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Abstract

Quantile regression predicts the τ -quantile of the conditional distribution of a response

variable given the explanatory variable for τ ∈ (0, 1). The aim of this paper is to establish

the asymptotic distribution of the quantile estimator obtained by penalized spline method.

A simulation and an exploration of real data are performed to validate our results.

Keywords Asymptotic normality, B-spline, Penalized spline, Quantile regression.

1 Introduction

Regression analysis is one of the most important tools used to investigate the relationship

between a response Y and a predictor X. Many major studies of regression have been concerned

with the estimation of the conditional mean function of Y given a predictor X = x. On the other

hand, the estimation of the conditional quantile function of Y given x has gained momentum in

recent years. This analysis is called quantile regression. In quantile regression, the purpose is

to estimate an unknown function ητ (x) that satisfies

P (Y < ητ (x)|X = x) = τ

for a given τ ∈ (0, 1). When τ = 0.5, ητ (x) is the conditional median of Y . One established

advantage of quantile regression as compared to mean regression is that the estimators are

more robust against outliers in the response measurements. Quantile regression models have

been suggested by Koenker and Bassett (1978). Many authors have studied quantile regression

based on the parametric method, its asymptotic theories, the computational aspects and other

properties, and these developments have been summarized by Koenker (2005) and Hao and

Naiman (2007). The nonparametric methods for quantile regression have also been studied

extensively. Many authors have explored the topic in relation to kernel methods, including Fan

et al. (1994), Yu and Jones (1998), Takeuchi et al. (2006), Kai et al. (2011). On the other

hand, Hendricks and Koenker (1992) and Koenker et al. (1994) used the low-rank regression

splines method and the smoothing splines method, respectively. Pratesi et al. (2009) and

Reiss and Huang (2012) utilized the penalized spline smoothing method. This paper focuses

on penalized splines. Compared with unpenalized splines and smoothing splines, an advantage
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of the penalized spline methods is follows. Although the smoothing spline estimator gives the

predictor with fitness and smoothness, the computational cost to construct the estimator is high.

In unpenalized regression spline methods, on the other hand, it is known that the estimator

tends to have a wiggle curve, but the computational cost is lower than that of smoothing spline

methods. The penalized spline estimator, however, gives the curve with fitness and smoothness

and its computational cost is lower than that of smoothing spline methods. Thus, penalized

splines can be considered an efficient technique.

Previous results of asymptotic studies of nonparametric quantile regressions include the

following. Fan et al. (1994) showed the asymptotic normality of the kernel estimator. Yu and

Jones (1998) proposed a new kernel estimator and studied its asymptotic results. He and Shi

(1994) showed the convergence rate of the unpenalized regression spline estimator. Portnoy

(1997) discussed asymptotics for smoothing spline estimators. However, the asymptotics for the

penalized spline estimator of quantile regression have not yet been studied.

In this paper, we show the asymptotic distribution of the penalized spline estimator for

quantile regression with a low-rank B-spline model and the difference penalty. The penalized

spline estimator of ητ (x) for a given τ is defined as the minimizer of the convex loss function,

which is the check function ρτ with an additional difference penalty. To establish the asymptotic

distribution of the penalized spline estimator, we need to derive two biases (i) the model bias

between the true function ητ (x) and the B-spline model, and (ii) the bias arising from using

the penalty term. By showing the asymptotic form of these two biases, the resulting asymptotic

bias of the penalized spline estimator can be obtained. Finally, together with the asymptotic

variance of the estimator, we show the asymptotic normality of the penalized spline quantile

estimator.

This paper is organized as follows. In Section 2, we define the penalized spline quantile

estimator for a given τ . In terms of our estimation method, we mainly focus on the penalized

iteratively reweighted least squares method. Section 3 provides the asymptotic bias and variance

as well as the asymptotic distribution of the penalized spline quantile estimator. Furthermore,

the related properties are described. In Section 4, numerical studies are conducted. Related

discussion and issues for future research are provided in Section 5. Finally, proofs for the

theoretical results are all given in the Appendix.

2 Penalized spline estimator in quantile regression

For a given dataset {(yi, xi) : i = 1, · · · , n}, consider the conditional 100τ% quantile of response

Yi given Xi = xi as

P (Yi < ητ (xi)|Xi = xi) = τ,

where τ ∈ (0, 1) and ητ (xi) is an unknown true conditional quantile function of Yi given Xi = xi.

It is easy to show that the true function satisfies

ητ (x) = argmin
a

E[ρτ (Y − a(x))|X = x].
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Here, ρτ is the check function provided by Koenker and Bassett (1978), given as

ρτ (u) = u(τ − I(u < 0)),

where I(u < b) is the indicator function of (−∞, b). We want to estimate ητ (x) using penalized

spline methods. To approximate ητ (x), we consider the B-spline model

sτ (x) =

K
∑

k=−p+1

B
[p]
k (x)bk(τ),

where B
[p]
k (x)(k = −p+1, · · · ,K) are the pth degree B-spline basis functions defined recursively

as

B
[0]
k (x) =

{

1, κk−1 < x ≤ κk,

0, otherwise,

B
[p]
k (x) =

x− κk−1

κk+p−1 − κk−1
B

[p−1]
k (x) +

κk+p − x

κk+p − κk
B

[p−1]
k+1 (x),

where κk(k = −p + 1, · · · ,K + p) are knots and bk(τ)(k = −p + 1, · · · ,K) are unknown pa-

rameters. We denote B
[p]
k (x) as Bk(x) unless the degrees of B-splines are specified. Details

and many properties of the B-spline function are clarified by de Boor (2001). The estimator of

b(τ) = (b−p+1(τ) · · · bKn
(τ))T is defined as

b̂(τ) = (b̂−p+1(τ) · · · b̂Kn
(τ))T

= argmin
b(τ)

{

n
∑

i=1

ρτ (yi −B(xi)
Tb(τ)) +

λτ
2
b(τ)TDT

mDmb(τ)

}

, (1)

where B(xj) = (B−p+1(xj) · · · BKn
(xj))

T , λτ (> 0) is the smoothing parameter and (Kn + p−
m)×(Kn+p)th matrixDm is themth difference matrix, which is defined asDm = (d

(m)
ij )ij, where

d
(m)
ij = (−1)|i−j|

mC|i−j| for i ≤ j ≤ m+ 1, and 0 for otherwise. It is well known that the differ-

ence penalty in (1) is very useful in mean regression and can be regarded as the controller of the

smoothness of sτ (x) because we can interpret b(τ)TDT
mDmb(τ) ≈ K2m−1

n

∫ 1
0 {s

(m)
τ (x)}2dx (see,

Eilers and Marx (1996)). Although Reiss and Huang (2012) used the penalty
∫ 1
0 {s

(m)
τ (x)}2dx,

this penalty contains an integral and hence the computational difficulty for the resulting esti-

mator grows. Therefore, this paper proposes using b(τ)TDT
mDmb(τ) as the penalty. In fact,

b̂(τ) is obtained via linear-programming methods, such as simplex methods or interior points

methods (see Koenker and Park (1996), Koenker (2005)). On the other hand, it is known that

the iteratively reweighted least squares (IRLS) method is a useful in nonparametric quantile

regression. The penalized spline estimator obtained via IRLS was also studied and detailed by

Reiss and Huang (2012).

Since IRLS is important for obtaining the estimator, we now provide the complete algorithm.

For a given λτ , the k-steps iterated estimator b̂
(k)

(τ) is defined as follows:

b̂
(k)

(τ) = (ZTW (k−1)Z + λτD
T
mDm)−1ZTW (k−1)y,

3



where y = (y1 · · · yn)T , Z = (B−j+p(xi))ij , W
(k) = diag[w

(k)
1 · · · w(k)

n ] and

w
(k)
i =







































τ − I(yi −B(xi)
T b̂

(k−1)
(τ) < 0)

2(yi −B(xi)T b̂
(k−1)

(τ))
|yi −B(xi)

T b̂
(k−1)

(τ))| > α,

τ(yi −B(xi)
T b̂

(k−1)
(τ))

α
0 ≤ yi −B(xi)

T b̂
(k−1)

(τ)) ≤ α,

(1− τ)(yi −B(xi)
T b̂

(k−1)
(τ))

α
−α ≤ yi −B(xi)

T b̂
(k−1)

(τ) ≤ 0,

for small α > 0 and the initial W (0). As k → ∞, it can be shown that limk→∞ b̂
(k)

(τ) is

approximately equivalent to the minimizer of (1). By using b̂(τ), the penalized spline estimator

of ητ (x) is defined as

η̂τ (x) =
K
∑

k=−p+1

B
[p]
k (x)b̂k(τ) = B(x)T b̂(τ).

3 Asymptotic theory

In this section, we show the asymptotic property of η̂τ (x). Then, we assume that the number of

knots K and smoothing parameter λτ are dependent on n, and we write Kn and λτ,n, respec-

tively. For simplicity, we write λn = λτ,n. We give some assumptions regarding the asymptotics

of the penalized spline quantile estimator.

Assumptions

1. The explanatory X is distributed as Q(x) on [0, 1].

2. The knots for the B-spline basis are equidistantly located as κk = k/Kn(k = −p +

1, · · · ,Kn + p) and the number of knots satisfies Kn = o(n1/2).

3. There exists γ ≥ 0 such that E[|(τ − I(Y < ητ (x)))|2+γ |X = x] <∞.

4. The order of the difference matrix is m ≤ p+ 1.

5. The smoothing parameter λn is a positive sequence such that λ−1
n is larger than the

maximum eigenvalue of G(τ)−1/2DT
mDmG(τ)

−1/2.

To describe the asymptotic form of η̂τ (x), we introduce the following symbols and notations.

Define the (Kn + p)th square matrix G = (Gij)ij by

Gij =

∫ 1

0
B−p+i(u)B−p+j(u)dQ(u)

and the (Kn + p)th square matrix G(τ) as having the (i, j)-component

Gij(τ) =

∫ 1

0
f(ητ (u)|u)B−p+i(u)B−p+j(u)dQ(u),
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where f(y|x) is the conditional density function of Y given X = x.

Let b∗(τ) be a best L∞ approximation to the true function ητ (x), which satisfies

sup
x∈(0,1)

∣

∣ητ (x) + baτ (x)−B(x)′b∗(τ)
∣

∣ = o(K−(p+1)
n ), (2)

where

baτ (x) = − η
(p+1)
τ (x)

Kp+1
n (p+ 1)!

Kn
∑

k=1

I(κk−1 ≤ x < κk)Brp+1

(

x− κk−1

K−1
n

)

,

I(a < x < b) is the indicator function of an interval (a, b) and Brp(x) is the pth Bernoulli

polynomial(see Zhou et al. (1998)). Next, we use η∗τ (x) = B(x)Tb∗(τ).

The penalized spline quantile estimator can be decomposed as

η̂τ (x)− ητ (x) = η̂τ (x)− η∗τ (x) + η∗τ (x)− ητ (x) = η̂τ (x)− η∗τ (x) + baτ (x) + o(K−(p+1)
n ).

We investigate the asymptotic distribution of η̂τ (x)− η∗τ (x) in the following Proposition.

Proposition 1. Let ητ (·) ∈ Cp+1. Furthermore suppose Kn = O(n1/(2p+3)) and λn = O(nν), ν ≤
(p+m+ 1)/(2p + 3). Then under the Assumptions, for x ∈ (0, 1), as n→ ∞,

√

n

Kn
{η̂τ (x)− η∗τ (x)− bλτ (x)}

D−→ N(0,Φτ (x)),

where

bλτ (x) = −λn
n
B(x)T (G(τ) + (λn/n)D

T
mDm)−1DT

mDmb∗(τ) = O(n−(p+1)/(2p+3)),

Φτ (x) = lim
n→∞

τ(1− τ)

Kn
B(x)T (G(τ) + (λn/n)D

T
mDm)−1G(G(τ) + (λn/n)D

T
mDm)−1B(x).

The following Theorem, which is the main result in this paper, can be obtained straightfor-

wardly from Proposition 1.

Theorem 1. Under the same assumptions as Proposition 1, for x ∈ (0, 1), as n→ ∞,

√

n

Kn
{η̂τ (x)− ητ (x)− baτ (x)− bλτ (x)}

D−→ N(0,Φτ (x)),

where bλτ (x) and Φτ (x) are those given in Proposition 1.

Remark 1 Under the same assumption as Theorem 1, the rate of convergence of the mean

squared error(MSE) of η̂τ (x) becomes

E
[

{η̂τ (x)− ητ (x)}2
]

= O(n−(2p+2)/(2p+3)).

This rate is the same as that of the penalized spline estimator in mean regression (see, Kauer-

mann et al. (2009)).
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Remark 2 For the unpenalized regression spline quantile estimator, its asymptotic normality

is obtained through Theorem 1 with λn = 0.

Remark 3 When the true quantile function has a polynomial form ητ (x) = a0 + a1x+ · · ·+
aqx

q(q ≤ p), ητ (x) = η∗τ (x) is satisfied since the qth polynomial model can be expressed as the

linear combination of the pth B-spline bases {B[p]
k : k = −p + 1, · · · ,Kn}(see de Boor (2001)).

Therefore, in this case, the model bias becomes 0, indicating that the regression spline quantile

estimator is unbiased. We can definitely show that E[ψτ (Ui)|Xn] = 0 in the proof of Lemma 2.

Remark 4 Let εi(i = 1, · · · , n) be independently and identically distributed as the density

fε(ε) and assume that Xi and εi are independent. Consider the data {(yi, xi) : i = 1, · · · , n}
with Yi = η(xi)+ εi. Then the conditional 100τ% quantile of Yi given Xi = xi can be written as

ητ (xi) = η(xi)+F
−1
ε (τ), where F−1

ε (τ) is the 100τ% quantile of εi. For any τ ∈ (0, 1), η
(p+1)
τ (x) =

η(p+1)(x), with which baτ (x) is unchanged by τ . Next, we obtain G(τ) = fε(F
−1
ε (τ))G since

f(ητ (x)|x) is equal to fε(F−1
ε (τ)). Furthermore, b∗(τ) can be written as b∗(τ) = b∗ + F−1

ε (τ)1,

where b∗ is the best L∞ approximation of η(x) defined in the same manner as b∗(τ) and 1 is a

(Kn+ p) vector with all components equal to 1. Since all components of Dm1 are vanishing, for

τ ∈ (0, 1), we have

bλτ (x) = − λn

nfε(F
−1
ε (τ))

B(x)T
(

G+
λn

nfε(F
−1
ε (τ))

DT
mDm

)−1

DT
mDmb∗.

The asymptotic variance of η̂τ (x) can be written as

Φτ (x) = lim
n→∞

αn(τ)B(x)T
(

G+
λn

nfε(F
−1
ε (τ))

DT
mDm

)−1

G

(

G+
λn

nfε(F
−1
ε (τ))

DT
mDm

)−1

B(x),

where

αn(τ) =
τ(1− τ)

{fε(F−1
ε (τ))}2Kn

.

When the sample size is sufficiently large under the same assumptions as Theorem 1 and

m < p + 1, the influences of τ on bλτ (x) and Φτ (x) appear only as 1/fε(F
−1
ε (τ)) and τ(1 −

τ)/{fε(F−1
ε (τ))}2, respectively. In general, if the density of εi is symmetrical at ε = 0, the

asymptotic bias and variance of η̂τ (x) are small at τ = 0.5. Figure 1 shows 1/fε(F
−1
ε (τ)) and

τ(1− τ)/{fε(F−1
ε (τ))}2 with normal and Cauchy distributions.

We observe that bλτ (x) and Φτ (x) are smallest at τ = 0.5. For Φτ (x) near τ = or τ = 1, the

effect of τ becomes small.

Remark 5 Claeskens et al. (2009) studied the asymptotics of penalized spline estimators in

mean regression, with the estimator η̂(x) = B(x)T b̂, where b̂ is the minimizer of

(y − Zb)′(y − Zb) + µn

∫ 1

0
{s(m)(x)}2dx. (3)

6
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Figure 1: Plots for 1/fε(F
−1
ε (τ))(solid) and τ(1 − τ)/{fε(F−1

ε (τ))}2(dashed). The left panel

shows the standard normal distribution and the right panel shows the Cauchy distribution with

location 0 and scale 0.01.

Here, s(x) = B(x)Tb, b ∈ R
Kn+p and µn is the smoothing parameter. They developed the

asymptotics for η̂(x) under two scenarios: (a) Kq = Kq(n,Kn, µn), which as given in their paper

is less than 1, or (b) Kq ≥ 1. Assumption 5 of this paper is equal to the condition Kq < 1. To-

gether with the approximation property that λnb(τ)
TDT

mDmb(τ) ≈ µnK
2m−1
n

∫ 1
0 {s

(m)
τ (x)}2dx,

the results of this paper can be regarded as the quantile regression version of Theorem 2 (a) of

Claeskens et al. (2009).

Remark 6 To construct the penalized spline estimator of ητ (x), we can also use the truncated

spline cτ (x) = C(x)Tθ(τ) as an approximation to ητ (x), where C(x) = [1 x · · · xp (x −
κ1)

p
+ · · · (x−κKn−1)

p
+], (x)+ = max{x, 0}, and θ(τ) ∈ R

Kn+p is an unknown parameter vector.

Pratesi et al. (2009) obtained the estimator η̃τ (x) = C(x)T θ̃(τ), where θ̃(τ) is the minimizer of

n
∑

i=1

ρτ (yi − cτ (xi)) + µnθ(τ)
TΘθ(τ), (4)

where µn is the smoothing parameter and Θ = diag[Op+1 IKn−1]. By the equivalence prop-

erty between the B-spline model and truncated model, there exists a (Kn + p)th square and

nonsingular matrix L such that B(x) = LC(x). Therefore cτ (x) can be written as

cτ (x) = C(x)Tθ = B(x)TL−1θ(τ) = B(x)T b(τ),

where b(τ) = L−1θ(τ). Furthermore, the penalty term in (4) satisfies from Claeskens et al.

(2009)

θ(τ)TΘθ(τ) = K2p
n b(τ)TDT

p+1Dp+1b(τ)

The asymptotic distribution of η̃τ (x) = C(x)T θ̃(τ) can be obtained by showing that of B(x)T b̃,

where b̃ is the minimizer of

n
∑

i=1

ρτ
(

yi −B(xi)
Tb(τ)

)

+ µnK
2p
n b(τ)TDT

p+1Dp+1b(τ).

7



Then, the asymptotic distribution of η̃τ (x) can be obtained using Theorem 1 under m = p + 1

and λn = µnK
2p
n . Thus, we obtain the asymptotic distribution of the penalized truncated spline

quantile estimator.

Remark 7 Under some weakly condition, the local pth polynomial quantile estimator η̃τ (x)

has an asymptotic order

E[{η̃τ (x)− ητ (x)}2] = O(n−2(p+1)/(2p+3))

(see Fan et al. (1994) and Ghouch and Genton (2009)) and, hence, it can be said that the

rate of convergence of the pth B-spline quantile estimator and the local pth polynomial quantile

estimator are the same. We note the bias of these estimators with p = 1. From Fan et al.

(1994), the asymptotic bias of the local linear quantile estimator is

bℓτ (x) = −h
2
nη

(2)
τ (x)

2

∫

R

z2K(z)dz,

where K(z) is the second order kernel function and hn is the bandwidth. If K−1
n is equal to hn,

then the difference between baτ (x) and b
ℓ
τ (x) is only

Kn
∑

j=1

I(κj−1 ≤ x < κj)Br2

(

x− κj−1

K−1
n

)

and

∫

R

z2K(z)dz. (5)

It is easy to show that Br2(x) = x2−x+1/6 < 1/5 for x ∈ [0, 1], while we have
∫

R
z2KG(z)dz = 1

for the Gaussian kernel KG(z) and
∫

R
z2KE(z)dz = 1/5 for the Epanechnikov kernel KE(z).

Therefore the bias of the regression spline estimator is smaller than that of the local linear

estimator in this situation.

4 Numerical study

4.1 Simulation

In this section, we show numerical simulation to confirm the performance as well as the asymp-

totic normality of the penalized spline quantile estimator claimed in Theorem 1. The explanatory

xi is generated from a uniform distribution on the interval [0, 1]. The response Yi is created by

Yi = η(xi) + εi, where η(x) = sin(2πx). The errors εi’s are independently distributed via (i) a

normal distribution with mean 0 and variance (0.1)2, (ii) an exponential distribution with mean

2 and (iii) a Cauchy distribution with location 0 and scale 0.01. In this simulation, to obtain

the penalized spline quantile estimator, we use (p,m) = (3, 2) and (Kn, λn) is given via the

generalized approximate cross-validation (GACV) discussed by Yuan (2006). For comparison,

we construct the unpenalized regression spline quantile estimator with linear spline bases(p = 1)

and the local linear quantile estimator. The penalized spline estimator, regression spline estima-

tor, and local linear estimator are denoted as P-cubic, R-linear and L-linear, respectively. The

number of knots of R-linear and the bandwidth of L-linear are given by GACV.
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Table 1: Results of MISE for n = 100 and n = 1000. All entries for MISE are 103 times their

actual values.

n = 100 Normal Exponential Cauchy

τ P-cubic R-linear L-linear P-cubic R-linear L-linear P-cubic R-linear L-linear

0.01 11.89 20.16 20.81 5.21 11.15 11.78 4704.18 6667.28 4122.68

0.1 3.78 4.55 5.03 6.26 9.85 12.50 206.43 340.47 289.05

0.25 3.23 3.27 3.99 10.72 16.68 13.42 18.46 42.15 86.46

0.5 2.87 3.34 3.60 20.26 31.66 27.92 18.88 35.22 43.33

n = 1000 Normal Exponential Cauchy

τ P-cubic R-linear L-linear P-cubic R-linear L-linear P-cubic R-linear L-linear

0.01 1.23 1.77 1.94 0.22 0.31 0.31 160.52 910.09 1178.74

0.1 0.46 1.45 0.67 1.08 1.30 1.08 19.53 24.99 53.93

0.25 0.44 1.84 0.52 2.16 2.77 1.91 2.08 7.08 2.17

0.5 0.12 0.34 0.27 3.66 5.60 3.19 0.20 4.81 1.38

Let

MSEj =
1

R

R
∑

r=1

{η̂τ,r(zj)− ητ (zj)}2, MISE = 100−1
100
∑

j=1

MSEj ,

where zj = j/J, J = 100 and η̂τ,r(zj) is the estimator for the rth repetition. For τ = 0.01, 0.1, 0.25

and 0.5, we calculate the mean integrated squared error (MISE). We then use sample sizes

n = 100 and 1000 and the number of repetitions R = 1000.

Next, from P-cubic, we calculate

Uτ,r(x) =
η̂τ,r(x)− ητ (x)

Φ̂τ,r(x)
, r = 1, · · · , R,

where

Φ̂τ,r(x) = τ(1− τ)B(x)T (ZT R̂rZ + λnD
T
mDm)−1ZTZ(ZT R̂rZ + λnD

T
mDm)−1B(x),

R̂r = diag[f̂r(η̂τ,r(xi)|xi)] and f̂r(y|x) is the conditional kernel density estimate given X = x.

Then we construct the density estimate of Uτ ≡ {Uτ,1(x), · · · , Uτ,R(x)} at x = 0.5 and compare

with the density of N(0, 1). To obtain f̂r(y|x) and Uτ , the normal kernel and the bandwidth

discussed by Sheather and Jones (1991) are utilized.

Table 1 shows the MISE for τ = 0.01, 0.1, 0.25 and 0.5. For P-cubic with normal error,

the performance of the quantile estimator is good even if τ = 0.01. It is well known that the

Cauchy distribution is a pathological distribution. However, the MISE of P-cubic with the

Cauchy distribution is sufficiently small, indicating that the quantile estimator is robust. For

the boundary τ , on the other hand, the MISE of the estimators is worse than that with interior

τ . For the normal and Cauchy models, the median estimator has better behavior than those

9



with τ = 0.01, 0.1 and 0.25. On the other hand, for the exponential model, the median estimator

has a larger MISE than η̂τ (x) with other values of τ . The reason for this is that the density f(ε)

of exponential distribution is monotonically decreasing and its peak is at ε = 0, which leads to

many responses Yi’s being dropped near η(xi)+F−1
ε (τ) with small τ . We note the performance

of the penalized spline estimator for τ > 0.5. When a normal or Cauchy error is used, it appears

that the MISE of η̂τ (x) and that of η̂1−τ (x) become similar since Yi|xi has a symmetrical density

function at η(xi). For an exponential error, the closer τ is to 0, the smaller the MISE of η̂τ (x)

will become. Overall, P-cubic has better behavior than R-linear and L-linear. However, for the

exponential distribution and n = 1000, the MISE of L-linear is slightly smaller than that of

P-cubic. Additionally, the performance of L-linear is slightly superior to that of R-linear. This

indicates that the variance of L-linear is less than that of R-linear (see Remark 7).

In Figure 2, the density estimate of Uτ for τ = 0.1 and 0.5 and the density of N(0, 1) for

each error are illustrated. In all errors, we can see that the density estimate of U0.5(x) becomes

close to N(0, 1) as n increases. For a normal distribution with n = 1000, the density estimate

U0.5 and N(0, 1) are similar. In both errors, we see that the speed of convergence of U0.5 is faster

than that of U0.1.

Remark 8 We have confirmed the behavior of the penalized splines with p = 1 (P-linear) and

the regression splines with p = 3 (R-cubic) though this is not shown in this paper for reasons of

space. The MISE of P-linear and R-cubic are similar to the P-cubic and R-linear, respectively.

For spline smoothing, it is generally known that the pair of the ‘cubic’ spline and the second

difference penalty are particularly useful in data analysis. Therefore we mainly focused on

(p,m) = (3, 2) in this simulation.

4.2 Application

In this section, we apply the penalized spline quantile estimator to real data. In all examples,

we use (p,m) = (3, 2) and (Kn, λn) is chosen via GACV.

Figure 3 showed the penalized spline quantile estimators (τ = 0.1, · · · , 0.9) for bone mineral

density (BMD) data. This data was presented by Hastie et al. (2009). Takeuchi et al. (2006)

applied the kernel estimator to the same data. Compared with Figure 2 (b) of their paper, the

penalized splines have a somewhat smooth curve.

Next, the confidence interval of ητ (x) is illustrated. The 100α% confidence interval of ητ (x)

based on the asymptotic result of η̂τ (x) is obtained as

[

η̂τ (x)− b̂aτ (x)− b̂λτ (x)− z1−α/2

√

Φ̂τ (x), η̂τ (x)− b̂aτ (x)− b̂λτ (x) + z1−α/2

√

Φ̂τ (x)

]

, (6)

where b̂aτ (x), b̂
λ
τ (x) and Φ̂τ (x) are the estimators of baτ (x), b

λ
τ (x) and Φτ (x), while z1−α/2 is a

(1− α/2)th normal percentile. As the estimator of bλτ (x),

b̂λτ (x) = −λnB(x)T (ZT R̂Z + λnD
T
mDm)−1DT

mDmb̂(τ)
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Figure 2: The density estimate of Uτ (x) for n = 100(dot-dashed) and n = 1000(dashed), and the

density of N(0, 1)(solid). The left panels are for τ = 0.1 and the right panels are for τ = 0.5. The

upper, middle and bottom panels are for normal, exponential and Cauchy errors, respectively.
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is used. We utilize Φ̂τ (x) as given in the previous section. As the pilot estimator of η
(p+1)
τ (x) in

b̂aτ (x), we construct the (p + 1)th derivative of the penalized spline quantile estimator with the

(p+ 2)th B-spline model. Thus, we obtain (6).

In Figure 4, the 95% approximate confidence interval of η0.5(x) for motor cycle impact data

is drawn. This dataset, with {(yi, xi) : i = 1, · · · , 132} was given by Härdle (1990), where yi is

the acceleration (g) and xi is the time (ms). For comparison, the 95% approximate confidence

interval with uncorrected bias of η0.5(x) defined by

[

η̂τ (x)− 1.96

√

Ψ̂τ (x), η̂τ (x) + 1.96

√

Ψ̂τ (x)

]

is shown. The penalized spline estimator of the median has a curve with fitness and smoothness.

In the area near x = 20, we see that there is a strong correction of the bias of η̂0.5(x).

Finally, we compare the median estimator and the mean estimator for Boston housing data,

with {(yi, xi) : i = 1, · · · , 506}, where yi is the median value of owner-occupied homes in USD

1000s (given by MEDV) and xi is the average number of rooms per dwelling (denoted RM). This

dataset is available from Harrison and Rubinfeld (1979). Figure 5 shows the penalized spline

quantile estimator of η0.5(x)(solid) and the penalized spline estimator

ĝ(x) = B(x)T (ZTZ + µnD
T
mDm)−1ZTy

of the conditional mean of Y : g(x) = E[Y |X = x] (dashed), where µn is the smoothing parameter

chosen by generalized cross-validation. At around x = 5 and the right-hand side of x = 8, the

behavior of the median estimator and the mean estimator are different. We see that ĝ(x) is

affected by extreme points, such as (x, y) = (4.97, 50) and (x, y) = (8.78, 21.9). On the other

hand, it appears that the influence of extreme values is limited for the median estimator.

5 Discussion

This paper have discussed the asymptotic theory of the penalized spline quantile estimator. We

showed the asymptotic bias and variance as well as the asymptotic normality of the penalized

spline quantile estimator. The results can be regarded as the quantile regression version of the

Theorem 2 (a) of Claeskens et al. (2009).

As the further study, we may consider the asymptotic property of the penalized splines

with multivariate covariate (x1, · · · , xd). Doskum and Koo (2000) have studied the unpenalized

spline quantile estimator in additive models, but the asymptotic results were not discussed. The

additive model has the true quantile function as ητ (x1, · · · , xd) =
∑d

i=1 ηiτ (xi). The aim is then

to estimate ηiτ (xi) for each i. Similar to the work of Doskum and Koo, we can construct the

penalized spline estimator in additive models. In this field, the asymptotic results should be

determined.

In relation to the serious problem of the nonparametric quantile regression, a phenomenon

called the “quantile crossing” occurs (see Koenker (2005)). He (1997) and Takeuchi et al.

12
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Figure 5: Boston housing data (n = 506) with the mean(dashed) and median(solid) estimators.

(2006) studied the original estimation methods of ητ (x) without quantile crossing. However,

the asymptotics for their estimators have not yet been developed. The asymptotic study of

the penalized splines without quantile crossing would be an interesting topic for further study.

In addition, by using the asymptotic results of the penalized spline estimator η̂τ (x), it may be

possible to construct the penalized spline quantile estimator without quantile crossing although

this is beyond the scope of this paper.

Appendix

For a random variable Un, E[Un|Xn] and V [Un|Xn] denote the conditional expectation and

variance of Un given (X1, · · · ,Xn) = (x1, · · · ,xn), respectively. For the matrix A = (aij)ij ,

||A||∞ = maxij{|aij |}. For random sequence {an} and {bn}, if an/bn = OP (1), then it is written

as an
as∼ bn.

Lemma 1. Let A = (aij)ij be (Kn + p) matrix and let H(τ) = G(τ) + (λn/n)D
T
mDm. Assume

that Kn → ∞ as n→ ∞, ||A||∞ = OP (K
α
n ). Then, under the Assumption, ||AG||∞ = O(Kα−1

n )

and ||AH(τ)−1||∞ = O(K1+α
n ).

Lemma 1 can be proven similar to Lemma 1 of Claeskens et al. (2009). Then, Assumption

5 which guarantees Kq < 1 that given in their paper.

Lemma 2. Let ψτ (u) = τ − I(u < 0), ui = yi −B(xi)
Tb∗(τ). Under the same assumption as

14



Theorem 1,

−
√

Kn

n

n
∑

i=1

B(xi)
T δψτ (ui)

as∼
√

KnW
Tδ,

where W ∼ N(0, τ(1− τ)G).

Proof of Lemma 2. Let

Zn = −
√

Kn

n

n
∑

i=1

B(xi)
Tδψτ (ui).

We show the asymptotic distribution of Zn by Lyapunov’s theorem. First from the fact that

P (Y < ητ (xi)|Xi = xi) = τ , we have

E[ψτ (Ui)|Xn] = τ − E[I(Yi < B(xi)
Tb∗(τ))|Xn]

= τ − P (Y < B(xi)
Tb∗(τ)|Xi = xi)

= τ − P (Y < ητ (xi) + ba(xi, τ)(1 + o(1))|Xi = xi)

= −ba(xi, τ)f(ητ (xi)|xi)(1 + o(1))

= o(1).

Therefore we obtain

E





∣

∣

∣

∣

∣

√

Kn

n
B(xi)

Tδ{ψτ (Ui)− E[ψτ (Ui)|Xn]}
∣

∣

∣

∣

∣

2+γ
∣

∣

∣

∣

∣

∣

Xn





=

(

Kn

n

)(2+γ)/2

|B(xi)
Tδ|2+γE[|ψτ (Ui)|2+γ + o(1)|Xn]

≤ O

(

(

Kn

n

)(2+γ)/2
)

.

The straightforward calculation yields

V [Zn|Xn] =
Kn

n

n
∑

i=1

{B(xi)
Tδ}2V [ψτ (Yi −B(xi)

T b∗(τ))|Xn]

= τ(1− τ)δT

(

Kn

n

n
∑

i=1

B(xi)B(xi)
T

)

δ

= Knτ(1− τ)δTGδ(1 + oP (1))

= O(Kn)

So it follows that

1

V [Zn|Xn](2+γ)/2

n
∑

i=1

E





∣

∣

∣

∣

∣

√

Kn

n
B(xi)

T δ{ψτ (Ui)− E[ψτ (Ui)|Xn]}
∣

∣

∣

∣

∣

2+γ
∣

∣

∣

∣

∣

∣

Xn





≤ O(K−(2+γ)/2
n )O

(

n

(

Kn

n

)(2+γ)/2
)

= o(1)
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since γ ≥ 0. This leads to

Zn − E[Zn|Xn]

V [Zn|Xn]

D−→ N(0, 1)

from Lyapnov’s theorem. The expectation of Zn can be calculated as

E[Zn|Xn] = −
√

Kn

n

n
∑

i=1

B(xi)
TδE[ψτ (Ui)|Xn]

=

√

Kn

n

n
∑

i=1

B(xi)
Tδba(xi, τ)f(ητ (xi)|xi)(1 + oP (1))

=
√

nKn

∫ 1

0
B(u)T δba(u, τ)f(ητ (u)|u)du(1 + oP (1)).

From the proof of Lemma 6.10 of Argwall and Studen (1989), for j = −p+ 1, · · · ,Kn, we have

∫ 1

0
Bj(u)ba(u, τ)f(ητ (u)|u)du(1 + o(1)) = o(K−(p+2)

n ),

by which
√
nKno(K

−(p+2)
n ) = o(1). Consequently, we have E[Zn|Xn]/V [Zn|Xn] = oP (1) and

Lemma 2 holds.

Lemma 3. Let win =
√

Kn/nB(xi)
T δ(i = 1, · · · , n) for δ ∈ R

Kn+p. Then, under the assump-

tions,

n
∑

i=1

∫ win

0
{I(ui ≤ s)− I(ui ≤ 0)}ds as∼ Kn

2
δTG(τ)δ.

Proof of Lemma 3. Let

Rn =
n
∑

i=1

∫ win

0
{I(ui ≤ s)− I(ui ≤ 0)}ds.

Since

E

[
∫ win

0
{I(ui ≤ s)− I(ui ≤ 0)}ds

∣

∣

∣

∣

Xn

]

=

∫ win

0
E[{I(Ui ≤ s)− I(Ui ≤ 0)}|Xn]ds

=

∫ win

0

{

P
(

Yi < B(xi)
T b∗(τ) + s|Xi = xi

)

− P (Yi < B(xi)
T b∗(τ)|Xi = xi)

}

ds

=

√

Kn

n

∫ B(xi)
Tδ

0

{

P

(

Yi < B(xi)
Tb∗(τ) + t

Kn

n

∣

∣

∣

∣

Xi = xi

)

− P (Yi < B(xi)
T b∗(τ)|Xi = xi)

}

dt

=
Kn

n

∫ B(xi)Tδ

0
f
(

B(xi)
T b∗(τ)|xi

)

tdt

=
Kn

2n
f
(

B(xi)
T b∗(τ)|xi

)

{B(xi)
T δ}2.
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Therefore we obtain

E[Rn|Xn] =
Kn

2n

n
∑

i=1

f
(

B(xi)
Tb∗(τ)|xi

)

δTB(xi)B(xi)
Tδ

=
Kn

2
δT

(

1

n

n
∑

i=1

f (ητ (xi) + o(1)|xi)B(xi)B(xi)
T

)

δ

=
Kn

2
δTG(τ)δ(1 + oP (1)).

Finally, we show V [Rn|Xn] = oP (1). For i = 1, · · · , n, we have

∫ win

0
{I(ui ≤ s)− I(ui ≤ 0)}ds ≤

√

Kn

n
B(xi)

T δ.

Therefore the variance of Rn can be evaluated as

V [Rn|Xn] ≤
n
∑

i=1

E

[

(
∫ win

0
{I(ui ≤ s)− I(ui ≤ 0)}ds

)2
∣

∣

∣

∣

∣

Xn

]

≤
√

Kn

n
max

i=1,··· ,n
{B(xi)

T δ}E[Rn|Xn].

Since E[Rn|Xn] = O(Kn), we obtain
√

V [Rn|Xn]/E[Rn|Xn] = oP (1) and, hence, Lemma 3

holds.

Proof of Proposition 1. Let

Un(δ) =

n
∑

i=1

[

ρτ

(

ui −
√

Kn

n
B(xi)

T δ

)

− ρτ (ui)

]

+
λn
2

(

b∗(τ) +

√

Kn

n
δ

)T

DT
mDm

(

b∗(τ) +

√

Kn

n
δ

)

− λn
2
b∗(τ)TDT

mDmb∗(τ),

where ui = yi −B(xi)
Tb∗(τ). Then the minimizer δ̂n(τ) of Un(δ) can be obtained as

δ̂n(τ) =

√

n

Kn
(b̂(τ)− b∗(τ)).

First we show the convergence point U0(δ) of Un(δ) for any δ ∈ R
Kn+p. For the following

discussion, we introduce the Knight’s idntity(see, Knight (1998)):

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0
{I(u ≤ s)− I(u ≤ 0)}ds, (7)

where ψτ (u) = τ − I(u < 0). By using (7), we can write Un(δ) as

Un(δ) = U1n(δ) + U2n(δ) + U3n(δ) + U4n(δ),
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where

U1n(δ) = −
√

Kn

n

n
∑

i=1

B(xi)
T δψτ (ui),

U2n(δ) =

n
∑

i=1

∫ win

0
{I(ui ≤ s)− I(ui ≤ 0)}ds,

U3n(δ) =
λnKn

2n
δTDT

mDmδ,

U4n(δ) = λn

√

Kn

n
b∗(τ)TDT

mDmδ,

where win =
√

Kn/nB(xi)
Tδ. From Lemma 1, U1n(δ) satisfies

U1n(δ)
as∼ −

√

KnW
Tδ,

where W ∼ N(0, τ(1 − τ)G). Furthermore Lemma 2 and U3n(δ) yield

U2n(δ) + U3n(δ)
as∼ Kn

2
δT
(

G(τ) +
λn
n
DT

mDm

)

δ.

Therefore, we obtain

Un(δ)
as∼ U0(δ) = −

√

KnW
Tδ + λn

√

Kn

n
b∗(τ)TDT

mDmδ +
Kn

2
δT
(

G(τ) +
λn
n
DT

mDm

)

δ.

Because U0(δ) is convex with respect to δ and has unique minimizer, the minimizer δ̂n(τ) of

Un(δ) converge to δ0(τ) = argminδ{U0(δ)}. This fact is detailed in Pollard(1991), Knight

(1998) and Kato (2009). Hence we have

√

n

Kn
{b̂(τ)− b∗(τ)} as∼ δ0(τ) =

(

G(τ) +
λn
n
DT

mDm

)−1( 1√
Kn

W − λn√
nKn

DT
mDmb∗(τ)

)

.

Since η̂τ (x)− η∗τ (x) = B(x)T (b̂(τ)− b∗(τ)), we obtain for x ∈ (0, 1), as n→ ∞,
√

n

Kn
{η̂τ (x)− η∗τ (x)− bλτ (x)}

D−→ N(0,Φτ (x))

by the definition of W . We can confirm with Lemma 1 that Φτ (x) = O(1). Finally we show the

asymptotic order of bλτ (x). Let B[p](x) = (B
[p]
−p+1(x) · · · B[p]

Kn
(x))T . By the properties of the

derivative of the B-spline model, we have s
(m)
τ (x) = ∂msτ (x)/∂x

m = Km
n B[p−m](x)TDmb(τ).

Therefore we obtain B[p−m](x)T {Km
n Dmb∗(τ)} = η

(m)
τ (x)(1 + o(1)) for m ≤ p. Since the

asymptotic order of B[p−m](x)T {Km
n Dmb∗(τ)} and that of ||Km

n Dmb∗(τ)||∞ are the same as

O(1), ||Dmb∗(τ)||∞ = O(K−m
n ) is satisfied for m ≤ p. In addition, similar to the proof of

Theorem 1 of Kauermann et al. (2009), ||Dp+1b
∗(τ)||∞ = O(K

−(p+1)
n ) is fulfilled. Together with

Lemma 1, we obtain

bλτ (x) = −λn
n
B(x)T

(

G(τ) +
λn
n
DT

mDm

)−1

DT
mDmb∗(τ) = O(λnn

−1K1−m
n ) = O(n−(p+1)/(2p+3)).

Thus Proposition 2 has been proven.
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Proof of Theorem 1. Theorem 1 can be proven directly from Propositions 1. Under the condition

Kn = O(n1/(2p+3)), we have

√

n

Kn
{η̂τ (x)− η∗τ (x)− bλτ (x)} =

√

n

Kn
{η̂τ (x)− η∗τ (x)− baτ (x) + o(K−(p+1)

n )− bλτ (x)}

and
√

n/Knb
a
τ (x) = O(

√

n/KnK
−(p+1)
n ) = O(1). This completes the proof.
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