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Abstract. In Adaptive Markov Chain Monte Carlo (AMCMC) simulation, classical estimators

of asymptotic variances are inconsistent in general. In this work we establish that despite this

inconsistency, confidence interval procedures based on these estimators remain consistent. We

study two classes of confidence intervals, one based on the standard Gaussian limit theory, and the

class of so-called fixed-b confidence intervals. We compare the two procedures by deriving upper

bounds on their convergence rates. We establish that the rate of convergence of fixed-b variance

estimators is at least log(n)/
√
n, while the convergence rate of the classical procedure is typically

of order n−1/3. We use simulation examples to illustrate the results.

1. Introduction

Throughout the paper we consider the following setting that covers standard MCMC and many

AMCMC algorithms. π denotes a probability measure of interest on some measure space (X,B).

{Pθ, θ ∈ Θ} is a family of Markov transition kernels on (X,B), for some measurable space (Θ,A).

We assume that each Pθ admits π as unique invariant distribution, and that the map (x, θ) 7→
Pθ(x, ·) is (B×A)-measurable. On some probability space (Ω,F ,P) with a nondecreasing filtration

{Fn, n ≥ 0}, we consider a Fn-adapted random process {(Xn, θn), n ≥ 0} with values in X × Θ

such that for any nonnegative function f : X→ R, and n ≥ 1,

E (f(Xn)|Fn−1) =

∫
Pθn−1(Xn−1, dz)f(z), P− a.s. (1)

We write E for the expectation operator wrt to P. We call the marginal sequence {Xn, n ≥ 0} an

adaptive Markov chain. Notice that when there is no adaptation (that is θn ≡ θ), {Xn, n ≥ 0}
reduces to a standard Markov chain. AMCMC algorithms have recently gained popularity in Monte

Carlo simulation due to their ability for producing efficient samplers with limited tuning from the

user. For an introduction and literature review on AMCMC, see e.g. Andrieu and Thoms (2008).

Let h : X → R be some function of interest, and suppose that we wish to estimate π(h)
def
=∫

X h(x)π(dx) (for instance, h(x) = x if we wish to estimate the mean of π). Under some fairly

general conditions, it is known that π̂n(h)
def
= n−1

∑n
k=1 h(Xk) converges to π(h) and satisfies a
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central limit theorem (Andrieu and Moulines (2006); Atchade and Fort (2010, 2012); Saksman and

Vihola (2010)). It is also known that in most practical cases, as n→∞, the bias of π̂n(h) satisfies

E (π̂n(h))− π(h) = o(n−1/2) and the variance is such that nVar (π̂n(h)) converges to a limit called

the asymptotic variance of h. In these cases, assessing the Monte Carlo error of π̂n(h) boils down to

estimating the asymptotic variance. For a Markov chain with transition kernel P , the asymptotic

variance can be written as

σ2
P (h)

def
=

+∞∑
`=−∞

γ`(P, h), (2)

where for ` ≥ 0, γ`(P, h)
def
=
∫

(h(x) − π(h))P `h(x)π(dx), and γ−`(P, h) = γ`(P, h). A well estab-

lished approach for estimating σ2
P (h) is by lag-window obtained by taking a weighted average of

the sample auto-covariances. More precisely, for 0 ≤ ` ≤ n− 1, set

γn,`
def
= n−1

n−∑̀
j=1

(h(Xj)− π̂n(h)) (h(Xj+`)− π̂n(h)) , and γn,−` = γn,`.

Let {cn, ;n ≥ 1} be an increasing sequence of integers such that cn ↑ ∞, and w : R → R, an even

weight function (w(−x) = w(x)). The lag-window estimator of σ2
P (h) is

Γ2
n(h) =

n−1∑
k=−n+1

w

(
k

cn

)
γn,k. (3)

The precision of the Monte Carlo estimate is then gauged by computing the Monte Carlo error√
Γ2
n(h)/n or equivalently the effective sample size nγn,0/Γ

2
n(h). Alternatively a confidence interval

for π(h) can be formed using π̂n(h) ± zα
√

Γ2
n(h)/n, where zα is the appropriate quantile of the

standard normal distribution. The width of this confidence interval can be used as a stopping rule

for the simulation (Jones et al. (2006)). All this is common practice in MCMC backed by the fact

that for cn = o(n), and under some regularity conditions (e.g. geometric ergodicity and existence

of (2+ ε)-moment for h under π), Γ2
n(h) converges in probability to σ2

P (h) (Damerdji (1995); Flegal

and Jones (2010); Atchade (2011)).

Asymptotic variance estimation for AMCMC may behave differently. With {(Xn, θn), n ≥ 0}
as defined above, if θn converges to a (possibly random) limit θ?, say, the asymptotic variance for

h is typically

lim
n→∞

nVar (π̂n(h)) = E
[
σ2
θ?(h)

]
, (4)

where σ2
θ(h)

def
= σ2

Pθ
(h). The same lag-window estimate Γ2

n(h) given in (3) can still be computed

from the adaptive chain {Xn, n ≥ 0}. But as it turns out, if θ? is random, Γ2
n(h) is inconsistent in

general in estimating the right-hand-side of (4) (Atchade (2011)). More precisely, Γ2
n(h) converges

to the random limit σ2
θ?

(h), instead of the asymptotic variance E
[
σ2
θ?

(h)
]
. The following example

illustrates this issue.

Example 1. The example is adapted from the PhD thesis of David Hastie (2005, University of

Bristol). Consider the toy density π(x) = 0.51D(x), where D = [−β − 1,−β] ∪ [β, β + 1], where
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β = 3/4. Consider a Random Walk Metropolis (RWM) with proposal kernel Qθ(x, ·) taken as the

density of the uniform U(x − θ, x + θ), assuming θ > 2β. It is well known that if θ is too large

or too small the resulting RWM kernel will mix poorly. An adaptive version of this algorithm will

adaptively tune θ so as to achieve an acceptance probability in stationarity of about 23%. This

is a common strategy in AMCMC. It turns out that in this case the 23% acceptance probability

in stationarity can be achieved at three (3) distinct solutions {ϑ1, ϑ2, ϑ3}, say. For the resulting

AMCMC sampler, θn can convergence to any one of these three solutions. For this example, Γ2
n(h)

converges to the random limit σ2
θ?

(h) that takes values in {σ2
ϑ1

(h), σ2
ϑ2

(h), σ2
ϑ3

(h)}, whereas the

asymptotic variance is p1σ
2
ϑ1

(h) + p2σ
2
ϑ2

(h) + p3σ
2
ϑ3

(h), where pi = P(θ? = ϑi) (which depends in

general on the initialization of the algorithm). Figure 1 (c) and (d) show two sample paths of Γ2
n(h)

with very different limits. However the adaptive chain {Xn, n ≥ 0} remains ergodic in the sense

that π̂n(h) converges to π(h).
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Figure 1: Two sample paths of θn and Γ2
n(h) from the toy example. Sample path 1 is (a) and (c).

In both cases, h(x) = x.

Despite its lack of consistency in estimating the asymptotic variance, we establish in this paper

that the lag-window estimators Γ2
n(h) can be used to derive asymptotically valid confidence interval

for π(h) in AMCMC simulation. The confidence interval is obtained by deriving the limiting

distribution of the random variable

Tn
def
=

√
n (π̂n(h)− π(h))√

Γ2
n(h)

=

1√
n

∑n
j=1 h̄(Xj)√
Γ2
n(h)

, (5)

where h̄ = h − π(h). The key insight of the analysis is that nΓ2
n(h) behaves precisely like the

quadratic variation of the approximating martingale of
∑n

k=1 h̄(Xk). As a result,
√
nΓ2

n(h) is

roughly the correct scaling statistic in the central limit theorem for
∑n

k=1 h̄(Xk), even in a general

AMCMC setting.
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The limiting behavior of Tn depends on the choice of cn in computing Γ2
n(h). When cn = o(n),

we show (Theorem 2.1) that Tn has a standard Gaussian limit. When cn = n, we show (Theorem

2.2) that Tn converges in distribution to a standard Gaussian random variable scaled by an infinite

sum of chi-squared. The case cn = n corresponds to the so-called fixed-b asymptotics well-known in

Econometrics (Kiefer and Vogelsang (2005)). Theorems 2.1-2.2 are therefore extension to adaptive

Markov chains of results that have been established for other type of stochastic models. See for

instance Kiefer and Vogelsang (2005); Sun et al. (2008) for certain classes of stationary processes,

and see Atchade and Cattaneo (2011) for Markov chains. These two results allow us to derive

asymptotically valid confidence intervals for π(h) in MCMC and AMCMC simulation. We compare

these confidence interval procedures by simulation. We notice that the approach cn = o(n) is very

sensitive to the actual choice of cn. In contrast, the case cn = n requires no tuning (since cn = n),

produces slightly wider confidence intervals but with very good coverage probabilities.

The simulation results suggest that the lag-window estimator converges faster when cn = n, as

opposed cn = o(n). Similar conclusion has been reported elsewhere in the literature, but there are

very few rigorous results on the topic. Jansson (2004) studied stationary Gaussian moving average

models and established that when cn = n, the rate of convergence of Tn is n−1 log(n). Sun et al.

(2008) obtained the rate n−1, under the main assumption that the underlying process is Gaussian

and stationary. It is unlikely that these rates remain true without the Gaussian assumptions. We

study in this paper the rate of convergence of Γ2
n(h) when {Xn, n ≥ 0} is a Markov chain. For

cn = o(n), we obtain that the convergence rate of Γ2
n(h) toward σ2(h) is of order n−1/3. But when

cn = n, we show that the rate of weak convergence of Γ2
n(h) is at least n−1/2 log(n).

We organize the paper as follows. Section 2 contains the main results. We illustrate the results

with two simulation examples presented in Section 3. Most of the proofs are postponed to Section

5.

1.1. Notation. Throughout the paper, we use the notations: f̄
def
= f −π(f), π(f)

def
=
∫
f(x)π(dx),

Pf(x)
def
=
∫
f(y)P (x, dy), and P jf(x)

def
= P{P j−1f}(x), with P 0f(x) = f(x). For V : X→ [0,∞),

we define LV as the space of all measurable real-valued functions f : X → R s.t. ‖f‖V
def
=

supx∈X |f(x)|/V (x) <∞.

For sequences {an, bn} of real nonnegative numbers, the notation an . bn means that an ≤ cbn

for all n, and for some constant c that does not depend on n. For a random sequence {Xn}, we

write Xn = Op(an) if the sequence |Xn|/an is bounded in probability. We say that Xn = op(an)

is Xn/an converges in probability to zero as n → ∞. The notation Xn
w→ X means that Xn

converges weakly to X. If X,Y are random variables, X
dist.
= Y means that X and Y have the

same distribution. For a random variable X, and q ≥ 1, we use the notation ‖X‖q
def
= E1/q (|X|q).

Throughout the paper cn denotes the cut-off point of the lag-window estimator and we assume

without further mention that cn ↑ ∞, as n → ∞. Also we shall use %
(1)
n , %

(2)
n , etc... as a generic

notation for negligible random terms.
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2. Consistency: statement of the results

We rely on martingale approximation and martingale theory. Throughout this section h : X→ R
is a fixed measurable function. For each θ ∈ Θ, we assume well-defined the functions gθ and Pθgθ,

where

gθ(x)
def
=
∑
j≥0

P jθ h̄(x), and Pθgθ(x)
def
=

∫
Pθ(x, dz)gθ(z), x ∈ X.

For each θ ∈ Θ, the function gθ satisfies the so-called Poisson’s equation

gθ(x)− Pθgθ(x) = h̄(x). (6)

For integer n ≥ 1, set Dn
def
= gθn−1(Xn)−Pθn−1gθn−1(Xn−1). For p > 1, and integers n ≥ k ≥ 1, let

an
def
= E

1
2p
(
|Pθngθn(Xn)|2p

)
, bn

def
= E

1
2p
(
|Pθngθn(Xn)− Pθn−1gθn−1(Xn)|2p

)
,

κn
def
= E

1
2p
(
|Dn|2p

)
, δ

(1)
n,k

def
= ak−1 +

k∑
j=1∨(k−cn+1)

bj +
1

cn

k∑
j=1∨(k−cn+1)

aj−1,

and δ
(2)
n,k

def
=

√√√√ k∑
j=1∨(k−cn+1)

κ2
j .

In keeping the notations simple, we omit the dependence on p in these terms. We shall convene

that if a > b,
∑b

a · = 0. The main regularity assumption is the following.

A1 For each θ ∈ Θ, gθ and Pθgθ are well defined, and there exists p > 1 such that, as n→∞,

an +
1

cn

n∑
k=1

ak +

n∑
k=1

bk +

√√√√ n∑
k=1

κ2
k = O

(√
n
)
. (7)

A2 There exists a random variable σ2
?, positive almost surely such that

n∑
k=1

κ2p
k = o(np), and n−1

n∑
k=1

D2
k
a.s.→ σ2

?,

as n→∞, where p is the same as in A1.

A3 The function w : R→ [0, 1] has support [−1, 1], is even and satisfies: w(0) = 1, w(1) = 0.

Remark 1. We give below in Section 3.1 some drift conditions under which A1 holds. A2 depends

in general on the behavior of θn which depends on the specific AMCMC considered. We give an

example in Section 3. Assumption A3 holds for most kernels used in practice, such as the class of

Bartlett kernels w(u) = (1− |u|q)1(−1,1)(u), for q ≥ 1.
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When cn = o(n), Tn has a Gaussian limit. To describe this case, we introduce the sequence

rn =

(
1

np∧2

n∑
k=1

{
κk

(
1 + δ

(1)
n,k

)}p∧2
) 1

p∧2

+
1

ncn

n∑
k=1

ak

(
ak + δ

(1)
n,k + δ

(2)
n,k

)
+

1

n

n∑
k=1

bk

(
ak + δ

(1)
n,k + δ

(2)
n,k

)
+ n−1an

(
an−1 + δ(1)

n,n + δ(2)
n,n

)
+ n−1a2

0. (8)

Theorem 2.1. Assume A1-A3 and limn n
−1cn = 0. If limn rn = 0, and

limn n
−p∧2

∑n
k=1

{
κkδ

(2)
n,k

}p∧2
= 0, then as n → ∞, Γ2

n(h) converges in probability to σ2
?, and

Tn
w→ N(0, 1).

Proof. See Section 5.2. �

When cn = n, the limit of Tn is a Gaussian distribution scaled by a sum of chi-squared random

variables. Define the kernel ρ? : [0, 1]× [0, 1]→ R by

ρ?(s, t) = w(t− s)− g(t)− g(s) +

∫ 1

0
g(u)du,

where g(t) =
∫ 1

0 w(t− u)du. Notice that ρ? is symmetric: ρ?(s, t) = ρ?(t, s). The kernel ρ? induces

a compact operator φ 7→ (s 7→
∫ 1

0 ρ?(s, t)φ(t)dt) on L2[0, 1] that we also denote ρ?. We will assume

that the kernel ρ? is positive definite: for all n ≥ 1, all a1, . . . , an ∈ R, and t1, . . . , tn ∈ [0, 1],∑n
i=1

∑n
j=1 aiajρ?(ti, tj) ≥ 0. The positive definiteness assumption of the kernel ρ? would imply

that the operator ρ? has nonnegative eigenvalues. In which case we will denote {αj , j ∈ I} the

(countable) set of positive eigenvalues of ρ? (each repeated according to its multiplicity), which we

assume non-empty to avoid trivialities.

Theorem 2.2. Assume A1-A3 and suppose that ρ? is positive definite. If cn = n, and limn rn = 0

then

Tn
w→ Z0√∑

i∈I αiZ
2
i

, (9)

where {Z0, Zi, i ∈ I} are i.i.d. N(0, 1), and {αi, i ∈ I} is the set of positive eigenvalues of ρ?.

Proof. See Section 5.3. �

It is not very convenient to work with the random variable Z0/
√∑

i∈I αiZ
2
i , because the eigen-

values of ρ? are difficult to find in general. The next result gives an alternative representation of the

distribution of Z0/
√∑

i∈I αiZ
2
i that is more amenable to simulation. The proof is straightforward.

Proposition 2.3. Let {B(t), 0 ≤ t ≤ 1} denotes the standard Brownian motion. Set

χ2 def
= 1−

∫ 1

0
g(t)dt+ 2

∫ 1

0

[∫ t

0
ρ?(s, t)dB(s)

]
dB(t).
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Then
B(1)√
χ2

dist.
=

Z0√∑
i∈I αiZ

2
i

, (10)

where {Z0, Zi, i ∈ I} are i.i.d. N(0, 1), and {αi, i ∈ I} is the set of positive eigenvalues of ρ?.

Remark 2. In fact, χ2 =
∑

i∈I αiZ
2
i has many equivalent representations. It can be written as a

double Ito-Wiener integral or a double Wiener integral. More precisely

χ2 = 1−
∫ 1

0
g(t)dt+

∫ 1

0

∫ 1

0
ρ?(s, t)dB(t)dB(s)︸ ︷︷ ︸

double Ito-Wiener integral

=

∫ 1

0

∫ 1

0
ρ?(s, t)dB(t)dB(s)︸ ︷︷ ︸

double Wiener integral

.

The difference being that the double Ito-Wiener integral excludes the diagonal
∫ 1

0 ρ?(t, t)dt = 1 −∫ 1
0 g(t)dt. We prefer the representation given in Proposition 2.3 as a standard (iterated) stochastic

integral. In fact, it can be easily shown that χ2 also has a representation as a double Wiener

integral of w wrt to the Brownian bridge {B̄(t), 0 ≤ t ≤ 1}:

χ2 =

∫ 1

0

∫ 1

0
w(s− t)dB̄(t)dB̄(t)︸ ︷︷ ︸

double Wiener integral

.

Remark 3. Theorem 2.2 requires the positivity of ρ?, whereas Theorem 2.1 does not require any

positivity assumption. When w turns out to be positive (in the sense that the kernel k(s, t) =

w(t − s) is positive definite), then ρ? is also positive. This is easy to show and we omit details.

This result applies for example to the Bartlett kernel given by w(u) = (1 − |u|)1(−1,1)(u). This

function is the characteristic function of the distribution with density (1− cos(x))/πx2, x ∈ R, and

by Bochner’s theorem (s, t) 7→ w(t− s) is positive definite on [0, 1].

Theorems 2.1-2.2 yield two asymptotically valid confidence procedures for π(h). From Theorem

2.1, we can form the classical confidence interval

π̂n(h)± z1−α/2

√
Γ2
n(h)

n
, (11)

where Γ2
n(h) is computed using cn = o(n), and z1−α/2 is the (1 − α/2)-quantile of the standard

normal distribution. We can also use Theorem 2.2 to propose the fixed-b confidence interval

π̂n(h)± t1−α/2

√
Γ2
n(h)

n
, (12)

where Γ2
n(h) is computed using cn = n, and t1−α/2 is the (1 − α/2)-quantile of the distribution of

Z0/
√∑

i∈I αiZ
2
i . The quantiles tα are intractable in general. But using Proposition 2.3, we have

Z0/
√∑

i∈I αiZ
2
i
dist.
= B(1)/

√
χ2, so that these quantiles can be obtained by simulating the Brownian

motion and approximating the iterated Ito integral
∫ 1

0

∫ t
0 ρ?(s, t)dB(s)dB(t). For illustration, we

consider the following two kernels
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(1) The Bartlett kernel given by w(u) = (1− |u|)1(0,1)(u). As pointed out in Remark (3), ρ? in

this case is known to be positive definite and is given by

ρ?(s, t) =
2

3
− s(1− s)− t(1− t)− |s− t|.

(2) We also consider the kernel w(u) = (1− u2)1(0,1)(u), for which

ρ?(s, t) = 2(s− 0.5)(t− 0.5).

Thus obviously, ρ? is positive definite. In fact, in this case χ2 = Z2/6, where Z ∼ N(0, 1).

In Figure 2, we plot the cdfs of Z0/
√∑

i∈I αiZ
2
i for these two kernels in comparison with the

standard Gaussian cdf. We also give some quantiles in Table 1.

15 10 5 0 5 10 15
0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1

 

 

Gaussian
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Figure 2: CDF of Z0/
√∑

i∈I αiZ
2
i . The standard normal CDF is given as a reference.

α = 10% α = 5%

w(u) = 1− |u| 3.796 4.784

w(u) = 1− u2 15.590 31.520

Table 1. The table reports t such that P(T > t) = α/2, where T = Z0/
√∑

i∈I αiZ
2
i .

3. Examples

3.1. Application to adaptive Markov chains with geometric drift conditions. We will now

illustrate how the assumptions stated above can be checked using drift conditions. We consider the

following assumptions.
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B1 For each θ ∈ Θ, Pθ has invariant distribution π. Uniformly for θ ∈ Θ, there exist a

measurable function V : X→ [1,∞), C ∈ B, ν a probability measure on (X,B), b, ε > 0 and

λ ∈ (0, 1) such that ν(C) > 0, Pθ(x, ·) ≥ εν(·)1C(x) and

PθV ≤ λV + b1C . (13)

B2 There exists η ∈ [0, 1/2), positive γn ↓ 0, with γn = O (n−α), α ≥ 1/2, and a finite constant

c such that for all n ≥ 1, all β ∈ (0, 1− η), and all f ∈ LV β , with |f |V β ≤ 1,∣∣Pθnf(Xn)− Pθn−1f(Xn)
∣∣ ≤ cγnV β+η(Xn), P− a.s. (14)

Remark 4. B1 is the well known geometric drift condition. In general these drift conditions are

difficult to check on specific examples, but there are known to hold for a number of target proba-

bility distributions and algorithms. On the other hand, B2 is the so-called diminishing adaptation

condition. This condition is in general easier to check and is known to hold for the Random Walk

Metropolis (RMW) (Andrieu and Moulines (2006)) and the Metropolis adjusted Langevin algo-

rithm (Atchade and Fort (2012)). Finally, we point out that in the case of a standard Markov

chain, B2 trivially holds.

In the present context Theorem 2.1-2.2 can be transposed as follows.

Theorem 3.1. Assume A3, B1-B2, and take h ∈ LV δ , for δ ∈ [0, 1/2 − η). Suppose that there

exists a random variable θ? with σ2
Pθ?

(h) positive almost surely, such that θn
a.s.→ θ?, as n→∞. Set

σ2
?

def
= σ2

Pθ?
(h), and assume that

√
n . cn.

(1) If
√
cn = o

(
n

1− 1
p∧2
)

, as n → ∞, then Γ2
n(h) converges in probability to σ2

?, and Tn
w→

N(0, 1).

(2) If cn = n, ρ? is positive definite, and α > 1
p∧2 , then (9) holds.

Remark 5. The assumption that θn converges almost surely to a limit depends on the specific

adaptive algorithm under consideration. Many adaptive algorithms rely on stochastic approxima-

tion. In this case, conditions under which θn converges can be found for instance in Andrieu and

Moulines (2006); Atchade and Fort (2012) and the references therein. In practice, a simple plot of

the sample path of θn (or some function of it) can give a good indication whether the assumption

hold.

Proof of Theorem 3.1. The real number p in A1 can be taken as p = 1
2(δ+η) , and we notice that

p > 1, and 2p(δ + η) = 1. It is also well known that under B1 gθ and Pθgθ are well-defined,

supθ∈Θ |gθ|V β + |Pθgθ|V β <∞, and

sup
n≥0

E (V (Xn)) <∞. (15)

These results can be found for instance in Andrieu and Moulines (2006). This implies that

κn . 1, and an . 1.
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(14) and (15) imply that bn . γn. We deduce that

an + c−1
n

n∑
k=1

ak +
n∑
k=1

bk +

√√√√ n∑
k=1

κ2
k = O

(
nc−1

n +
n∑
k=1

γk +
√
n

)
= O

(
nc−1

n +
√
n
)

= O(
√
n),

by assumption. Thus A1 holds. Recall that Dn = gθn−1(Xn) − Pθn−1gθn−1(Xn−1), and σ2
θ(h) =∫

π(dx)
∫
Pθ(x, dz) (gθ(z)− Pθgθ(x))2. Therefore, by the law of large numbers, we have the almost

sure convergence to zero of the sequence n−1
∑n

k=1

(
D2
k − σ2

θk−1
(h)
)

(see e.g. Atchade (2011) Propo-

sition 3.3 for a proof). It follows that n−1
∑n

k=1D
2
k converges almost surely to σ2

?(h). Thus clearly

A2 holds.

We also check that δ
(2)
n,k .

√
cn, and δ

(1)
n,k . 1 +

∑cn
k=1 bj .

∑cn
k=1 j

−α . 1 + c1−α
n . It follows that

rn =
1 + c1−α

n

nα
+

1
√
cn

+
1 + c1−α

n

n
1− 1

p∧2
. (16)

(1) The conditions cn = o
(
n

2(1− 1
p∧2 )

)
, and α ≥ 1/2 imply that limn n

−p∧2
∑n

k=1

{
κkδ

(2)
n,k

}p∧2
=

0 and limn rn = 0. Therefore, the conclusions of Theorem 2.1 hold.

(2) If cn = n, the condition α > 1
p∧2 implies that limn rn = 0, and the conclusions of Theorem

2.2 hold.

�

3.2. A logistic regression example. We assume that

yi ∼ B
(
p(x′iβ)

)
, i = 1, . . . , n,

where yi ∈ {0, 1}, xi ∈ Rd is a vector of covariate, and β ∈ Rd is the vector of parameter. B(p)

denotes the Bernoulli distribution with parameter p ∈ (0, 1), and p(x) = ex

1+ex is the cdf of the

logistic distribution. Assume a Gaussian prior N(0, s2Id) for β, with s = 20. The posterior

distribution of β then becomes

π (β|X) ∝ e`(β|X)e−
1

2s2
|β|2 .

To illustrate the ideas above, we will consider two commonly used algorithms to sample from π:

a plain Random Walk Metropolis (RWM) with Gaussian proposal and the adaptive version of the

same algorithm presented in Atchade and Fort (2010) (Algorithm 3.1). This algorithm adaptively

and simultaneously estimates the covariance matrix of the target distribution and implements the

0.23 acceptance rule. It is known that for this problem, both algorithms satisfy B1-2 (see e.g.

Atchade (2011) Section 5.2).

As a simulation example I test the model with the Heart dataset which has n = 217 cases and

d = 14 covariates. I first run the adaptive chain for 106 iterations and takes the sample posterior

mean of β as the true posterior mean. I repeat the confidence intervals (95% confidence intervals)

K = 200 times to estimate coverage probability and half-length. Each sampler is run for 30, 000

iterations. The result is summarized in Figure 3. For the case cn = o(n), I use cn = nδ for different

values of δ ∈ (0, 1).
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We see from the results that using cn = n gives very good coverage, but slightly wider intervals.

The interval width is significantly wider for the quadratic kernel w(u) = 1−u2, which is somewhat

expected given the very fat tail of the limiting distribution (Figure 2). In contrast, the result show

that in the setting cn = o(n) careful tuning of cn is necessary to obtain good coverage. As expected,

the results in this case are similar for both kernels.
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0

0.2

0.4

0.6

0.8

1
Coverage Probability. Non Adaptive chain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Interval half length. Non Adaptive chain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Coverage Probability. Adaptive chain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Interval half length. Adaptive chain

Figure 3: Coverage probability and confidence interval half-length for parameter β3 and for

different values of δ using cn = nδ. The vertical lines correspond to cn = n. The dashed lines

correspond to the kernel w(u) = 1− u2.

3.3. A random effect Poisson regression example. We now consider a random effect Poisson

regression example taken from Gelman et al. (2004). For e = 1, . . . , Ne and p = 1, . . . , Np, the

variables yep are conditionally independent given ({βp}, {εep}) ∈ RNp × RNe×Np , with conditional

distribution

yep ∼ P
(
nepe

µ+αe+βp+εep
)
, e = 1, . . . , Ne, p = 1, . . . , Np,

where P(λ) is the Poisson distribution with parameter λ. In the above display, {nep} is a deter-

ministic baseline covariate, and µ ∈ R, {αe} ∈ RNe are parameters. We assume that the random

effects {βp} and {εep} are independent with prior distributions

βp
iid∼ N(0, σ2

β), εep
iid∼ N(0, σ2

ε), e = 1, . . . , Ne, p = 1, . . . , Np,

for some parameters σ2
β > 0, σ2

ε > 0. We assume a diffuse prior for (µ, α, σ2
β, σ

2
ε) (σ2

ε > 0, σ2
β > 0).

For identifiability, we assume that
∑Ne

k=1 αk = 0. Let θ = (µ, α, β, ε, σ2
ε , σ

2
β) ∈ R3+Ne−1+(Np+1)Ne .
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The posterior distribution of θ given D = (yep, nep) takes the form

π(θ|D) ∝ exp

{∑
e,p

ye,p(µ+ αe + βp + εe,p)− nepeµ+αe+βp+εep

−NeNp

2
log σ2

ε −
Np

2
log σ2

β −
1

2σ2
ε

∑
e,p

ε2e,p −
1

2σ2
β

Np∑
p=1

β2
p

 .

This posterior distribution is typical of probability distributions for which AMCMC are useful.

A possible MCMC strategy to sample from this posterior is a Metropolis-within-Gibbs. One

can update σ2
ε and σ2

b exactly as inverse-Gamma IG(0.5(3Np − 2), 0.5
∑

e,p ε
2
e,p) and IG(0.5(Np −

2), 0.5
∑Np

p=1 β
2
p) respectively. The parameter µ can be updated exactly as the log of the Gamma

distribution G(
∑

e,p ye,p,
∑

e,p ne,pe
αe+βp+εe,p). The rest of the parameter α1, α2, βp and εe,p can

be updated one at the time, using one step of a RWM with a Gaussian proposal N (x, σ2) with

σ = e−2. One can compare this Metropolis-within-Gibbs sampler with its adaptive version where

the scaling parameters σ of the RWM steps are adaptively tuned using the 23% acceptance rule.

It is unknown whether these algorithms satisfies the assumptions above.

I set Ne = 3 and Np = 27 (thus θ ∈ R89). I generate an artificial dataset with (α1, α2, µ, σ
2
ε , σ

2
β) =

(0.35, 0.15,−1.0, 0.1, 0.3), and run a preliminary MCMC sampler for 2 millions (2× 106) iterations

and compute its sample mean. This gives ᾱ1 = 0.3948 that I take as
∫
α1π(θ|D)dθ. We wish to

construct 95% confidence intervals for α1. I run each algorithm for 60, 000 iterations and discard

the first 10, 000 iterations as burn-in. This is repeated K = 200 times to estimate the properties

of the confidence intervals. The asymptotic variance are estimated using only the Bartlett kernel.

The results are reported in Figure 4 and yield similar conclusions as the previous example.
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Figure 4: Coverage probability and confidence interval half-length for parameter α1 and for

different values of δ using cn = nδ. The vertical lines correspond to cn = n.
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4. Rate of convergence

The simulation results presented above suggest that Γ2
n(h) has better convergence properties

when cn = n. We consider this issue here in the case where {Xn, n ≥ 0} is a Markov chain

with transition kernel P and invariant distribution π, so that the asymptotic variance σ2(h), is

non-random, and given by (2). The initial distribution of the chain is arbitrary. We assume that

σ2
P (h) > 0 and without any loss of generality, we take π(h) = 0 and σ2

P (h) = 1; otherwise, simply

replace h by (h−π(h))/
√
σ2
P (h). We further simplify the analysis by assuming that P satisfies the

following geometric ergodicity assumption

GE There exists a measurable function V : X→ [1,∞) such that

sup
n≥0

E (V (Xn)) <∞, (17)

and for all β ∈ (0, 1],

‖Pn(x, ·)− π(·)‖V β ≤ Cρn V β(x), n ≥ 0, x ∈ X. (18)

When cn = o(n), we have the following.

Theorem 4.1. Suppose that A3 and (GE) hold. Let δ ∈ [0, 1/4), and h ∈ LV δ . As n → ∞, if

cn = o(n), then

E1/2
[(

Γ2
n(h)− 1

)2]
.

1

cn
+

√
cn
n
. (19)

Proof. See Section 5.5. �

Remark 6. Theorem 4.1 implies that the rate of convergence of Γ2
n(h) is of order n−1/3, using cn =

n1/3. This rate is known to be tight for kernels with characteristic exponent 1. The characteristic

exponent of w is the largest number r ≥ 1 such that limx→0 |x|−r (1− w(x)) ∈ (0,∞). Our analysis

does not make use of this concept. If w has characteristic exponent r, it is known (see e.g. Parzen

(1957) Theorem 5A-5B) that the rate of convergence of Γ2
n(h) is 1

crn
+
√

cn
n , using cn = n(1+2r)−1

,

for certain classes of stationary processes. The Bartlett kernel has characteristic exponent 1, and

the kernel w(u) = 1− u2 has characteristic exponent 2.

We also consider the rate of weak convergence of Γ2
n(h) towards the limiting distribution of

Theorem 2.2, when cn = n. Denote Lip1(R) the set of all bounded Lipschitz functions f : R → R
such that

|f |Lip
def
= sup

x 6=y

|f(x)− f(y)|
|x− y|

≤ 1.

For P,Q two probability measures on R, we define

d1(P,Q)
def
= sup

f∈Lip1(R)

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ .
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d1(P,Q) is the Wasserstein metric between P,Q. It is well known (see e.g. Dudley (2002) Section

11.8, Problem 1) that in the case of R, d1 can be written as

d1(P,Q) =

∫ ∞
−∞
|P (Au)−Q (Au)| du, Au = (−∞, u].

Thus an upper bound on d1(Pn, P ) gives a Berry-Esseen-type bound on the rate of weak convergence

of Pn to P . In a slight abuse of notation, if X,Y are random variables, and X ∼ P and Y ∼ Q, we

shall also write d1(X,Y ) to mean d1(P,Q).

Theorem 4.2. Suppose that A3 and (GE) hold. Suppose also that I is finite. Let δ ∈ [0, 1/4), and

h ∈ LV δ . If cn = n, then

d1

(
Γ2
n(h), χ2

)
.

log(n)√
n

, as n→∞, (20)

where χ2 =
∑

i∈I αiZ
2
i , {Zi, i ∈ I} are i.i.d. N(0, 1), and {αi, i ∈ I} is the set of positive eigenvalues

of ρ?.

Proof. See Section 5.5. �

For the proof we use the Bergstrom method, well known in studying convergence rates in the CLT

for partial sums (see e.g. Dedecker and Rio (2008)). The log(n) term in (20) is an artefact of the

method. We conjecture that in general the convergence rate of Γ2
n(h) is n−1/2. If we further assume

that {h(Xn), n ≥ 0} is a Gaussian process with a martingale structure, then the convergence rate

in (20) can actually be improved to log(n)/n; we omit the details. Quadratic forms has also been

studied elsewhere in the literature. In a series of papers, F. Gotze and co-authors have studied

the convergence rate of quadratic forms and obtained the optimal rate of n−1 (see e.g. Götze

and Tikhomirov (2005) and references therein). But their setting is different as they assume i.i.d.

sequence and consider quadratic forms for which the weights do not depend with n.

Remark 7. The assumption that I is finite is mostly technical and it seems plausible that this result

continues to hold without this assumption. There are known kernels for which I is finite. For

example I is finite for the kernel w(u) = (1− u2)1(−1,1)(u). This is because in this case, ρ?(s, t) =

2
(
s− 1

2

) (
t− 1

2

)
. Thus ρ? admits a unique positive eigenvalue α1 = 1/6 with eigenfunction φ1(t) =

t− 1
2 .

5. Proofs

5.1. Martingale approximation. Much of the analysis relies on the ability to approximate a

partial sum of the form
∑n

k=1 αkh̄(Xk) by the martingale
∑n

k=1 αkDk. This is well known and we

skip some of the details and refer the reader for instance to Andrieu and Moulines (2006). It is

easy to see from property (1) of the adaptive chain that E (Dk|Fk−1) = 0. Therefore, under A1,

{(Dk,Fk), k ≥ 1} is a 2p-integrable martingale-difference. Such martingale satisfy Burkeholder’s
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inequality (Hall and Heyde (1980) Theorem 2.10) that we will use repetitively: for any sequence of

real numbers {αk, 1 ≤ k ≤ n}, and for any q > 1,∥∥∥∥∥
n∑
k=1

αkDk

∥∥∥∥∥
q

.

[
n∑
k=1

‖αkDk‖q∧2
q

] 1
q∧2

. (21)

The following martingale approximation for partial sums plays an important role in the sequel.

Lemma 5.1. Under A1, and for any sequence of real numbers {αk, 0 ≤ k ≤ n},
n∑
k=1

αkh̄(Xk) =

n∑
k=1

αkDk + ε(0)
n , (22)

where the remainder is given by

ε(0)
n

def
= α0Pθ0gθ0(X0)− αnPθngθn(Xn) +

n∑
k=1

(αk − αk−1)Pθk−1
gθk−1

(Xk−1)

+
n∑
k=1

αk
(
Pθkgθk(Xk)− Pθk−1

gθk−1
(Xk)

)
,

and satisfies ∥∥∥ε(0)
n

∥∥∥
2p
≤ |α0|a0 + |αn|an +

n∑
k=1

|αk − αk−1|ak−1 +
n∑
k=1

|αk|bk.

Combined with (21), this lemma implies that∥∥∥∥∥
n∑
k=1

αkh̄(Xk)

∥∥∥∥∥
2p

. 1 + |αn|an +

n∑
k=1

|αk − αk−1|ak−1 +

n∑
k=1

|αk|bk +

√√√√ n∑
k=1

α2
kκ

2
k. (23)

We now show that a similar martingale approximation holds for quadratic forms. This extends

Lemma 2.1 of Atchade and Cattaneo (2011) which considered the case where {Xn, n ≥ 0} is a

Markov chain. The proof is postponed to the Appendix.

Lemma 5.2. Assume A1 and A3. Consider the quadratic form

Qn
def
=

1

n

n∑
k=1

n∑
j=1

w

(
k − j
cn

)
h̄(Xk)h̄(Xj).

Then we have

Qn =
1

n

n∑
k=1

n∑
j=1

w

(
k − j
cn

)
DkDj + ε(1)

n + ε(2)
n ,

for remainders ε
(1)
n , ε

(2)
n for which E1/p(|ε(i)n |p) . r(i)

n , where p is as in A1, and

r(1)
n =

1

ncn

n∑
k=1

ak

(
ak + δ

(1)
n,k + δ

(2)
n,k

)
, and

r(2)
n =

(
1

np∧2

n∑
k=1

{
κk

(
1 + δ

(1)
n,k

)}p∧2
) 1

p∧2

+
1

n

n∑
k=1

bk (ak + ak−1) +
1

ncn

n∑
k=1

akκk + n−1anκn.
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Proof. See Section 6.3 in the Appendix. �

5.2. Proof of Theorem 2.1. The idea is to show that Γ2
n(h) behaves asymptotically like n−1

∑n
k=1D

2
k.

And since the partial sum n−1/2
∑n

k=1 h̄(Xk) behaves like n−1/2
∑n

k=1Dk as shown in Lemma 5.1,

it would follow that Tn behaves asymptotically like
∑n

k=1Dk/
√∑n

k=1D
2
k which satisfies a CLT as

recalled in Theorem 6.1 of the Appendix.

As a matter of re-arranging the summations, we can rewrite Γ2
n(h) as follows

Γ2
n(h) =

1

n

n∑
k=1

n∑
j=1

w

(
k − j
cn

)
h̄(Xj)h̄(Xk)

− 2

n

(
n∑
k=1

h̄(Xk)

)(
n∑
k=1

vn(k)h̄(Xk)

)
+
un
n

(
n∑
k=1

h̄(Xk)

)2

(24)

where vn(k)
def
= n−1

∑n
`=1w

(
k−`
cn

)
, and un

def
= n−2

∑n
`=1

∑n
k=1w((`− k)/cn). Under A3, it is easy

to check that vn(k) and un satisfy

vn(k) = O
(cn
n

)
, vn(k)− vn(k − 1) = O

(
1

n

)
, and un = O

(cn
n

)
, (uniformly in k).

Therefore, using (23) and (7), we can write (24) as

Γ2
n(h) =

1

n

n∑
k=1

n∑
j=1

w

(
k − j
cn

)
h̄(Xj)h̄(Xk) + %(1)

n , (25)

where E1/p(|%(1)
n |p) . cn/n. Combined with Lemma 5.2, it follows that

Γ2
n(h) =

1

n

n∑
k=1

D2
k +

2

n

n∑
k=2

Dk

k−1∑
j=1

w

(
k − j
cn

)
Dj + %(2)

n , (26)

where E1/p(|%(2)
n |p) . r(1)

n + r
(2)
n + cn/n. The term

∑n
k=2Dk

∑k−1
j=1 w((k − j)/cn)Dj is a martingale

array and Burkeholder inequality (21) (applied twice) yields∥∥∥∥∥∥ 1

n

n∑
k=2

k−1∑
j=1

(
k − j
cn

)
DkDj

∥∥∥∥∥∥
p

.

{
n−p∧2

n∑
k=2

[
κkδ

(2)
n,k

]p∧2
} 1

p∧2

. (27)

We then obtain that

Γ2
n(h) =

1

n

n∑
k=1

D2
k + %(3)

n , (28)

where

E1/p
(
|%(3)
n |p

)
. r(1)

n + r(2)
n +

cn
n

+

{
n−p∧2

n∑
k=2

[
κkδ

(2)
n,k

]p∧2
} 1

p∧2

= o(1),
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by assumption. A2 implies that n−1
∑n

j=1D
2
j converges almost surely to σ2

?, and we conclude that

Γ2
n(h) converges in probability to σ2

?. It remains to deal with Tn. We have

Tn =

1√
n

∑n
k=1 h̄(Xk)√
Γ2
n(h)

=

∑n
k=1Dk√∑n
k=1D

2
k

+
op(1)√

1
n

∑n
k=1D

2
k√

1 +
op(1)

1
n

∑n
k=1D

2
k

.

Under A2, n−1
∑n

k=1D
2
k converges in probability to σ2

? that is positive almost surely, and by the

martingale weak invariance principle (see Theorem 6.1 and the following remark), we have that∑n
k=1Dk/

√∑n
k=1D

2
k

w→ N(0, 1). It follows that Tn
w→ N(0, 1), and the theorem is proved.

5.3. Proof of Theorem 2.2. The idea of the proof is that for large n, and for cn = n, Γ2
n(h) be-

haves like
∑

i∈I αi

(
1√
n

∑n
k=1 φj

(
k
n

)
Dk

)2
, and that 1√

n

∑n
k=1 φj

(
k
n

)
Dk behaves like

∫ 1
0 φj(t)dB(t) ∼

N(0, 1). To carry the details, we start again from (24) which gives

Γ2
n(h) =

1

n

n∑
k=1

n∑
j=1

w

(
k − j
n

)
h̄(Xj)h̄(Xk)−

2

n

(
n∑
k=1

h̄(Xk)

)(
n∑
k=1

vn(k)h̄(Xk)

)
+
un
n

(
n∑
k=1

h̄(Xk)

)2

.

With cn = n, vn(k) = n−1
∑n

`=1w
(
k−`
n

)
is the right-Riemann sum approximation of g(kn−1),

where g(t) =
∫ 1

0 w(t− u)du. Thus with the smoothness of w,

∣∣vn(k)− g(kn−1)
∣∣ = O

(
1

n

)
,
∣∣vn(k)− g(kn−1)− vn(k − 1) + g((k − 1)n−1)

∣∣ = O

(
1

n2

)
,

and

∣∣∣∣un − ∫ 1

0
g(t)dt

∣∣∣∣ = O

(
1

n

)
, (uniformly in k).

By combining this with the linear and quadratic martingale approximation (Lemma 5.1, Lemma

5.2), we obtain that

Γ2
n(h) =

1

n

n∑
k=1

n∑
j=1

{
w

(
k − j
n

)
− g

(
k

n

)
− g

(
j

n

)
+

∫ 1

0
g(t)dt

}
DjDk + %(1)

n

=
1

n

n∑
k=1

n∑
j=1

ρ?

(
k

n
,
j

n

)
DjDk + %(1)

n , (29)

where

E1/p
(
|%(1)
n |p

)
. r(1)

n + r(2)
n +

1

n
.

It is assumed that the kernel ρ? : [0, 1]× [0, 1]→ R with ρ?(s, t) = w(s− t)−g(t)−g(s)+
∫ 1

0 g(u)du

is twice continuously differentiable and positive definite. By Mercer’s theorem, there exist positive

eigenvalues {αj , j ∈ I} and orthonormal eigenfunctions {φj , j ∈ I} φj ∈ L2([0, 1]) such that

ρ?(s, t) =
∑
j∈I

αjφj(s)φj(t). (30)
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Notice that
∫ 1

0 ρ?(s, t)dt = 0 which means that 0 is also eigenvalue of ρ? with associated eigenfunc-

tion φ0 (φ0(t) = 1). Using the expansion (30), we conclude that

Γ2
n(h) =

∑
j∈I

αj

(
1√
n

n∑
k=1

φj

(
k

n

)
Dk

)2

+ %(1)
n ,

where %
(1)
n is as in (29). It follows that

Tn =

1√
n

∑n
k=1 h̄(Xk)√
Γ2
n(h)

=

∑n
k=1 h̄(Xk)√
nΓ2

n(h)
=

∑n
k=1 φ0(

k
n)Dk√∑n

k=1D
2
k

+
op(1)√

1
n

∑n
k=1D

2
k√∑

j∈I αj

(∑n
k=1 φj(

k
n)Dk√∑n

k=1D
2
k

)2

+
op(1)

1
n

∑n
k=1D

2
k

.

We shall write Ī
def
= {0} ∪ I. Consider the Hilbert space `2(α)

def
= {x ∈ RĪ :

∑
k∈̄I αkx

2
k <∞}, where

α0 = 1, equipped with the norm ‖x‖2 =
√∑

j∈̄I αjx
2
j and the inner product 〈x, y〉 def

=
∑

j∈̄I αjxjyj .

The random variable Ψn
def
=

{∑n
k=1 φj(

k
n)Dk√∑n

k=1D
2
k

, j ∈ Ī

}
is a `2(α)-valued random process. We prove in

Lemma 5.3 below that Ψn
w→ Ψ, where

Ψ
def
=

{∫ 1

0
φj(t)dB(t), j ∈ Ī

}
,

and {B(t), 0 ≤ t ≤ 1} is the standard Brownian motion. The theorem follows from the continuous

mapping theorem, since {
∫ 1

0 φj(t)dB(t), j ∈ Ī} are i.i.d. N(0, 1).

Lemma 5.3. Under the assumptions of Theorem 2.2, Ψn
w→ Ψ as n→∞.

Proof. We set the notation Sk =
∑k

j=1Dj (S0 = 0), U2
k =

∑k
j=1D

2
j , (U0 = 0), and sk =∑k

j=1 E(D2
j ) (s0 = 0). Consider ζn : [0, 1] → R, the C[0, 1]-valued process obtained by inter-

polating the points
(
s0
sn
, S0
Un

)
, . . . ,

(
sk
sn
, SkUn

)
, . . . ,

(
1, SnUn

)
. That is

ζn(t) =
Dk

Un

(snt− sk−1)

sk − sk−1
+
Sk−1

Un
, for

sk−1

sn
≤ t < sk

sn
.

Then we have∫ 1

0
φj(t)dζn(t) =

n∑
k=1

(
sn

sk − sk−1

∫ sk
sn

sk−1
sn

φj(t)dt

)
︸ ︷︷ ︸

δn,k(j)

Dk√∑n
k=1D

2
k

=

n∑
k=1

δn,k(j)
Dk√∑n
k=1D

2
k

.

Now, conveniently, we introduce the integration map M : C[0, 1] → `2(α) defined as M(h) =

{
∫ 1

0 φj(t)dh(t), j ∈ Ī}. These integrals are well-defined since the functions φj are continuously

differentiable (Theorem 6.2 (ii)). Furthermore, the inegration by part formula gives
∫ 1

0 φj(t)dh(t) =



ADAPTIVE MARKOV CHAIN MONTE CARLO CONFIDENCE INTERVALS 19

φj(1)h(1)− φj(0)h(0)−
∫ 1

0 h(t)φ′j(t)dt. Therefore, for h, h0 ∈ C[0, 1],

‖M(h)−M(h0)‖22 =
∑
j∈̄I

αj

∣∣∣∣∫ 1

0
φjdh−

∫ 1

0
φjdh0

∣∣∣∣2

≤ 4‖h− h0‖2∞ sup
0≤t≤1

∑
j∈̄I

αj |φj(t)|2 + 2‖h− h0‖2∞
∑
j∈̄I

αj

∫ 1

0
{φ′j}2(t)dt ≤ c0‖h− h0‖2∞,

where the last inequality uses (36-37). This establishes that M in fact takes values in `2(α) and is

Lipschitz. Now, it is clear that we can write

Ψn =M(ζn) + εn.

where the j-th component of εn is

εn(j) =

n∑
k=1

(
φj

(
k

n

)
− δn,k(j)

)
Dk

Un
.

With A1-A2, we have the weak convergence of ζn towards the standard Brownian motion (see

Remark 8), and by the continuous mapping theorem, M(ζn) → Ψ. The lemma is proved by

showing that εn converges in probability to zero in `2(α).

Negligibility of εn.

‖εn‖2 =
∑
j∈̄I

αjε
2
n(j) =

∑
j∈̄I αj

{∑n
k=1

(
δn,k(j)− φj

(
k
n

))
Dk√
n

}2

1
n

∑n
k=1D

2
k

.

Since n−1
∑n

k=1D
2
k has a positive limit almost surely, it is enough to show that the numerator

converges to zero in probability. Towards that end, we have

E

∑
j∈̄I

αj

{
n∑
k=1

(
δn,k(j)− φj

(
k

n

))
Dk√
n

}2
 =

1

n

n∑
k=1

E(D2
k)
∑
j∈̄I

αj

(
δn,k(j)− φj

(
k

n

))2

.

For any arbitrary continuously differentiable function f : [0, 1]→ R, w ∈ [0, 1], and 0 ≤ a < b ≤ 1,

the following bound holds true:(
1

b− a

∫ b

a
f(t)dt− f(w)

)2

≤ (b− a)

∫ 1

0
{f ′(u)}2du.

With δn,k(j) = sn
sk−sk−1

∫ sk
sn
sk−1
sn

φj(t)dt, we use the above inequality to write

∑
j∈̄I

αj

(
δn,k(j)− φj

(
k

n

))2

≤ sk − sk−1

sn

∑
j∈̄I

αj

∫ 1

0
{φ′j(t)}2dt .

sk − sk−1

sn
.

We conclude that

E

∑
j∈̄I

αj

{
n∑
k=1

(
δn,k(j)− φj

(
k

n

))
Dk√
n

}2
 . sup1≤k≤n E(D2

k)

n
= o(1),
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as n→∞, since
∑n

k=1 E(|Dk|2p) = o(np). This completes the proof.

�

5.4. Proof theorem 4.1. The idea is to use the decomposition (25), together with Lemma 5.2

and a more careful bound on the term ε
(1)
n in Lemma 5.2. The main ingredient of the proof is again

martingale approximation. We recall that σ2(h) = 1 and π(h) = 0. Since P no longer depend on

θ, we write g instead gθ, Pg instead Pθgθ etc... We gather from (25) in the proof of Theorem 2.1,

and Lemma 5.2, that

Γ2
n(h)− 1 =

1

n

n∑
k=1

(
D2
k − 1

)
+

2

n

n∑
k=2

Dk

k−1∑
j=1

w

(
k − j
cn

)
Dj + ε(1)

n + %(1)
n ,

where

ε(1)
n =

n∑
k=3

Pg(Xk−1)
k−2∑
j=1

(w̃n(k − j)− w̃n(k − 1− j))h(Xj),

and

E1/2(|%(1)
n |2) . r(2)

n +
cn
n
.

1√
n

+
cn
n
.

Using (27), if follows that Γ2
n(h) − 1 = 1

n

∑n
k=1

(
D2
k − 1

)
+ ε

(1)
n + %

(2)
n , where E1/2(|%(2)

n |2) . 1√
n

+
cn
n +

√
cn
n .

√
cn
n .

We know from Lemma 5.2 that E1/2(|ε(1)
n |2) . r

(1)
n . 1√

cn
. But under the current assumptions,

it is possible to obtain a better bound. We further use the Poisson equation approach to write

Pg(x) = U(x) − PU(x), where U(x)
def
=
∑

j≥0 P
j+1g(x). By the assumption (GE), and since

g ∈ LV δ , U is well defined. Set Bn,k−2
def
=
∑k−2

j=1 (w̃n(k − j)− w̃n(k − 1− j))h(Xj), and δn,j
def
=

w̃n(k − j) − w̃n(k − 1 − j). By A3, and using the mean value theorem, we get |δn,j | . 1
ncn

, and

|δn,j − δn,j−1| ≤ 1
nc2n

, uniformly in j. Then using (23), it comes that

E1/4
(
|Bn,k−2|4

)
.

1

n
√
cn
, and E1/4

(
|Bn,k−2 −Bn,k−3|4

)
.

1

ncn
.

The second inequality follows from the bounds on |δn,j | and |δn,j − δn,j−1|, and the fact that

Bn,k−2 −Bn,k−3 = (w̃n(2)− w̃n(1))h(Xk−2) +
k−3∑
j=1

(δn,j − δn,j−1)h(Xj).

Now, from Pg(x) = U(x)− PU(x), we get

ε(1)
n =

n∑
k=3

(U(Xk−1)− PU(Xk−1))Bn,k−2 =
n∑
k=3

(U(Xk−1)− PU(Xk−2))Bn,k−2

+

n∑
k=3

PU(Xk−2) (Bn,k−2 −Bn,k−3)− PU(Xn−1)Bn,n−2.

Noticing that
∑n

k=3 (U(Xk−1)− PU(Xk−2))Bn,k−2 is a martingale array, we deduce easily from

the above that

E1/2
(
|ε(1)
n |2

)
.

1

cn
.
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Under assumption (GE), and since δ ∈ (0, 1/4), we have E1/2
[(∑n

k=1

(
D2
k − 1

))2]
.
√
n. We

conclude that

E1/2
[(

Γ2
n(h)− 1

)2]
.

1√
n

+
1

cn
+

√
cn
n
.

1

cn
+

√
cn
n
,

which ends the proof.

5.5. Proof theorem 4.2. We define

Γ̄2
n =

1

n

n∑
k=1

n∑
j=1

ρ?

(
k

n
,
j

n

)
DkDj .

We recall from (29) that

Γ2
n(h) = Γ̄2

n + %(1)
n ,

where E1/2
(
|%(1)
n |2

)
. r

(1)
n + r

(2)
n + n−1 . n−1/2 (see the proof of Theorem 3.1 for the bound on

r
(1)
n + r

(2)
n ). This implies that

d1

(
Γ2
n(h), χ2

)
. d1

(
Γ̄2
n, χ

2
)

+
1√
n
. (31)

Therefore we only need to focus on the term d1

(
Γ̄2
n, χ

2
)
.

On the Euclidean space RI, we shall use the norms ‖x‖2α =
∑

i∈I αix
2
i , ‖x‖2 =

∑
i∈I x

2
i and the

inner-products 〈x, y〉α =
∑

i∈I αixiyi, and 〈x, y〉 =
∑

i∈I xiyi. For a sequence (a1, a2, . . .), we use the

notation ai:k = (ai, . . . , ak) (and ai:k is the empty set if i > k). We introduce new random variables

{Zi,j , i ∈ I, 1 ≤ j ≤ n} which are i.i.d. N(0, 1), and set S`:k
def
=
(∑k

j=` Z1j , . . . ,
∑k

j=` ZIj

)T
∈ RI,

so that

χ2 dist.
=

∑
i∈I

αi

 1√
n

n∑
j=1

Zi,j

2

= ‖ 1√
n

S1:n‖2α.

For 1 ≤ ` ≤ k ≤ n, and omitting the dependence on n, we set B`:k as the RI×(k−`+1) matrix

B`:k(i, j) = φi

(
j

n

)
, i ∈ I, ` ≤ j ≤ k.

By the Mercer’s expansion for ρ?, we have

Γ̄2
n =

∑
i∈I

αi

(
1√
n

n∑
k=1

φi

(
k

n

)
Dk

)2

= ‖ 1√
n

B1:nD1:n‖2α.

For f ∈ Lip1(R), we introduce the function fα : R|I| → R, defined as fα(x) = f
(
‖x‖2α

)
. As a

matter of telescoping the sums, we have

E
[
f(Γ̄2

n)− f(χ2)
]

= E
[
fα

(
1√
n

B1:nD1:n

)
− fα

(
1√
n

S1:n

)]
=

n∑
`=1

E
[
fα

(
1√
n

B1:`D1:` +
1√
n

S`+1:n

)
− fα

(
1√
n

B1:`−1D1:`−1 +
1√
n

S`:n

)]

=

n∑
`=1

E
[
fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
1√
n

B`:`D`

)
− fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
1√
n

S`:`

)]
,
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where we define

fα,n,`(x)
def
= E

[
fα

(
x+

1√
n

S`:n

)]
, and set fα,n,n+1(x) = fα(x).

We deal with the case ` = n separately. Indeed, it is easy to check using the Lipschitz property of

f that∣∣∣∣E [fα( 1√
n

B1:n−1D1:n−1 +
1√
n

Bn:nDn

)
− fα

(
1√
n

B1:n−1D1:n−1 +
1√
n

Sn:n

)]∣∣∣∣
≤ E

[∣∣∣∣‖ 1√
n

B1:n−1D1:n−1 +
1√
n

Bn:nDn‖2α − ‖
1√
n

B1:n−1D1:n−1 +
1√
n

Sn:n‖2α
∣∣∣∣] . 1√

n
.

For the rest of the proof, we assume 1 ≤ ` ≤ n − 1. First, we claim that fα,n,` is differentiable

everywhere on RI. To prove this, it suffices to obtain the almost everywhere differentiability of

z ∈ RI 7→ fα (x+ z) for any x ∈ RI. By Rademacher’s theorem, f as a Lipschitz function is

differentiable almost everywhere on R. If E is the set of points where f is not differentiable, we

conclude that fα is differentiable at all points z /∈ {z ∈ RI : ‖x + z‖2α ∈ E}. Now by Ponomarëv

(1987) Theorem 2, the Lebesgue measure of the set {z ∈ RI : ‖x+ z‖2α ∈ E} is zero, which proves

the claim.

As a result, the function x 7→ fα,n,`(x) is differentiable with derivative

∇fα,n,`(x) · h = 2E
[
f ′α

(
x+

1√
n

S`:n

)〈
x+

1√
n

S`:n, h

〉
α

]
.

By writing his expectation wrt the distribution of x+ 1√
n
S`:n, we get

∇fα,n,`(x) · h = 2

∫
f ′α(z) 〈z, h〉α exp

(
− n

2(n− `+ 1)

(
‖x‖2 − 2 〈x, z〉

))
µn,`(dz),

where µn,` is the distribution of 1√
n
S`:n. This implies that fα,n,` is infinitely differentiable with

second and third derivatives given by

∇(2)fα,n,`(x) · (h1, h2)

= −2

(
n

n− `+ 1

)∫
f ′α(z) 〈z, h1〉α 〈x− z, h2〉 exp

(
− n

2(n− `+ 1)

(
‖x‖2 − 2 〈x, z〉

))
µn,`(dz)

= 2E
[
f ′α

(
x+

1√
n

S`:n

)〈
x

√
n

n− `+ 1
+

S`:n√
n− `+ 1

, h1

〉
α

〈
S`:n√

n− `+ 1
, h2

〉]
,

which implies after soe easy calculations that for h ∈ RI,∣∣∣∇(2)fα,n,`(x) · (h, h)
∣∣∣ . ‖h‖2(1 +

√
n

n− `+ 1
‖x‖α

)
. (32)

Similarly,

∇(3)fα,n,`(x)·(h1, h2, h3) = 2

√
n

n− `+ 1
E
[
f ′α

(
x+

1√
n

S`:n

)〈
x

√
n

n− `+ 1
+

S`:n√
n− `+ 1

, h1

〉
α

×
(
〈h2, h3〉 −

〈
S`:n√

n− `+ 1
, h2

〉〈
S`:n√

n− `+ 1
, h3

〉)]
.
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and for h ∈ RI,∣∣∣∇(3)fα,n,`(x) · (h, h, h)
∣∣∣ .√ n

n− `+ 1
‖h‖3

(
1 +

√
n

n− `+ 1
‖x‖α

)
. (33)

Then by Taylor expansion we have

fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
1√
n

B`:`D`

)
− fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
1√
n

S`:`

)
=

1√
n
∇fα,n,`+1(

1√
n

B1:`−1D1:`−1) · (B`:`D` − S`:`)

+
1

2n
∇(2)fα,n,`+1(

1√
n

B1:`−1D1:`−1) · [(B`:`D`,B`:`D`)− (S`:`,S`:`)] + %
(3)
n,`,

where, using (33),∣∣∣%(3)
n,`

∣∣∣ .√ n

n− `+ 1
n−3/2

(
1 +

√
`− 1

n− `+ 1

∥∥∥∥B1:`−1D1:`−1√
`− 1

∥∥∥∥
α

)(
‖B`:`D`‖3α + ‖S`:`‖3α

)
.

It follows that
n−1∑
`=1

E
(∣∣∣%(3)

n,`

∣∣∣) . n−1
n∑
`=1

1√
`

+ n−1/2
n∑
`=1

1

`
. n−1/2 log(n). (34)

By first conditioning on F`−1, we have

E
[
∇fα,n,`+1(

1√
n

B1:`−1D1:`−1) · (B`:`D` − S`:`)

]
= 0.

Writing Kn,`
def
= 1

2∇
(2)fα,n,`(

1√
n
B1:`−1D1:`−1), we have

∇(2)fα,n,`+1(
1√
n

B1:`−1D1:`−1) · [(B`:`D`,B`:`D`)− (S`:`,S`:`)]

= D2
`

∑
i,j

φi

(
`

n

)
φj

(
`

n

)
Kn,`(i, j)−

∑
i,j

φi

(
`

n

)
φj

(
`

n

)
Kn,`(i, j)Zi,`Zj`

Therefore,

E
(
∇(2)fα,n,`+1(

1√
n

B1:`−1D1:`−1) · [(B`:`D`,B`:`D`)− (S`:`,S`:`)] |F`−1

)
=

∑
i,j

φi

(
`

n

)
φj

(
`

n

)
Kn,`+1(i, j)

[
E
(
D2
` |F`−1

)
− δij

]
=
∑
i,j

φi

(
`

n

)
φj

(
`

n

)
Kn,`+1(i, j)

[
E
(
D2
` |F`−1

)
− 1
]

+
∑
i 6=j

φi

(
`

n

)
φj

(
`

n

)
Kn,`+1(i, j),

where δij = 1 if i = j and zero otherwise. We claim that the proof will be finished if we show that

for all i, j ∈ I, and 1 ≤ ` ≤ n,

E1/2
[
(Kn,`(i, j)−Kn,`+1(i, j))2

]
.

√
n

n− `+ 1
. (35)



24 YVES F. ATCHADÉ

To prove this claim, it suffice to use (35) to show that
∣∣n−1

∑n
`=1 φi

(
`
n

)
φj
(
`
n

)
E (Kn,`+1(i, j))

∣∣ .
n−1/2 log(n) for i 6= j, and

∣∣n−1
∑n

`=1 φi
(
`
n

)
φj
(
`
n

)
Kn,`+1(i, j)

[
E
(
D2
` |F`−1

)
− 1
]∣∣ . n−1/2 log(n)

for all i, j ∈ I. To show this, write

1

n

n−1∑
`=1

φi

(
`

n

)
φj

(
`

n

)
E (Kn,`+1(i, j)) =

{
1

n

n−1∑
`=1

φi

(
`

n

)
φj

(
`

n

)}
E (Kn,n(i, j))

+
1

n

n−1∑
`=1

[
1

n

`−1∑
k=1

φi

(
`

n

)
φj

(
`

n

)]
[E (Kn,`(i, j)−Kn,`+1(i, j))]

By the convergence of Riemann sums,
∣∣∣ 1
n

∑n−1
`=1 φi

(
`
n

)
φj
(
`
n

)∣∣∣ . n−1. Combined with (32) and

(35), this implies that∣∣∣∣∣ 1n
n∑
`=1

φi

(
`

n

)
φj

(
`

n

)
E (Kn,`+1(i, j))

∣∣∣∣∣ ≤ 1

n

(
√
n+
√
n

n∑
k=1

1

k

)
.

log(n)√
n

.

For the second term, let U denotes the Poisson equation solution associated to E
(
D2
` |F`−1

)
− 1,

so that we have almost surely

U(X`−1)− PU(X`−1) = E
(
D2
` |F`−1

)
− 1.

Therefore, by the usual martingale approximation trick

1

n

n−1∑
`=1

φi

(
`

n

)
φj

(
`

n

)
E
(
Kn,`+1(i, j)

[
E
(
D2
` |F`−1

)
− 1
])

=
1

n
φi

(
1

n

)
φj

(
1

n

)
E (Kn,2(i, j)U(X0))

− 1

n
φi

(
1− 1

n

)
φj

(
1− 1

n

)
E (Kn,n(i, j)U(Xn−1))

+
1

n

n−1∑
`=1

E
[{
φi

(
`

n

)
φj

(
`

n

)
Kn,`+1(i, j)− φi

(
`− 1

n

)
φj

(
`− 1

n

)
Kn,`(i, j)

}
U(X`−1)

]
.

We now use the fact that φiφj is of class C1 (see Theorem 6.2 (ii)), (32), and (35) to conclude that∣∣∣∣∣ 1n
n−1∑
`=1

φi

(
`

n

)
φj

(
`

n

)
E
(
Kn,`+1(i, j)

[
E
(
D2
` |F`−1

)
− 1
])∣∣∣∣∣

.
1√
n

+
1

n

n−1∑
`=1

E1/2
(
|Kn,`+1(i, j)−Kn,`+2(i, j)|2

)
.

log(n)√
n

.

This proves the claim. It remains to establish (35). Write E` to denote the expectation operator

wrt n−1/2S`:n. We then have for any h1, h2 ∈ RI,

2Kn,` · (h1, h2) = ∇(2)fα,n,`

(
1√
n

B1:`−1D1:`−1

)
· (h1, h2)

= 2

(
n

n− `+ 1

)
E`
[
f ′α

(
1√
n

B1:`−1D1:`−1 +
S`:n√
n

)〈
1√
n

B1:`−1D1:`−1 +
S`:n√
n
, h1

〉
α

〈
S`:n√
n
, h2

〉]
=

(
n− `

n− `+ 1

)
∇(2)fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
S`√
n

)
· (h1, h2) +

(
n

n− `+ 1

)
O

(
1√
n

)
.
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Therefore

2 (Kn,` −Kn,`+1) · (h1, h2) =

∇(2)fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
S`√
n

)
·(h1, h2)−∇(2)fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
B`D`√
n

)
·(h1, h2)

− 1

n− `+ 1
∇(2)fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
S`√
n

)
· (h1, h2) +

(
n

n− `+ 1

)
O

(
1√
n

)
= ∇(3)fα,n,`+1

(
1√
n

B1:`−1D1:`−1 + t
S`√
n

+ (1− t)B`D`√
n

)
·
(
h1, h2,

S`√
n
− B`D`√

n

)
− 1

n− `+ 1
∇(2)fα,n,`+1

(
1√
n

B1:`−1D1:`−1 +
S`√
n

)
· (h1, h2) +

(
n

n− `+ 1

)
O

(
1√
n

)
,

for some t ∈ (0, 1). Using (32) and (33), (35) follows from the above.

6. Appendix

6.1. A weak invariance principle for martingales. We recall a martingale weak invariance

principle from Hall and Heyde (1980) Theorem 4.2. Let {Dn,Fn, n ≥ 0} be a martingale difference

sequence. Set Sk =
∑k

j=1Dj , U
2
k =

∑k
j=1D

2
j , and s2

k =
∑k

j=1 E(D2
j ) (S0 = 0, U2

0 = 0, s2
0 =

0). Consider ζn : [0, 1] → R, the C[0, 1]-valued process obtained by interpolating the points(
0, S0

Un

)
, . . . ,

(
s2k
s2n
, SkUn

)
, . . . ,

(
1, SnUn

)
, where Uk =

√
U2
k .

Theorem 6.1. As n→∞, suppose that

(1) s2
n →∞, and U2

n
s2n

converges almost surely to a random variable that is positive almost surely.

(2) For all ε > 0, s−2
n

∑n
j=1 E

(
D2
j1{|Dj |>εsn}

)
→ 0.

Then ζn, as a random process in C[0, 1] (equipped with the uniform norm), converges weakly to the

standard Brownian motion.

Remark 8. Assumptions A1-A2 imply that the conclusion of Theorem 6.1 holds for the martingale

difference {Dk, 1 ≤ k ≤ n} of Section 2. To see this, notice that for p > 1 as in A1 and for any

M > 0,

E
(
U2
n

n
1{Un>nM}

)
.

(
1

M

)p−1
(

1

n

n∑
k=1

κ2
k

)p
.

Therefore, under A1, n−1U2
n is uniformly integrable. Now, by A2, n−1U2

n converges almost surely

to σ2
?. We conclude that n−1sn = n−1E(U2

n) converges to E(σ2
?) > 0, so that sn → ∞, and U2

n/sn

converges to σ2
?/E(σ2

?). Thus part (1) of the theorem holds. For all ε > 0,

s−2
n

n∑
j=1

E
(
D2
j1{|Dj |>εsn}

)
.

1

s2p
n

n∑
j=1

κ2p
j .

1

np

n∑
j=1

κ2p
j ,

thus part (2) also holds under A2.
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6.2. Mercer’s Theorem. We recall Mercer’s theorem below. Part (i) is the standard Mercer’s

theorem, and part (ii) is a special case of a result due to T. Kadota (Kadota (1967)).

Theorem 6.2 (Mercer’s Theorem). (i): Let k : [0, 1] × [0, 1] → R be a continuous positive

semi-definite kernel. Then there exist nonnegative numbers {λj , j ≥ 0}, and orthonormal

functions {φj , j ≥ 0}, φj ∈ L2([0, 1]), such that
∫ 1

0 k(x, y)φj(y)dy = λjφj(x) for all x ∈
[0, 1], j ≥ 0, and

lim
n→∞

sup
x,y∈[0,1]

∣∣∣∣∣∣k(x, y)−
n∑
j=0

λjφj(x)φj(y)

∣∣∣∣∣∣ = 0.

Furthermore, if λj 6= 0, φj is continuous.

(ii): Let k as above. If in addition k is of class C2 on [0, 1]× [0, 1], then for λj 6= 0, φj is of

class C1 on [0, 1] and

lim
n→∞

sup
x,y∈[0,1]

∣∣∣∣∣∣ ∂2

∂x∂y
k(x, y)−

n∑
j=0

λjφ
′
j(x)φ′j(y)

∣∣∣∣∣∣ = 0.

By setting x = y, in both expansions, it follows that

sup
0≤x≤1

∑
j≥0

λj |φj(x)|2 ≤ sup
0≤x≤1

k(x, x) <∞. (36)

and

sup
0≤x≤1

∑
j≥0

λj |φ′j(x)|2 ≤ sup
0≤x≤1

∣∣∣∣ ∂2

∂u∂v
k(u, v)|u=x,v=x

∣∣∣∣ <∞. (37)

6.3. Proof of Lemma 5.2.

Proof. Set w̃n(0) = 1/n, and for k > 0 integer, w̃n(k) = 2n−1w(k/cn). Then we can rewrite Qn as

Qn =

n∑
k=1

k∑
j=1

w̃n(k − j)h̄(Xk)h̄(Xj).

Using the Poisson’s equation h̄(x) = gθ(x)−Pθgθ(x), it holds almost surely that h̄(Xk) = gθk−1
(Xk)−

Pθk−1
gθk−1

(Xk). Therefore

h̄(Xk)h̄(Xj)−DkDj =
(
h̄(Xk)−Dk

)
h̄(Xj) +Dk

(
h̄(Xj)−Dj

)
=
(
Pθk−1

gθk−1
(Xk−1)− Pθk−1

gθk−1
(Xk)

)
h̄(Xj)

+Dk

(
Pθj−1

gθj−1
(Xj−1)− Pθj−1

gθj−1
(Xj)

)
.

Then setting εn = Qn −
∑n

k=1

∑k
j=1 w̃n(k − j)DkDj , we obtain

εn =
n∑
k=1

k∑
j=1

w̃n(k − j)
(
Pθk−1

gθk−1
(Xk−1)− Pθk−1

gθk−1
(Xk)

)
h̄(Xj)

+
n∑
k=1

k∑
j=1

w̃n(k − j)Dk

(
Pθj−1

gθj−1
(Xj−1)− Pθj−1

gθj−1
(Xj)

)
= %(1)

n + %(2)
n . (38)
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We start with the second term on the right hand side of (38) that yields after some rearrangements

%(2)
n =

n∑
k=1

Dk

k∑
j=1

w̃n(k − j)
(
Pθj−1

gθj−1
(Xj−1)− Pθj−1

gθj−1
(Xj)

)

=
n∑
k=2

Dk

k−1∑
j=1

(w̃n(k − j)− w̃n(k − j + 1))Pθj−1
gθj−1

(Xj−1)


+

n∑
k=2

Dk

k−1∑
j=1

w̃n(k − j)
(
Pθjgθj (Xj)− Pθj−1

gθj−1
(Xj)

)
+ Pθ0gθ0(X0)

n∑
k=1

w̃n(k)Dk + (w̃n(0)− w̃n(1))
n∑
k=1

DkPθk−1
gθk−1

(Xk−1)

− w̃n(0)

n∑
k=1

DkPθk−1
gθk−1

(Xk) = T (1)
n + T (2)

n ,

where T
(2)
n = −w̃n(0)

∑n
k=1DkPθk−1

gθk−1
(Xk). We deal with T

(2)
n below. Notice that T

(1)
n has

the general form
∑n

k=1Bn,kDk, where Bn,k is Fk−1-measurable. Thus by Burkeholder’s inequality

applied to the martingale
∑n

k=1Bn,kDk, we derive after some calculations that∥∥∥T (1)
n

∥∥∥p∧2

p
.

n∑
k=1

‖Bn,kDk‖p∧2
p ≤

n∑
k=1

‖Bn,k‖p∧2
2p κp∧2

k .
1

np∧2

n∑
k=1

{
κk

(
1 + δ

(1)
n,k

)}p∧2
.

The first term on the right hand side of (38) gives

%(1)
n =

n∑
k=1

(
Pθk−1

gθk−1
(Xk−1)− Pθk−1

gθk−1
(Xk)

) k∑
j=1

w̃n(k − j)h̄(Xj)

=
n∑
k=1

(
Pθk−1

gθk−1
(Xk−1)− Pθkgθk(Xk)

) k∑
j=1

w̃n(k − j)h̄(Xj)

+
n∑
k=1

(
Pθkgθk(Xk)− Pθk−1

gθk−1
(Xk)

) k∑
j=1

w̃n(k − j)h̄(Xj).

Then we write

n∑
k=1

(
Pθk−1

gθk−1
(Xk−1)− Pθkgθk(Xk)

) k∑
j=1

w̃n(k − j)h̄(Xj)

=

n∑
k=1

Pθk−1
gθk−1

(Xk−1)


k∑
j=1

w̃n(k − j)h̄(Xj)−
k−1∑
j=1

w̃n(k − 1− j)h̄(Xj)


− Pθngθn(Xn)

n∑
j=1

w̃n(n− j)h̄(Xj).

This implies that

%(1)
n = ε(1)

n +R(1)
n +R(2)

n ,
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where

ε(1)
n =

n∑
k=3

Pθk−1
gθk−1

(Xk−1)
k−2∑
j=1

(w̃n(k − j)− w̃n(k − 1− j)) h̄(Xj),

R(1)
n =

n∑
k=1

(
Pθkgθk(Xk)− Pθk−1

gθk−1
(Xk)

) k∑
j=1

w̃n(k − j)h̄(Xj)− Pθngθn(Xn)
n∑
j=1

w̃n(n− j)h̄(Xj),

and

R(2)
n = w̃n(0)

n∑
k=1

Pθk−1
gθk−1

(Xk−1)h̄(Xk) + (w̃n(1)− w̃n(0))
n∑
k=2

Pθk−1
gθk−1

(Xk−1)h̄(Xk−1).

We gather these terms together and rewrite (38) as

εn = ε(1)
n + T (1)

n +R(1)
n + T (2)

n +R(2)
n . (39)

Using (23) we get:

∥∥∥R(1)
n

∥∥∥
p
≤

n∑
k=1

bk

∥∥∥∥∥∥
k∑
j=1

w̃n(k − j)h̄(Xj)

∥∥∥∥∥∥
2p

+ an

∥∥∥∥∥∥
n∑
j=1

w̃n(n− j)h̄(Xj)

∥∥∥∥∥∥
2p

. n−1
n∑
k=1

bk

(
ak−1 + δ

(1)
n,k + δ

(2)
n,k

)
+ n−1an

(
an−1 + δ(1)

n,n + δ(2)
n,n

)
.

With the same technique we get

‖ε(1)
n ‖p .

1

ncn

n∑
k=2

ak

(
δ

(1)
n,k + δ

(2)
n,k

)
.

Remark 9. In fact, as we shall show later, with additional assumptions, the term ε
(1)
n has better

convergence rate than shown above. See the proof of Theorem 4.1 in Section 5.4.

The last two terms in (39) are

T (2)
n +R(2)

n = −w̃n(0)
n∑
k=1

DkPθk−1
gθk−1

(Xk) + w̃n(0)
n∑
k=1

Pθk−1
gθk−1

(Xk−1)h̄(Xk)

+ (w̃n(1)− w̃n(0))
n∑
k=2

Pθk−1
gθk−1

(Xk−1)h̄(Xk−1). (40)

Replacing h̄(Xk) by gθk−1
(Xk) − Pθk−1

gθk−1
(Xk), the first and third terms on the right hand side

of (40) gives after some easy re-arrangements

− w̃n(0)

n∑
k=1

Pθk−1
gθk−1

(Xk)Dk + (w̃n(1)− w̃n(0))

n−1∑
k=1

Pθkgθk(Xk)h̄(Xk)

= (w̃n(1)− w̃n(0))

n−1∑
k=1

Pθkgθk(Xk)
(
Pθk−1

gθk−1
(Xk−1)− Pθkgθk(Xk)

)
+ %(3)

n ,
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where E1/p(|%(3)
n |p) . n−1anκn + n−1c−1

n

∑n
k=1 akκk + n−1

∑n
k=1 bk(ak + κk). The second term on

the right-hand side of (40) gives

w̃n(0)

n∑
k=1

Pθk−1
gθk−1

(Xk−1)h̄(Xk) = w̃n(0)

n∑
k=1

Pθk−1
gθk−1

(Xk−1)
(
Pθk−1

gθk−1
(Xk−1)− Pθkgθk(Xk)

)
+ %(4)

n

where E1/p
(
|%(4)
n |
)
. n−1

(∑n
k=1(ak−1κk)

p∧2
) 1
p∧2 + n−1

∑n
k=1 ak−1bk. Therefore

T (2)
n +R(2)

n = %(3)
n + %(4)

n + w̃n(0)(Pθ0gθ0(X0))2 − w̃n(0)Pθngθn(Xn)Pθn−1gθn−1(Xn−1)

+ (w̃n(1)− 2w̃n(0))
n−1∑
k=1

Pθkgθk(Xk)Pθk−1
gθk−1

(Xk−1) + (2w̃n(0)− w̃n(1))
n−1∑
k=1

(Pθkgθk(Xk))
2 ,

and ∥∥∥T (2)
n +R(2)

n

∥∥∥
p
.
∥∥∥%(3)

n

∥∥∥
p

+
∥∥∥%(4)

n

∥∥∥
p

+
1

n

(
a2

0 + anan−1

)
+

1

ncn

n∑
k=1

ak(ak + ak−1).

We obtain the lemma by putting all the remainders together. �
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