

JOURNAL OF THE JAPAN STATISTICAL SOCIETY

Vol. 34 (2004), No. 1 pp.101-109

[PDF (156K)] [References]

Exact Distributions of R^2 and Adjusted R^2 in a Linear Regression Model with Multivariate t Error Terms

Kazuhiro Ohtani¹⁾ and Hisashi Tanizaki¹⁾

1) Graduate School of Economics, Kobe University

Abstract: In this paper we consider a linear regression model when error terms obey a multivariate *t* distribution, and examine the effects of departure from normality of error terms on the exact distributions of the coefficient of determination (say, R^2) and adjusted R^2 (say, R^2). We derive the exact formulas for the density function, distribution function and *m*-th moment, and perform numerical analysis based on the exact formulas. It is shown that the upward bias of R^2 gets serious and the standard error of R^2 gets large as the degrees of freedom of the multivariate *t* error distribution (say, v_0) get small. The confidence intervals of R^2 and R^2 are examined, and it is shown that when the values of v_0 and the parent coefficient of determination (say, Φ) are small, the upper confidence limits are very large, relative to the value of Φ .

Key words: adjusted R^2 , exact distribution, interval estimation, multivariate t error terms, R^2

[PDF (156K)] [References]

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Kazuhiro Ohtani and Hisashi Tanizaki; "Exact Distributions of R^2 and Adjusted R^2 in a Linear

Regression Model with Multivariate *t* Error Terms", *JOURNAL OF THE JAPAN STATISTICAL SOCIETY*, Vol. **34**, pp.101-109 (2004).

JOI JST.JSTAGE/jjss/34.101

Copyright (c) 2005 Japan Statistical Society

Japan Science and Technology Information Aggregator, Electronic