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Abstract

Quantile regression predicts the 7-quantile of the conditional distribution of a response
variable given the explanatory variable for 7 € (0,1). The aim of this paper is to establish
the asymptotic distribution of the quantile estimator obtained by penalized spline method.

A simulation and an exploration of real data are performed to validate our results.
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1 Introduction

Regression analysis is one of the most important tools used to investigate the relationship
between a response Y and a predictor X. Many major studies of regression have been concerned
with the estimation of the conditional mean function of Y given a predictor X = z. On the other
hand, the estimation of the conditional quantile function of Y given x has gained momentum in
recent years. This analysis is called quantile regression. In quantile regression, the purpose is

to estimate an unknown function 7, (z) that satisfies
PY <n ()| X =2)=1

for a given 7 € (0,1). When 7 = 0.5, n,(x) is the conditional median of Y. One established
advantage of quantile regression as compared to mean regression is that the estimators are
more robust against outliers in the response measurements. Quantile regression models have
been suggested by Koenker and Bassett (1978). Many authors have studied quantile regression
based on the parametric method, its asymptotic theories, the computational aspects and other
properties, and these developments have been summarized by Koenker (2005) and Hao and
Naiman (2007). The nonparametric methods for quantile regression have also been studied
extensively. Many authors have explored the topic in relation to kernel methods, including Fan
et al. (1994), Yu and Jones (1998), Takeuchi et al. (2006), Kai et al. (2011). On the other
hand, Hendricks and Koenker (1992) and Koenker et al. (1994) used the low-rank regression
splines method and the smoothing splines method, respectively. Pratesi et al. (2009) and
Reiss and Huang (2012) utilized the penalized spline smoothing method. This paper focuses

on penalized splines. Compared with unpenalized splines and smoothing splines, an advantage
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of the penalized spline methods is follows. Although the smoothing spline estimator gives the
predictor with fitness and smoothness, the computational cost to construct the estimator is high.
In unpenalized regression spline methods, on the other hand, it is known that the estimator
tends to have a wiggle curve, but the computational cost is lower than that of smoothing spline
methods. The penalized spline estimator, however, gives the curve with fitness and smoothness
and its computational cost is lower than that of smoothing spline methods. Thus, penalized
splines can be considered an efficient technique.

Previous results of asymptotic studies of nonparametric quantile regressions include the
following. Fan et al. (1994) showed the asymptotic normality of the kernel estimator. Yu and
Jones (1998) proposed a new kernel estimator and studied its asymptotic results. He and Shi
(1994) showed the convergence rate of the unpenalized regression spline estimator. Portnoy
(1997) discussed asymptotics for smoothing spline estimators. However, the asymptotics for the
penalized spline estimator of quantile regression have not yet been studied.

In this paper, we show the asymptotic distribution of the penalized spline estimator for
quantile regression with a low-rank B-spline model and the difference penalty. The penalized
spline estimator of n,(x) for a given 7 is defined as the minimizer of the convex loss function,
which is the check function p, with an additional difference penalty. To establish the asymptotic
distribution of the penalized spline estimator, we need to derive two biases (i) the model bias
between the true function 7,(x) and the B-spline model, and (ii) the bias arising from using
the penalty term. By showing the asymptotic form of these two biases, the resulting asymptotic
bias of the penalized spline estimator can be obtained. Finally, together with the asymptotic
variance of the estimator, we show the asymptotic normality of the penalized spline quantile
estimator.

This paper is organized as follows. In Section 2, we define the penalized spline quantile
estimator for a given 7. In terms of our estimation method, we mainly focus on the penalized
iteratively reweighted least squares method. Section 3 provides the asymptotic bias and variance
as well as the asymptotic distribution of the penalized spline quantile estimator. Furthermore,
the related properties are described. In Section 4, numerical studies are conducted. Related
discussion and issues for future research are provided in Section 5. Finally, proofs for the

theoretical results are all given in the Appendix.

2 Penalized spline estimator in quantile regression

For a given dataset {(y;, ;) : i =1,--- ,n}, consider the conditional 1007% quantile of response

Y; given X; = x; as
P(Y; < ne(2)| Xi = 23) = 7,

where 7 € (0,1) and 7, (z;) is an unknown true conditional quantile function of Y; given X; = x;.

It is easy to show that the true function satisfies

o(2) = argmin Elp-(¥ — a(@)|X = al.



Here, p; is the check function provided by Koenker and Bassett (1978), given as
pr(u) = u(T — I(u < 0)),

where I(u < b) is the indicator function of (—oo,b). We want to estimate 7, (x) using penalized

spline methods. To approximate 71, (z), we consider the B-spline model

K
S° B @)bi(r

k=—p+1

where B,[Cp ](x)(k: = —p+1,---, K) are the pth degree B-spline basis functions defined recursively

as
0 L, kp—1 <z < K,
Bl(@) = |
0, otherwise,
BlPl () — T = Fk—1  plo=1ly 4 Bktp =2 plp—1] 7
e S DRt s N

where kp(k = —p+1,--- , K + p) are knots and bg(7)(k = —p+ 1,--- , K) are unknown pa-
rameters. We denote B,[Cp ) (x) as Bp(x) unless the degrees of B-splines are specified. Details
and many properties of the B-spline function are clarified by de Boor (2001). The estimator of
b(7) = (b_p1(7) -+ b, (7))T is defined as

b(r) = (bpsi(r) - br,(1)"

- srgmin {Z pe(yi — Bla:)Tb(r)) + %meDZLDmb(T)} , (1)

where B(z;) = (B_p+1(x;) -+ Bk, (2;))T, A+(> 0) is the smoothing parameter and (K, +p —
m) x (Kp+p)th matrix Dy, is the mth difference matrix, which is defined as D,,, = (dl(-;n))ij, where
dg-n) = (—1)|i_j|mC‘i_j‘ for i < j <m+1, and 0 for otherwise. It is well known that the differ-
ence penalty in (II) is very useful in mean regression and can be regarded as the controller of the
smoothness of s,(z) because we can interpret ()’ DI D, b(7) ~ K2m~! fol{sTm )}2dx (see,
Eilers and Marx (1996)). Although Reiss and Huang (2012) used the penalty fo {8 (z)}2dz,
this penalty contains an integral and hence the computational difficulty for the resultlng esti-
mator grows. Therefore, this paper proposes using b(T)TD%;Dmb(T) as the penalty. In fact,
13(7) is obtained via linear-programming methods, such as simplex methods or interior points
methods (see Koenker and Park (1996), Koenker (2005)). On the other hand, it is known that
the iteratively reweighted least squares (IRLS) method is a useful in nonparametric quantile
regression. The penalized spline estimator obtained via IRLS was also studied and detailed by
Reiss and Huang (2012).

Since IRLS is important for obtaining the estimator, we now provide the complete algorithm.

- (k
For a given A, the k-steps iterated estimator b( )(7') is defined as follows:

8" (1) = (ZTw -z 4 A DT D,,) " 2T W kD,



where y = (y1 --- yn)T, Z = (B_jip(x4))ijs wk) = diag[wgk) w,(f)] and

5 (k—1)
T I(yl - B(xl)Tb (T) < O) ‘y o B(w)Tl;(k_l)(T))’ S a
2(ys — Blay) 75" (7))
wl = 7y~ B)"s" " (n) 5~
' : - 0<y;—B(z:)"6" (1)) <a,
- (k—1)

(1 - T)(y, - B(x,)Tb ( )) —a <y — B(m )Ti)(k_l)(T) <0
Q —_ )

A~

for small @ > 0 and the initial W(©. As k — oo, it can be shown that limj_,o b( )(7') is

A~

approximately equivalent to the minimizer of (Il). By using b(7), the penalized spline estimator
of n;(x) is defined as

K
(@)= > BP(2)b(r) = B(x)Tb(r).

k=—p+1

3 Asymptotic theory

In this section, we show the asymptotic property of 7, (z). Then, we assume that the number of
knots K and smoothing parameter A\, are dependent on n, and we write K, and A, ,, respec-
tively. For simplicity, we write A, = A, ,. We give some assumptions regarding the asymptotics
of the penalized spline quantile estimator.

Assumptions

1. The explanatory X is distributed as Q(z) on [0, 1].

2. The knots for the B-spline basis are equidistantly located as kr = k/K,(k = —p +
1,---,K, +p) and the number of knots satisfies K,, = o(n'/?).

3. There exists v > 0 such that E[|(T — I(Y < n.(2)))[*7|X = 7] < oc.
4. The order of the difference matrix is m < p + 1.

5. The smoothing parameter ), is a positive sequence such that A;! is larger than the

maximum eigenvalue of G(T)_l/zD;‘CLDmG(T)_lﬂ-

To describe the asymptotic form of 7, (x), we introduce the following symbols and notations.
Define the (K, + p)th square matrix G = (Gj;)i; by

1
Gy = [ BopuswBope(0)dQ)

and the (K, + p)th square matrix G(7) as having the (i, j)-component
1
Gis(r) = [ (1) By By ()@,
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where f(y|z) is the conditional density function of Y given X = x.

Let b*(7) be a best Lo, approximation to the true function 7, (x), which satisfies

sup |77¢(x) +b2(z) — B(x)'b*(r | =o(K, (p+1)) (2)
z€(0,1)

where

@) T Kg
bi(z) = —m ;I(“k—l <z < kg)Brpi <W> )

I(a < x < b) is the indicator function of an interval (a,b) and Br,(x) is the pth Bernoulli
polynomial(see Zhou et al. (1998)). Next, we use 1 (x) = B(z)Tb*(7).

The penalized spline quantile estimator can be decomposed as

i () = 10(@) = () — 72(2) + 72(2) — e () = 1 (@) — 02 (2) + B2(2) + oK 0D,
We investigate the asymptotic distribution of 7, () — n#(x) in the following Proposition.

Proposition 1. Letn.(-) € CP*1. Furthermore suppose K, = O(n*/P+3)y and \,, = O(n*),v <
(p+m+1)/(2p+3). Then under the Assumptions, for x € (0,1), as n — oo,

\f {in(a) — m2(2) — B@)} 2 N(0,8,(x),

where
by (z) = —%B(x)T(G(T)+(>\n/n)D£Dm)_1DZLDmb*(7—):O(n—(p+1)/(2p+3))7
o) = tim T2 BTG + (/m)DE D) GG + (ha /) D D) Bla),

n

The following Theorem, which is the main result in this paper, can be obtained straightfor-

wardly from Proposition [l

Theorem 1. Under the same assumptions as Proposition [, for x € (0,1), as n — oo,

\f o () — @)} 2 N0, @, (),

where b (z) and ®,(z) are those given in Proposition [1l.

Remark 1 Under the same assumption as Theorem [I the rate of convergence of the mean

squared error(MSE) of 7, (z) becomes

E [{ie (@) = 0 (2)}2] = O~ Cr2)/ 50,

This rate is the same as that of the penalized spline estimator in mean regression (see, Kauer-
mann et al. (2009)).



Remark 2 For the unpenalized regression spline quantile estimator, its asymptotic normality
is obtained through Theorem [ with A, = 0.

Remark 3 When the true quantile function has a polynomial form n,(x) = ag + a1z + -+ - +
aqzi(q < p), n-(x) = ni(x) is satisfied since the gth polynomial model can be expressed as the
linear combination of the pth B-spline bases {BLp] ck=-p+1,---, K,}(see de Boor (2001)).
Therefore, in this case, the model bias becomes 0, indicating that the regression spline quantile
estimator is unbiased. We can definitely show that E[,(U;)|X,] = 0 in the proof of Lemma 21

Remark 4 Let ¢;(i = 1,--- ,n) be independently and identically distributed as the density
f-(e) and assume that X; and ¢; are independent. Consider the data {(y;,z;) : i =1,--- ,n}
with Y; = n(z;) + ;. Then the conditional 1007% quantile of Y; given X; = x; can be written as
nr(z;) = n(x;)+F-1(7), where F1(7) is the 100r% quantile of ;. For any 7 € (0, 1), ngpﬂ)(a:) =
7P+ (z), with which b%(z) is unchanged by 7. Next, we obtain G(7) = f.(F.'(7))G since
f(n-(z)|z) is equal to f.(F-1(7)). Furthermore, b*(7) can be written as b*(7) = b* + F_ (7)1,
where b* is the best L, approximation of n(x) defined in the same manner as b*(7) and 1 is a
(K, + p) vector with all components equal to 1. Since all components of D,,1 are vanishing, for

7€ (0,1), we have

M
nfe(F (1))

The asymptotic variance of 7.(x) can be written as

An

-1
+ DrTan> Dy, Db
nfe(Fe (7))

W (z) = B(z)T <G

z) = lim a,(r)B(z)" M pr B M pr - x
(5 = i BV (G4 S hDn) 6 (6 Tt pin) B

where

_ 7(1—17) '
{fs(Fs_l(T))}2Kn

When the sample size is sufficiently large under the same assumptions as Theorem [ and

an(7)

m < p+ 1, the influences of 7 on b2 (z) and ®,(z) appear only as 1/f.(F- (7)) and 7(1 —
7)/{f-(F=1(7))}?, respectively. In general, if the density of ¢; is symmetrical at ¢ = 0, the
asymptotic bias and variance of 7, (x) are small at 7 = 0.5. Figure [ shows 1/f.(F-'(7)) and
7(1 —7)/{f-(F=*(7))}? with normal and Cauchy distributions.

We observe that b(z) and @, (z) are smallest at 7 = 0.5. For ®,(x) near 7 = or 7 = 1, the

effect of 7 becomes small.

Remark 5 Claeskens et al. (2009) studied the asymptotics of penalized spline estimators in

mean regression, with the estimator 7(z) = B(z)”b, where b is the minimizer of

1
(y — Zb)(y — Zb) + un /O (5™ ()} 2. (3)



........

Figure 1: Plots for 1/f.(F-'(7))(solid) and 7(1 — 7)/{f-(F='(7))}?(dashed). The left panel
shows the standard normal distribution and the right panel shows the Cauchy distribution with

location 0 and scale 0.01.

Here, s(z) = B(x)"b,b ¢ RE»*P and pu, is the smoothing parameter. They developed the
asymptotics for 7(x) under two scenarios: (a) K, = Ky(n, Ky, ptn), which as given in their paper
is less than 1, or (b) K, > 1. Assumption 5 of this paper is equal to the condition K, < 1. To-
gether with the approximation property that \,b(7)” DI D,,b(1) ~ p,K2m~! fo {s (v)}2dz,
the results of this paper can be regarded as the quantile regression version of Theorem 2 (a) of
Claeskens et al. (2009).

Remark 6 To construct the penalized spline estimator of n.(x), we can also use the truncated
spline ¢, (z) = C(2)70(r) as an approximation to 7,(z), where C(z) = [1 = --- 2P (z —
k)% o+ (x—kK,-1)h], ()4 = max{z,0}, and () € RE"T? is an unknown parameter vector.
Pratesi et al. (2009) obtained the estimator 7, (z) = C(z)76(r), where 8(7) is the minimizer of

Z pr(yi — () + 1nB(r) 7 00(7), ()

where g, is the smoothing parameter and © = diag[O,41 Ik,—1]. By the equivalence prop-
erty between the B-spline model and truncated model, there exists a (K, + p)th square and

nonsingular matrix L such that B(z) = LC(x). Therefore ¢, (z) can be written as
cr(z) = C(z)"0 = B(z)"L™0(7) = B(z)"b(7),

where b(7) = L~'0(r). Furthermore, the penalty term in (@) satisfies from Claeskens et al.
(2009)
0(1)"00(r) = K;7b(7)" Dy 1 Dp1b(7)

The asymptotic distribution of 7, () = C(x)T0(7) can be obtained by showing that of B(z)”b,

where b is the minimizer of

Z pr (yi — B(z)"b(7)) + pn K2Pb(r)" DL, | Dy 1b(7).



Then, the asymptotic distribution of 7.(x) can be obtained using Theorem [l under m = p + 1
and A\, = ,unKrsz . Thus, we obtain the asymptotic distribution of the penalized truncated spline

quantile estimator.

Remark 7 Under some weakly condition, the local pth polynomial quantile estimator 7, (z)

has an asymptotic order
El{ii-(2) — nr(2)}2] = O(n~ 2D/ (2p13))

(see Fan et al. (1994) and Ghouch and Genton (2009)) and, hence, it can be said that the
rate of convergence of the pth B-spline quantile estimator and the local pth polynomial quantile
estimator are the same. We note the bias of these estimators with p = 1. From Fan et al.
(1994), the asymptotic bias of the local linear quantile estimator is
h2 7(_2)
b (x) = —M/22K(z)dz,

2 R
where K (z) is the second order kernel function and h,, is the bandwidth. If K, ! is equal to h,,
then the difference between b%(x) and b’ (x) is only

Ky, _

ZI(Hj—l <z < Kj)Bry (%) and / 22K (2)dz. (5)
j=1 K, R

It is easy to show that Bry(z) = #*—2+1/6 < 1/5 for z € [0, 1], while we have [ 22Kg(2)dz = 1
for the Gaussian kernel Kg(z) and [, 22Kp(z)dz = 1/5 for the Epanechnikov kernel Kg(z).
Therefore the bias of the regression spline estimator is smaller than that of the local linear

estimator in this situation.

4 Numerical study

4.1 Simulation

In this section, we show numerical simulation to confirm the performance as well as the asymp-
totic normality of the penalized spline quantile estimator claimed in Theorem[Il The explanatory
x; is generated from a uniform distribution on the interval [0, 1]. The response Y; is created by
Y; = n(x;) + &;, where n(x) = sin(2wz). The errors ¢;’s are independently distributed via (i) a
normal distribution with mean 0 and variance (0.1)2, (ii) an exponential distribution with mean
2 and (iii) a Cauchy distribution with location 0 and scale 0.01. In this simulation, to obtain
the penalized spline quantile estimator, we use (p,m) = (3,2) and (K, \,) is given via the
generalized approximate cross-validation (GACV) discussed by Yuan (2006). For comparison,
we construct the unpenalized regression spline quantile estimator with linear spline bases(p = 1)
and the local linear quantile estimator. The penalized spline estimator, regression spline estima-
tor, and local linear estimator are denoted as P-cubic, R-linear and L-linear, respectively. The
number of knots of R-linear and the bandwidth of L-linear are given by GACV.



Table 1: Results of MISE for n = 100 and n = 1000. All entries for MISE are 10° times their

actual values.

n = 100 Normal Exponential Cauchy
T P-cubic R-linear L-linear | P-cubic R-linear L-linear | P-cubic R-linear L-linear
0.01 11.89 20.16 20.81 5.21 11.15 11.78 | 4704.18 6667.28 4122.68
0.1 3.78 4.55 5.03 6.26 9.85 12.50 206.43 340.47 289.05
0.25 3.23 3.27 3.99 10.72 16.68 13.42 18.46 42.15 86.46
0.5 2.87 3.34 3.60 20.26 31.66 27.92 18.88 35.22 43.33
n = 1000 Normal Exponential Cauchy
T P-cubic R-linear L-linear | P-cubic R-linear L-linear | P-cubic R-linear L-linear
0.01 1.23 1.77 1.94 0.22 0.31 0.31 160.52 910.09  1178.74
0.1 0.46 1.45 0.67 1.08 1.30 1.08 19.53 24.99 53.93
0.25 0.44 1.84 0.52 2.16 2.77 1.91 2.08 7.08 2.17
0.5 0.12 0.34 0.27 3.66 5.60 3.19 0.20 4.81 1.38
Let
1 R 100
MSEj = E Z{ﬁﬂ',r(zj) - 777(’2])}2’ MISE = 100" Z MSEja
r=1 j=1

where z; = j/J,J = 100 and 7 ,(z;) is the estimator for the rth repetition. For 7 = 0.01,0.1,0.25
and 0.5, we calculate the mean integrated squared error (MISE). We then use sample sizes
n = 100 and 1000 and the number of repetitions R = 1000.

Next, from P-cubic, we calculate

Urr(w) _ 777,7’(1') — 777(95)

. R
' ¢, ()

7R7

where

d. () =7(1 —7)B@)(Z"R, Z + \i DL D) 2T Z2(Z" R, Z + X\, DL, D,y,) "' B(x),
R, = diag[f, (., (x;)]z;)] and f,(y|z) is the conditional kernel density estimate given X = z.
Then we construct the density estimate of U, = {U; 1(x),--- ,U; r(x)} at = 0.5 and compare
with the density of N(0,1). To obtain f.(y|z) and U,, the normal kernel and the bandwidth
discussed by Sheather and Jones (1991) are utilized.

Table 1 shows the MISE for 7 = 0.01,0.1,0.25 and 0.5. For P-cubic with normal error,
the performance of the quantile estimator is good even if 7 = 0.01. It is well known that the
However, the MISE of P-cubic with the

Cauchy distribution is sufficiently small, indicating that the quantile estimator is robust. For

Cauchy distribution is a pathological distribution.

the boundary 7, on the other hand, the MISE of the estimators is worse than that with interior

7. For the normal and Cauchy models, the median estimator has better behavior than those



with 7 = 0.01,0.1 and 0.25. On the other hand, for the exponential model, the median estimator
has a larger MISE than 7). (x) with other values of 7. The reason for this is that the density f(e)
of exponential distribution is monotonically decreasing and its peak is at ¢ = 0, which leads to
many responses Y;’s being dropped near n(z;) + F. 1 (7) with small 7. We note the performance
of the penalized spline estimator for 7 > 0.5. When a normal or Cauchy error is used, it appears
that the MISE of 7, (z) and that of 7;_,(x) become similar since Y;|z; has a symmetrical density
function at n(x;). For an exponential error, the closer 7 is to 0, the smaller the MISE of 7, (z)
will become. Overall, P-cubic has better behavior than R-linear and L-linear. However, for the
exponential distribution and n = 1000, the MISE of L-linear is slightly smaller than that of
P-cubic. Additionally, the performance of L-linear is slightly superior to that of R-linear. This
indicates that the variance of L-linear is less than that of R-linear (see Remark 7).

In Figure 2] the density estimate of U, for 7 = 0.1 and 0.5 and the density of N(0,1) for
each error are illustrated. In all errors, we can see that the density estimate of Uy 5(x) becomes
close to N(0,1) as n increases. For a normal distribution with n = 1000, the density estimate
Up.s and N(0,1) are similar. In both errors, we see that the speed of convergence of Up 5 is faster
than that of Uy 1.

Remark 8 We have confirmed the behavior of the penalized splines with p = 1 (P-linear) and
the regression splines with p = 3 (R-cubic) though this is not shown in this paper for reasons of
space. The MISE of P-linear and R-cubic are similar to the P-cubic and R-linear, respectively.
For spline smoothing, it is generally known that the pair of the ‘cubic’ spline and the second
difference penalty are particularly useful in data analysis. Therefore we mainly focused on

(p,m) = (3,2) in this simulation.

4.2 Application

In this section, we apply the penalized spline quantile estimator to real data. In all examples,
we use (p,m) = (3,2) and (K, \,) is chosen via GACV.

Figure [3 showed the penalized spline quantile estimators (7 = 0.1,--- ,0.9) for bone mineral
density (BMD) data. This data was presented by Hastie et al. (2009). Takeuchi et al. (2006)
applied the kernel estimator to the same data. Compared with Figure 2 (b) of their paper, the
penalized splines have a somewhat smooth curve.

Next, the confidence interval of 7, (x) is illustrated. The 100a% confidence interval of 7. (x)

based on the asymptotic result of 7. (x) is obtained as
ir (@) = bi(w) = 0} (x) = 21-aj2\) Dr(@), i (2) = () = B3(@) + 2102 ‘ir(l’)] , (6)

where b%(z), b} () and ®,(z) are the estimators of b%(x), bX(x) and &, (x), while Zi_aj2 I8 @

(1 — a/2)th normal percentile. As the estimator of b} (),

0Xz) = —\B(x)(Z'RZ + \,DLD,,) DL D,,b(7)
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Figure 2: The density estimate of U, (x) for n = 100(dot-dashed) and n = 1000(dashed), and the
density of N (0, 1)(solid). The left panels are for 7 = 0.1 and the right panels are for 7 = 0.5. The

upper, middle and bottom panels are for normal, exponential and Cauchy errors, respectively.
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is used. We utilize (iDT(x) as given in the previous section. As the pilot estimator of n&” +1)(a:) in

b%(z), we construct the (p + 1)th derivative of the penalized spline quantile estimator with the
(p + 2)th B-spline model. Thus, we obtain ().

In Figure @, the 95% approximate confidence interval of 79 5(z) for motor cycle impact data
is drawn. This dataset, with {(y;,x;) : i = 1,---,132} was given by Hérdle (1990), where y; is
the acceleration (g) and x; is the time (ms). For comparison, the 95% approximate confidence

interval with uncorrected bias of 7y 5(z) defined by

{m(:ﬁ) —1.961/ U (x), 7-(x)+ 1.96\/\14(@]

is shown. The penalized spline estimator of the median has a curve with fitness and smoothness.
In the area near x = 20, we see that there is a strong correction of the bias of 7 5(x).

Finally, we compare the median estimator and the mean estimator for Boston housing data,
with {(y;,x;) : ¢ = 1,--- 506}, where y; is the median value of owner-occupied homes in USD
1000s (given by MEDV) and z; is the average number of rooms per dwelling (denoted RM). This
dataset is available from Harrison and Rubinfeld (1979). Figure [l shows the penalized spline

quantile estimator of 79 5(z)(solid) and the penalized spline estimator
g(w) = B(@)" (2" Z + pin Dy, D) ' 21y

of the conditional mean of Y: g(x) = E[Y|X = z| (dashed), where p,, is the smoothing parameter
chosen by generalized cross-validation. At around xz = 5 and the right-hand side of x = 8, the
behavior of the median estimator and the mean estimator are different. We see that g(z) is
affected by extreme points, such as (z,y) = (4.97,50) and (x,y) = (8.78,21.9). On the other

hand, it appears that the influence of extreme values is limited for the median estimator.

5 Discussion

This paper have discussed the asymptotic theory of the penalized spline quantile estimator. We
showed the asymptotic bias and variance as well as the asymptotic normality of the penalized
spline quantile estimator. The results can be regarded as the quantile regression version of the
Theorem 2 (a) of Claeskens et al. (2009).

As the further study, we may consider the asymptotic property of the penalized splines
with multivariate covariate (x1,--- ,z4). Doskum and Koo (2000) have studied the unpenalized
spline quantile estimator in additive models, but the asymptotic results were not discussed. The
additive model has the true quantile function as 7. (x1,- -+ ,x4) = Zle Nir(z;). The aim is then
to estimate 7;,(x;) for each i. Similar to the work of Doskum and Koo, we can construct the
penalized spline estimator in additive models. In this field, the asymptotic results should be
determined.

In relation to the serious problem of the nonparametric quantile regression, a phenomenon
called the “quantile crossing” occurs (see Koenker (2005)). He (1997) and Takeuchi et al.
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Penalized spline quantile estimator
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Figure 3: BMD data (n = 485) with 7 (z). The solid lines are for 7 =0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9 from the bottom to top.

95% approximate confidence interval
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Figure 4: Motor cycle impact data (n = 132) with 79 5(x) (dashed), the 95% approximate
confidence intervals (solid) and the 95% approximate confidence intervals with uncorrected bias
(dot-dashed).
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Mean and median estimator
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Figure 5: Boston housing data (n = 506) with the mean(dashed) and median(solid) estimators.

(2006) studied the original estimation methods of n,(z) without quantile crossing. However,
the asymptotics for their estimators have not yet been developed. The asymptotic study of
the penalized splines without quantile crossing would be an interesting topic for further study.
In addition, by using the asymptotic results of the penalized spline estimator 7, (x), it may be
possible to construct the penalized spline quantile estimator without quantile crossing although

this is beyond the scope of this paper.

Appendix

For a random variable U,, E[U,|X,] and V[U,|X,] denote the conditional expectation and
variance of Uy, given (X1,---,X,) = (&1, -+ ,x,), respectively. For the matrix A = (ai;)j,
[|Al|oc = max;;{|ai;|}. For random sequence {a,} and {b,}, if a,, /b, = Op(1), then it is written

as
as a, ~ by,.

Lemma 1. Let A = (a;;)ij be (K, + p) matriz and let H(1) = G(7) + (A\n/n) DL D,y,. Assume
that K, — 00 asn — 00, ||Allec = Op(KY). Then, under the Assumption, ||AG||s = O(K2™1)
and ||[AH (1) |00 = O(K}H9).

Lemma [I] can be proven similar to Lemma 1 of Claeskens et al. (2009). Then, Assumption

5 which guarantees K, < 1 that given in their paper.

Lemma 2. Let . (u) =7 — I(u < 0), u; = y; — B(x;)Tb*(7). Under the same assumption as

14



Theorem [1],

,/ ZB )T o (u;) X VKW',

where W ~ N(0,7(1 — 7)G).
Proof of Lemma[2. Let

= —\/? > B(z:) 64 (ui).
i=1

We show the asymptotic distribution of Z,, by Lyapunov’s theorem. First from the fact that
P(Y < n-(x;)|X; = ;) = 7, we have
Bl (U)|Xn] = 71— E[I(Yi < B(a:)"b"(7))| X,
= 7—P(Y < B(z;))'b*(7)| Xi = )
= 7= P(Y <ne(xi) + balwi, 7)(1 4 0(1)) | Xi = ;)
= —ba(ws, 7)f(nr(2i)]2:) (1 + o(1))
= o(1).
Therefore we obtain

24y

B(x:)"6{t-(Ui) — E[$-(U3)| X n]}

.

(2+7)/
) B S Bl (U + o(1) X

Kn
n
< (2+’y )

The straightforward calculation yields

e
e

IN

ViZa| X0l = % Z{B(:Ei)T(S}QVWT(E — B(z:)"b"())| X ]

— (1—75T< ZBa;, ,)5

= K,7(1- T)5TG5(1 +op(1))
= O(Kn)

So it follows that

ViZ |X1](2+'Y)/2 D E [\/ %B(W)T‘SWT(U@') — E[r(U3)| X ]}
niEmn i=1

N 25)/2
< O(K=C)/2)0 n<_n>

n

2+

.

=o(1)
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since v > 0. This leads to

Zn—E[Z,| X, D
N(0,1

from Lyapnov’s theorem. The expectation of Z, can be calculated as

i—1
- \/?Z B(a;)" 8ba (i, 7) f (7 () ]2i) (1 + 0p (1))
i—1

1
= \/nKn/O B(u) by (u, 7) f (nr(w)|uw)du(l 4+ op(1)).

From the proof of Lemma 6.10 of Argwall and Studen (1989), for j = —p+1,--- , K,,, we have
1
[ Bt 7) 50 (s + o)) = o),
0

by which \/nKno(KJ(pH)) = o(1). Consequently, we have E[Z,|X,]/V[Z,|X,] = op(1) and
Lemma [2] holds. O

Lemma 3. Let wi, = /K,/nB(z;)T8(i =1,--- ,n) for § € RE"*P. Then, under the assump-
tions,

;/0 {I(u; <s)—I(u; <0)lds < 7”6TG(7_)5‘

Proof of Lemmal3. Let

R, = ZZ:;/O {I(u; <s)—I(u; <0)}ds.

Since

Win

E [ {I(u; <s)—1I(u; <0)}ds
0

= [ B < 5) - 1(U; < 0)}|X,)ds
0

.

- /wi" {P(Yi < B(2:)T0"(7) + 5|X; = ;) — P(Yi < B(x;) b*(7)|X; = 2;) } ds
0
—i [ (v BT ot

_ % /0 £ (B(a) 70 (7)) tat

X; = x) — P(Y; < B(x:)"b*(1)| X; = xi)} dt

= Ko (B b (7)) (BT o)
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Therefore we obtain

n

E[Rn|X.] = K“Z f (B(:) b (r)|;) 87 B(:) B(z:) "6

= (HZf(m(w» + o<1>|:si>B<:vi>B<°"‘”)T> ’
i=1

= %5%(7)5(1 +op(1)).

Finally, we show V[R,|X,] =op(1). For i =1,--- ,n, we have

s < 8) — Il s < | Enprayr
; {I(ui < 5) = I(u; < 0)}ds < \[—=B(xi)"

Therefore the variance of R,, can be evaluated as

VIR X, < ZE < (s < 5) — I(ui§0)}ds>2Xn]
< %Z_nllax (B(2:)" 8} E[Rn| X 0],

Since E[R,|X,] = O(K,), we obtain \/V[R,|X,]/E[R,|X,] = op(1) and, hence, Lemma [l
holds.
O

Proof of Proposition[d. Let

" K
Un(6) = [ . <u2 - —nB($i)T5> - T(ui)]
2y p

T
+% (b*(T) - ﬁa) DLD,, (b*(T) - ﬁa) - ﬁb*(T)TD,ZLDmb*(T),

n n 2
where u; = y; — B(z;)"b*(7). Then the minimizer 8, (7) of Uy,(8) can be obtained as

5ulr) = \/Kzndxﬂ b (r).

First we show the convergence point Uy(d) of U, (d) for any § € RE~*P. For the following
discussion, we introduce the Knight’s idntity(see, Knight (1998)):

prle =) = (1) = —vr ) + [ {10 < 9) ~ Hu < 0))ds, (7
where ¥, (u) =7 — I(u < 0). By using (), we can write U, (9) as

Un(5) = Uln(5) + Ugn(é) + Ugn(5) + U4n(5),
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where

Uin(0) = —\/?ZBm)TéwT(ui),
=1

Un®) = 3 / s < ) — T < 0)}ds,

Usn(5) = A2K 57 DT D,o,

Upn(8) = An,/ﬁb*(T)TDgDma,

where w;, = /K, /nB(z;)T8. From Lemma 1, Uy, () satisfies

Uin(8) X —/K, W78,

where W ~ N(0,7(1 — 7)G). Furthermore Lemma 2 and Us, () yield
Unn(8) + Usn(9) % 27 <G(7) " %D§Dm> 5.

Therefore, we obtain
Up(8) X Up(8) = —V/EK W8 + A/ %b*(T)TDZLDma + %ﬁ (G(T) + %DZ;D,”) J.

Because Up(d) is convex with respect to & and has unique minimizer, the minimizer 8, (7) of
Un(8) converge to 0o(7) = argming{Up(d)}. This fact is detailed in Pollard(1991), Knight
(1998) and Kato (2009). Hence we have

\/7{1) (P& §o(r) = (G(T)Jr%DﬁDm)_l(\/%W— 21{ DI D,.b*(t )>

Since 7 (z) — n*(z) = B(z)T (b(r) — b*(7)), we obtain for z € (0,1), as n — oo,

\f (i (2 C @)} 2 N0, @0 ()

by the definition of W. We can confirm with Lemma[l that ®,(z) = O(1). Finally we show the
asymptotic order of b}(z). Let BIPl(z) = (B[_p]]g+1(x) B%}n(az))T. By the properties of the
derivative of the B-spline model, we have s (x) = 8s,(2)/0x™ = K™BP=(2)TD,,b(7).
Therefore we obtain BP~™(2)T{K™D,,b*(7)} = n&m) (x)(1 + o(1)) for m < p. Since the
asymptotic order of BP~™(2)T{K™D,,b*(1)} and that of ||K"D,,b*(7)||s are the same as
O), ||Dmb*(7)|lec = O(K,,™) is satisfied for m < p. In addition, similar to the proof of
Theorem 1 of Kauermann et al. (2009), ||Dp41b6™(7)||oc = O(K (pH)) is fulfilled. Together with

Lemma [Tl we obtain

-1
() = -2 Bla)T <G<T> + %DﬁDm> Dy Db’ () = O™ Ky ™™) = O(n~ 00/ 0r53)),

Thus Proposition 2 has been proven. O
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Proof of Theorem [1. Theorem[lcan be proven directly from Propositions 1. Under the condition
K, = O(n"/?r+3)) we have

\/7 (s (@) — 2 (@) - W(a }—\/7 {n (&) — 12 (&) — B4() + o(K; D) — bA(x))

and /n/Kyb%(x) = O(\/n/KnK;(pH)) = O(1). This completes the proof. O
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