double singularity case.

3.1. Double singularity: a special role for Gaussian kernels.

The double singularity phenomenon thus takes place if and only if

b(azψ(z) − 1)/σ = (2/a)ψ̇(z)− 2ψ2(z) a.e.

(a.e. here and in the sequel means Lebesgue-a.e.) for some constant b ∈ R and a

couple (f,Π) such that f ∈ EΨ (see (2.4)). Rewriting this equation under the form

ψ̇(z) = − ab

2σ
+
a2b

2σ
zψ(z) + aψ2(z) a.e. (3.8)

yields a classical Ricatti equation, whose solutions are of the form

ψ(z) =
−ab
2σ

z (3.9)

or

ψ(z) =
−ab
2σ

z + exp

(

−a
2bz2

4σ

)

/

(

c− a

∫ z

0

exp

(

−a
2by2

4σ

)

dy

)

b, c ∈ R. (3.10)

9



First, note that b has to be negative, as otherwise ϕf (z) = aψ(z) would tend to −∞
irrespective of the sign of a when z → ∞, implying positive values of ḟ in the right

tail of f , which is of course impossible for a density function. Furthermore, since

both z 7→ a
∫ z

0
exp

(

−a2by2

4σ

)

dy and ψ are odd, the constant c in (3.10) has to be zero.

By (2.4), the natural parameter space A for the exponential family EΨ associated with

the mapping ψ of (3.10) then consists of the set of values of a for which the integral
∫ ∞

−∞
exp(−aΨ(z))dz =

∫ ∞

−∞
exp

(

a2b

4σ
z2 + log

∣

∣

∣

∣

∫ z

0

exp

(

−a
2by2

4σ

)

dy

∣

∣

∣

∣

)

dz

=

∫ ∞

−∞
exp

(

a2b

4σ
z2
) ∣

∣

∣

∣

∫ z

0

exp

(

−a
2b

4σ
y2
)

dy

∣

∣

∣

∣

dz

is finite. After a change of variable involving the quantity
√

a2|b|/(4σ), this appears
to be equivalent to the requirement

∫ ∞

−∞
exp(−z2)

∣

∣

∣

∣

∫ z

0

exp(y2)dy

∣

∣

∣

∣

dz <∞. (3.11)

However, one easily can check that limz→∞ z exp(−z2)
∣

∣

∫ z

0
exp(y2)dy

∣

∣ = 1/2, meaning

that exp(−z2)
∣

∣

∫ z

0
exp(y2)dy

∣

∣ behaves as 1/z for large values of z. It follows that

(3.11) is impossible. Hence, the natural parameter space A is empty, meaning that

no symmetric kernel f associated to the mapping ψ of (3.10) can yield singular Fisher

information. Therefore, the only admissible solution to (3.8) is (3.9).

This finding is quite remarkable: combined with the fact that f ∈ EΨ (which is

equivalent to ϕf = aψ), it implies that double singularity only can occur for symmetric

kernels f such that ϕf(z) = c1z for some constant c1—namely, for Gaussian kernels;

those Gaussian kernels moreover should be combined with a skewing function Π such

that ψ(z) = c2z for some constant c2.

While Fisher singularity arises as a mismatch between the symmetric kernel and

the skewing function, and hence can occur with all possible symmetric kernels, the

double singularity phenomenon is specific to the Gaussian kernel, hence to a well-

determined subclass of generalized skew-normal distributions (in the sense of Loper-

fido 2004). This also implies that, under the assumptions made, n1/4 consistency rates

are achieved for all other skew-symmetric families subject to Fisher singularity.

We formalize that result in the following theorem.

Theorem 3.1. Consider the skew-symmetric family defined in (1.1). Then,

(i) under Assumptions (A1) and (A2), the couple (f,Π) leads to a skew-symmetric

family subject to Fisher singularity at δ = 0 if and only if the symmetric kernel f

is related to the skewing function Π via the fact that f ∈ EΨ, see (2.4);

10



(ii) under Assumption (A2+), the couple (f,Π) leads to a skew-symmetric family

subject to the double singularity phenomenon if and only if the symmetric ker-

nel f is the normal kernel φ and the skewing function Π moreover satisfies

ψ(z) := ∂δΠ(z, δ)|δ=0 = cz for some real constant c; the family then is a partic-

ular case of the generalized skew-normal family (Loperfido 2004).

This theorem completely characterizes the double singularity problem, hence comple-

ments the simple singularity characterization of Hallin and Ley (2012).

3.2. A singularity-free reparametrization.

Still inspired by Rotnitzky et al. (2000), let us now proceed with this second

singularity the way we did with the first one, producing a second, hopefully singularity-

free, reparametrization. Since the symmetric kernel φ is the only candidate for this

double singularity phenomenon, we can limit ourselves to f = φ. Moreover, we

know from the previous section that ψ(z) = c2z; hence, in view of the fact that z =

ϕφ(z) = aψ(z), we have c2 = 1/a. Applying the same Gram-Schmidt process as in

Section 2.2, but with the score for scale ℓ2
φ;ϑϑϑ

(1)
0

substituted for the score for location,

we project ℓ3
φ;ϑϑϑ

(1)
0

onto the subspace orthogonal to ℓ1
φ;ϑϑϑ

(1)
0

and ℓ2
φ;ϑϑϑ

(1)
0

. The resulting

residual score for skewness then, as expected, is zero:

ℓ3
φ;ϑϑϑ

(1)
0

(x)−ℓ2
φ;ϑϑϑ

(1)
0

(x)Cov(ℓ2
φ;ϑϑϑ

(1)
0

, ℓ3
φ;ϑϑϑ

(1)
0

)/Var(ℓ2
φ;ϑϑϑ

(1)
0

)

=
2

a2
− 2

a2
(

(x− µ)/σ
)2 − σ−1

(

((x− µ)/σ)2 − 1
)2σ−1

∫∞
−∞(z2− 1)(a−2− a−2z2)φ(z)dz

σ−2
∫∞
−∞(z2 − 1)2φ(z)dz

= 0.

Transposing, as in Section 2.2, this projection in terms of parameters leads to the

reparametrization ϑϑϑ(2) := (µ(2), σ(2), δ(2))′, where

µ(2) = µ(1) = µ+ 2δσ/a, σ(2) = σ(1) + δ2
Cov(ℓ2

φ;ϑϑϑ
(1)
0

, ℓ3
φ;ϑϑϑ

(1)
0

)

Var(ℓ2
φ;ϑϑϑ

(1)
0

)
= σ(1)(1− 2δ2/a2),

and

δ(2) = δ(1) = δ.

In line with previous notations, we denote by fΠ
ϑϑϑ(2) the resulting skew-symmetric den-

sity despite the fact that the symmetric kernel is φ. It is easy to check that our

reparametrization, in the skew-normal case, coincides with that of Chiogna (2005).
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This second reparametrization solely affects the scale parameter, but again cancels

the score for skewness. Thus, derivatives of order three with respect to δ(2) = δ come

into the picture, which eventually will lead to n1/6 consistency rates. This, however,

requires a reinforcement of Assumption (A2+).

Assumption (A2++). Same as (A2+), but now (i) the mapping (z, δ) 7→ Π(z, δ)

is three times continuously differentiable at (z, 0) for all z ∈ R; (ii) letting Υ(z) :=

∂3δΠ(z, δ)|δ=0,
∫∞
−∞

(

8
3a3
z3 − 8

a3
z + 1

3
Υ(z)

)2
φ(z)dz is finite.

Assumption (A2++)(i) ensures the existence of the third-order derivative ∂3δf
Π
ϑϑϑ(2)

at ϑϑϑ
(2)
0 = (µ(2), σ(2), 0)′ = (µ, σ, 0)′ = ϑϑϑ0, while Assumption (A2++)(ii) guarantees

finiteness of the corresponding covariance matrix. Also note that the mixed derivative

∂z∂
2
δΠ(z, δ)|δ=0 = 0 by definition of skewing functions, and that ∂2z∂δΠ(z, δ)|δ=0 =

∂2zψ(z) vanishes for all z, since we are dealing (Theorem 3.1(ii)) with skewing functions

such that ψ(z) = z/a is linear. These facts greatly simplify calculations.

Assumption (A2++) thus implies, for this second reparametrization, the existence,

atϑϑϑ
(2)
0 , of a third-order score vector ℓℓℓ

φ;ϑϑϑ
(2)
0

with finite covariance matrix ΓΓΓ
φ;ϑϑϑ

(2)
0
, enjoying

the same properties as the second-order score described in Section 2.3, now with

rates n1/6. Elementary algebra yields

ℓℓℓ
φ;ϑϑϑ

(2)
0
(x) :=











ℓ1
φ;ϑϑϑ

(2)
0

ℓ2
φ;ϑϑϑ

(2)
0

ℓ3
φ;ϑϑϑ

(2)
0











:=









∂µ(2) log fΠ
ϑϑϑ(2)(x)|ϑϑϑ(2)

0

∂σ(2) log fΠ
ϑϑϑ(2)(x)|ϑϑϑ(2)

0

1
6
∂3
δ(2)

log fΠ
ϑϑϑ(2)(x)|ϑϑϑ(2)

0









=









σ−1 (σ−1(x− µ))

σ−1 ((σ−1(x− µ))2 − 1)

8
3a3

(

σ−1(x− µ)
)3 − 8

a3
σ−1(x− µ) + 1

3
Υ
(

σ−1(x− µ)
)









and

ΓΓΓ
φ;ϑϑϑ

(2)
0

:= σ−1

∫ ∞

−∞
ℓℓℓ
φ;ϑϑϑ

(2)
0
(x)ℓℓℓ′

φ;ϑϑϑ
(2)
0

(x)φ(σ−1(x− µ))dx =:











γ11
φ;ϑϑϑ

(2)
0

0 γ13
φ;ϑϑϑ

(2)
0

0 γ22
φ;ϑϑϑ

(2)
0

γ23
φ;ϑϑϑ

(2)
0

γ13
φ;ϑϑϑ

(2)
0

γ23
φ;ϑϑϑ

(2)
0

γ33
φ;ϑϑϑ

(2)
0











,

with

γ11
φ;ϑϑϑ

(2)
0

= σ−2

∫ ∞

−∞
z2φ(z)dz = σ−2, γ22

φ;ϑϑϑ
(2)
0

= σ−2

∫ ∞

−∞
(z2 − 1)2φ(z)dz = 2σ−2,

γ33
φ;ϑϑϑ

(2)
0

=

∫ ∞

−∞

(

8

3a3
z3 − 8

a3
z +

1

3
Υ(z)

)2

φ(z)dz,
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γ13
φ;ϑϑϑ

(2)
0

= σ−1

∫ ∞

−∞
z

(

8

3a3
z3 − 8

a3
z +

1

3
Υ(z)

)

φ(z)dz,

and

γ23
φ;ϑϑϑ

(2)
0

= σ−1

∫ ∞

−∞
(z2 − 1)

(

8

3a3
z3 − 8

a3
z +

1

3
Υ(z)

)

φ(z)dz.

If we assume, as is Section 2.3, that ΓΓΓ
φ;ϑϑϑ

(2)
0

has full rank, denoting by X1, . . . , Xn

an i.i.d. sample of size n from fΠ

ϑϑϑ
(2)
0

, the score vector ℓℓℓ
φ;ϑϑϑ

(2)
0

provides a linear term to the

Taylor expansion of the log-likelihood, as well as a Lagrange multiplier-type test of

the null hypothesis of symmetry (in the generalized skew-normal family under study),

based on the quadratic test statistic

n−1

n
∑

i=1

(

ℓ3
φ;ϑ̂ϑϑ

(2)
0

(Xi)− σ2
(

γ13
φ;ϑ̂ϑϑ

(2)
0

, γ23
φ;ϑ̂ϑϑ

(2)
0

/2
)

(

ℓ1
φ;ϑ̂ϑϑ

(2)
0

(Xi)

ℓ2
φ;ϑ̂ϑϑ

(2)
0

(Xi)

))2

×
(

γ33
φ;ϑ̂ϑϑ

(2)
0

− σ2(γ13
φ;ϑ̂ϑϑ

(2)
0

)2 − σ2(γ23
φ;ϑ̂ϑϑ

(2)
0

)2/2
)−1

,

where ϑ̂ϑϑ
(2)

0 is, under the null hypothesis of symmetry, a root-n consistent estimator

of location and scale. The consistency/contiguity rate for δ (still, at δ = 0) is n1/6,

and the same comments as in Section 2.3 are in order. The particular case of the

skew-normal family is studied in full detail in Hallin, Ley and Monti (2012).

4. Higher-order singularities.

It may happen, however, that ΓΓΓ
φ;ϑϑϑ

(2)
0

in turn is singular, the new third-order score

for skewness ℓ3
φ;ϑϑϑ

(2)
0

being (at ϑϑϑ
(2)
0 ) a linear combination of the scores for location ℓ1

φ;ϑϑϑ
(2)
0

and scale ℓ2
φ;ϑϑϑ

(2)
0

. If this occurs, one has to go yet one step further with the approxima-

tion of log-likelihoods, assuming the existence of fourth-order derivatives and ending

up with n1/8 consistency/contiguity rates. That n1/8 rate, however, as we shall see, is

the worst possible one. Since this last derivation is not the main aim of this paper,

we will voluntarily alleviate the reading and spare the reader computational details

and the diverse steps which we have sufficiently described in the previous cases.

In order for ℓ3
φ;ϑϑϑ

(2)
0

= 8
3a3
z3− 8

a3
z+ 1

3
Υ(z) to be a linear combination of ℓ1

φ;ϑϑϑ
(2)
0

= z/σ

and ℓ2
φ;ϑϑϑ

(2)
0

= (z2−1)/σ, Υ(z) necessarily has be of the form α1(−1+ z2)+α2z+α3z
3,

with α1, α2 ∈ R and α3 = − 8
a3

in order to annihilate the term in z3. This condition on

the third derivative w.r.t. δ thus characterizes what we would call a triple singularity

(the result is formally stated in Theorem 4.1 at the end of this section). It is quite

easy to construct examples suffering from this peculiarity; see Section 5.4.

13



At this stage, the by now familiar machinery new singularity—Gram-Schmidt or-

thogonalization of scores—reparametrization—new higher-order score for δ applies,

leading after some direct manipulations to the reparametrization ϑϑϑ(3) := (µ(3), σ(3), δ(3))′,

with

µ(3) = µ(2) +

(

− 8

a3
+
α2

3

)

σδ3 = µ+
2

a
σδ +

(

− 8

a3
+
α2

3

)

σδ3,

σ(3) = σ(2) +
α1

3
σδ3 = σ(1− 2δ2/a2 +

α1

3
δ3),

and

δ(3) = δ(2) = δ(1) = δ.

Since this reparametrization annihilates the third-order score for skewness, we need to

take fourth-order derivatives, which requires the following strengthening of Assump-

tion (A2++).

Assumption (A2+++). Same as (A2++), but now the mapping (z, δ) 7→ Π(z, δ) is

four times continuously differentiable at (z, 0), z ∈ R.

Let us remark that, as will be seen below, we do not need to assume finiteness

of Fisher information for skewness, as this will always be the case after this third

reparametrization. Clearly, as in all previous cases, both the location score ℓ1
φ;ϑϑϑ

(3)
0

and the scale score ℓ2
φ;ϑϑϑ

(3)
0

remain the same as in the original parametrization, and the

new fourth-order score for skewness, for skewing functions such that ∂3δΠ(z, δ)|δ=0 =

α1(−1 + z2) + α2z − 8
a3
z3, becomes (after very lengthy but elementary calculations)

ℓ3
φ;ϑϑϑ

(3)
0

=
1

24
∂4δ(3) log f

Π
ϑϑϑ(3)(x)|ϑϑϑ(3)

0

= −10

a4
+

2α2

3a
+

2α1

a

(

x− µ

σ

)

+

(

6

a4
− 2α2

3a

)(

x− µ

σ

)2

− 2α1

3a

(

x− µ

σ

)3

+
4

3a4

(

x− µ

σ

)4

.

One again easily can check that this quantity is centered under ϑϑϑ
(3)
0 = ϑϑϑ0 = (µ, σ, 0)′.

The interesting feature here is that the term 4
3a4

(

x−µ
σ

)4
can by no means be annihi-

lated, and hence hampers any linear combination with the location and scale scores.

Thus, the resulting Fisher information matrix (whose finiteness is obvious)

ΓΓΓ
φ;ϑϑϑ

(3)
0

:= σ−1

∫ ∞

−∞
ℓℓℓ
φ;ϑϑϑ

(3)
0
(x)ℓℓℓ′

φ;ϑϑϑ
(3)
0

(x)φ(σ−1(x− µ))dx

=







σ−2 0 −46α1

σa

0 2σ−2 σ−1
(

28
a4

− 4α2

3a

)

−46α1

σa
σ−1

(

28
a4

− 4α2

3a

)

1304
3a8

− 112α2

3a5
+

24α2
1+8α2

2

9a2






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cannot be singular, which in turn implies that n1/8 rates of convergence are the worst

possible! The structural reason behind this result lies in the fact that, by definition

of skewing functions, ∂4δΠ(z, δ)|δ=0 equals zero, hence cannot interfere in the fourth

derivative, contrarily to ∂3δΠ(z, δ)|δ=0 which plays the crucial role in annihilating the

third-order derivative.

Those results are summarized in the following theorem, which complements The-

orem 3.1.

Theorem 4.1. Consider the skew-symmetric family defined in (1.1). Then,

(i) under Assumption (A2++), the couple (f,Π) leads to a skew-symmetric fam-

ily subject to the third singularity phenomenon if and only if the symmetric

kernel f is the normal kernel φ and the skewing function Π moreover satisfies

ψ(z) := ∂δΠ(z, δ)|δ=0 = z/a for some non-zero real constant a and Υ(z) :=

∂3δΠ(z, δ)|δ=0 = α1(−1 + z2) + α2z − 8
a3
z3 for some real constants α1 and α2,

both possibly zero.

(ii) under Assumption (A2+++), the couple (f,Π) leads to no skew-symmetric family

subject to a fourfold/quadruple singularity phenomenon.

We conclude this section by noting that, in most cases (including all classical

skewing functions described in Section 5.5 hereafter), Υ is an odd function, implying

some simplifications in the above expressions (namely α1 then equals 0), but clearly

the final outcome does not alter.

5. Examples.

In this section, we illustrate our findings on basis of some well-known examples

of the literature. Our presentation goes crescendo: starting, for the sake of com-

pleteness, with singularity-free families, we consider simple, double, and finally triple

singularities.

5.1. Singularity-free families.

Famous singularity-free examples comprise, inter alia, the skew-exponential power

distributions of Azzalini (1986) with pdf 2 c−1 exp(−|z|α/α)Φ(δ sign(z)|z|α/2(2/α)1/2)
for α > 1 and c = 2α1/α−1Γ(1/α), and the skew-t distributions of Azzalini and

Capitanio (2003) with pdf 2tν(z)Tν+1(δz(ν + 1)1/2(z2 + ν)−1/2) where tη and Tη re-

spectively stand for the pdf and cdf of a standard Student distribution with η degrees
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of freedom. These examples are discussed at length in Hallin and Ley (2012), where

we refer to for details. In that same paper, an example of skewing function for

which no mismatching symmetric kernel exists is given, namely Π(z, δ) = Π(δ sin(z))

with Π : R → [0, 1] a differentiable function satisfying Π(−y)+Π(y) = 1 for all y ∈ R

and such that Π̇(0) = dΠ(y)/dy|y=0 exists and differs from zero.

5.2. Simple singularities.

As shown in Hallin and Ley (2012), the easiest-to-construct mismatching skewing

function for a given symmetric kernel f is of the form Π(δϕf(z)), with Π as described

above. For any symmetric kernel f , it is readily seen that the location and skewness

scores then are collinear.

Under the assumptions made, double singularity requires the additional assump-

tion that Π̈(0) := d2Π(y)/(dy)2|y=0 exists and, by construction, equals zero. The-

orem 3.1 then tells us that among the pdfs 2f(z)Π(δϕf(z)) only the skew-normal,

obtained for f = φ, suffers from the double singularity. Thus all non-Gaussian kernels

f yield examples of simple singularities.

5.3. Double singularities.

Concerning the double singularity, a prominent example is of course Azzalini’s

skew-normal family, with pdf 2φ(z)Φ(δz). Let us briefly show that higher-order sin-

gularities are excluded in that family. Straightforward calculations yield a =
√
2π and

Υ(z) = −(2π)−1/2z3, which is different from − 8
a3

= −(2/π)3/2, hence Theorem 4.1

readily yields the well-known result of n1/6 rates of convergence for the skew-normal

distribution. For the sake of completeness, we also provide for this famous example

the corresponding score for skewness, which equals 4−π
3π

√
2π
z3 − 4

π
√
2π
z.

Nadarajah and Kotz (2003) propose another family of skew densities generated

by the normal kernel, with pdfs of the form 2φ(z)G(δz) where G is some univariate

symmetric cdf. They call skew normal-G the resulting families of densities. Their def-

inition includes as particular cases the skew normal-normal model, the skew normal-t,

the skew normal-Cauchy, the skew normal-Laplace, the skew normal-logistic and the

skew normal-uniform families. Theorem 3.1 tells us that all skew normal-G models

suffer from the double singularity, a fact that, except of course for the skew normal-

normal (which, up to an additional scale parameter, coincides with the classical skew-

normal), has never been noticed. Consequently, these models have to be treated with

much care when used for inferential purposes. The problem with those families ob-

viously stems from the product δz inside G; see Section 5.5 for further discussion of

such skewing functions.
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5.4. Higher-order singularities.

Let us further analyze the families of Nadarajah and Kotz (2003). Assume thatG is

three times continuously differentiable. Elementary calculations show that a = 1/g(0),

where g(z) := dG(z)/dz, and Υ(z) = g̈(0)z3. We know from Theorem 4.1 that a

triple singularity can only occur if g̈(0) = − 8
a3

= −8(g(0))3. Among the distributions

considered by Nadarajah and Kotz (2003), this equality holds for the skew normal-

logistic only, for which g(0) = 1/4 and g̈(0) = −1/8. Thus, while all their other

skew normal-G distributions have n1/6 rates of convergence, the skew normal-logistic

requires the worst possible rates, namely n1/8 rates.

Finally, consider the “lifted” skew-normal distribution with pdf

2φ(z)Φ(δz − (4− π)(6π)−1δ3z3). (5.12)

Here, a =
√
2π and Υ(z) = −(2/π)3/2z3 = − 8

(
√
2π)3

z3 = − 8
a3
z3, entailing, by The-

orem 4.1, a triple singularity and hence n1/8 rates of convergence. Note that this

distribution is part of the so-called flexible generalized skew-normal distributions de-

fined in Ma and Genton (2004). More generally, in that paper, the authors have

proposed flexible skew-symmetric distributions with skewing functions of the form

Π(z, δ) := Π(Hℓ(δz)), with Π as defined in Section 5.1 and Hℓ an odd polynomial of

order ℓ (meaning that the polynomial only contains odd terms). Since, in the first

four derivatives, all terms of the form (δz)s with odd s ≥ 5 do not play any role,

one can directly construct an infinity of flexible generalized skew-normal distributions

suffering from triple singularity: take, for instance, an odd polynomial Hℓ with the

terms in δz and (δz)3 as in (5.12), such as

2φ(z)Φ(δz − (4− π)(6π)−1δ3z3 +
ℓ
∑

i=2

α2i+1(δz)
2i+1)

with αi ∈ R and 2 ≤ ℓ ∈ N.

5.5. A brief discussion of skewing functions of the form Π(z, δ) = Π(δz).

As announced in the Introduction, we conclude this paper with a few comments

on the most frequent type of skewing function, namely Π(z, δ) = Π(δz) with Π : R →
[0, 1] satisfying Π(−y) + Π(y) = 1 for all y ∈ R (and satisfying the required differ-

entiability conditions). Such functions are the most natural examples of a skewing

function such that ψ(z) is linear, yielding an extremely risky combination with the

Gaussian kernel φ.
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The original skew-normal family of Azzalini (1985) is based on Π = Φ; in conjunc-

tion with a Gaussian kernel, the same type of skewing function has been used, inter

alia, by

- Azzalini and Capitanio (1999) for their skew-symmetric densities of the form

2f(z)F (δz), with F the cdf corresponding to f ;

- Gupta et al. (2002) for their skew-uniform, skew-t, skew-Cauchy, skew-Laplace

and skew-logistic distributions, which all are special cases of Azzalini and Cap-

itanio (1999)’s construction;

- Nadarajah and Kotz (2003) for their skew normal-G distributions, as described

in the previous sections; and by

- Gómez et al. (2007) for their skew g-normal densities 2g(z)Φ(δz) where, contrary

to the skew normal-G distributions, normality is present in the skewing function

and not in the symmetric kernel.

As shown in this paper, skewing functions of the form Π(δz) are harmless whenever the

symmetric kernel is not Gaussian. In view of this, the skew g-normal distributions (free

of any singularity except for g = φ) are inferentially preferable to the skew normal-G

ones (which at least exhibit double singularity). The peculiarities of the skew-normal

distribution, which belongs to all of the above-cited classes of distributions, have been

discussed in length in the literature; we hope that this paper sheds some light on the

structural reasons behind these inferential drawbacks, and warns the reader about the

dangers of combining a Gaussian kernel with a skewing function of the form Π(δz).

Azzalini and Capitanio (2003) clearly were aware of the dangers of using Π(z, δ)

of the form Π(δz): in reaction to a referee’s remark, they write A reviewer of this

paper has remarked that, if we set d = 1, density (26) does not reduce to the form

2t1(y; ν)T1(αy; ν), which seems to be the “most natural” univariate form of skew t

density generated by Lemma 1 of Azzalini (1985), explain why the skewing functions

they are proposing for their skew-t densities are not of that type, and suggest that the

choice of Φ(δz) for the original skew-normal perhaps was not the best one. Our results

amply justify their concern, and confirm the clear-sightedness of their diagnosis.
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