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Abstract. From ants [1] and bees [2] to neurons in the brain [3], decen-
tralized systems of agents are capable of making critical choices. Here,
we propose a simple model of a two-part process that decentralized sys-
tems use to make decisions. We use an urn scheme to capture the first
part of the process, in which individual agents randomly search over the
set of feasible choices, biased by the quality of the choices revealed dur-
ing previous searches. We assume that the urn scheme runs only until
a threshold is hit in order to capture the second part of the process, in
which a final choice is triggered when the system senses a quorum of
agents investigating any one particular choice. We find that the combi-
nation of these two elements results in a robust and effective means by
which a decentralized system can make good choices. We further apply
our model to sites with multiple attributes and show that the decision
rule leads to risk-averse decision making. Finally, we model disruptions
in the recruitment process, as are observed in nature, and show that this
mitigates the risk of information cascades.
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1 Introduction

There are a variety of natural systems that have demonstrated the ability to
productively employ a decentralized decision mechanism. Ants and bees appear
to rely on decentralized decision making for critical choices [4]. For example, in
choosing a new nest site – a decision that has huge implications for the survival
of the group – good decisions must be made without central control and with
no single individual evaluating the total available information [5] or any one
individual making direct comparisons of the available options [6]. Thus, even
though individual agents follow simple rules that allow them to uncover very
limited and local information, the colony as a whole is able to seamlessly and
efficiently integrate the resulting flow of information into a high-quality, final
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decision [7]. The process applies similarly to bees [8]. Indeed, the primate brain
may function analogously to a colony of social insects [9].

Our model abstracts beyond any single one of these systems and aims to pro-
vide a deeper understanding of how a decentralized decision mechanism operates
in order to generate insights that apply across many of these natural systems.
Moreover, the fact that many natural systems independently evolved similar de-
centralized decision mechanisms suggests that such mechanisms may represent
a robust solution to the general problem of making good, group-level decisions
in the absence of centralized control. Our analysis is informed by previous sim-
ulations that have revealed that effective collective decision making can emerge
from the aggregation of individual agents obeying simple rules of behavior [10].
Our focus is on the nature of the decision mechanism and its consequences for
the speed and accuracy of the collective decision.

Any decision mechanism must trade off exploring new choices with exploiting
the best choice known to date. While further exploration might reveal superior
choices, it comes at the cost of not picking and acting on a known choice. Thus,
too much exploration may lead to indecisiveness and thus harm fitness, while
too little may imply the acceptance of sub-optimal choices. There is evidence
that ants adapt their quorum threshold rule in response to the urgency of the
need to abandon their old nest [11]. The tradeoff between speed and accuracy
in decentralized decision making has been studied in the diffusion model of de-
cision making [9]. The diffusion model shares much in common with our urn
model, including a mechanism to integrate local information without centralized
processing, but it does not incorporate positive feedbacks in the accumulation
of evidence for a given choice.

2 The Model

2.1 Search and Recruitment

Agents (e.g., scouts) explore one of many possible choices (e.g. nectar sources
for honey bees or nest sites for ants) and then return home to recruit additional
agents to further explore the choice they have investigated. A Poisson process
for each agent governs its return home, and the recruitment of additional scouts
corresponds to rewards based on the value of the explored choice.

We assume that there are C potential choices, and that each of these choices,
c, has some number of agents wtc investigating it at any time t. We refer to
wtc as the weight on choice option c at time t. All weights are initially set to
the same, positive value w0. Each agent is equally likely to return home at any
time, and when one does, it recruits additional agents to continue exploring the
same choice it just investigated. The chance of an agent recruiting for choice c
at time t is thus simply proportional to the weight wtc. Each choice has a set of
immutable attributes that define its “quality,” and the extent of recruitment for
choice c depends on the quality of that choice. After an agent investigates choice
c, it recruits vc additional agents to continue exploring it, increasing the weight
on this choice by vc. We think of vc as a measure of the quality of choice c.



2.2 Quorom Detection

The search process above generates a distribution of agents investigating each
possible choice at any given time. Given the decentralized nature of these sys-
tems, there must be some feasible trigger that ends the search process and fi-
nalizes the choice. One possible solution to this problem would be to have the
search probabilities converge on a consensus, that is, have all of the probabil-
ity concentrated on a single choice. Forcing such a consensus on the system is
problematic. First, such convergence may be extremely slow, in which case the
system may not be able to make a decision in time to avoid a serious loss of
fitness. Second, there would need to be some plausible, decentralized mechanism
by which the system as a whole could recognize that such a convergence has
occurred, and such a mechanism is not obvious. Finally, we have empirical evi-
dence, at least in the case of honey bees [2], that consensus is not what triggers
a choice. Instead, in the case of honey bees, an irrevocable choice seems to be
made once the number of scout bees at a particular site reaches a quorum.

Based on the above arguments, we incorporate into our model a quorum
threshold, τ , that triggers as the final decision any choice that is being inves-
tigated by at least that number of agents. The level of the quorum threshold
has important implications for the decisions that arise in the system. If the
threshold is set too high, then a quorum may not be reached for a long time,
resulting in prolonged inaction. If the threshold is set too low, then a quorum
might be achieved for a suboptimal choice. Thus, the optimal choice of the quo-
rum threshold depends on a critical tradeoff between speed and accuracy in the
decision making process. From a normative standpoint, a good threshold allows
the system to withstand various transients in the probability distribution over
time while still remaining responsive to the acquired information in a timely
manner.

2.3 The Urn Scheme

We use a simple Polya urn process to model this decision mechanism. This
process is easy to visualize. Assign to each of the C choices a color, and place
w0 balls of each color into an urn. The number of balls of a particular color in
the urn corresponds to the number of agents investigating the associated choice
option. Each ball has the same rate at which it may be randomly drawn from
the urn. When a ball with color c is drawn, it is immediately placed back into
the urn along with vc identically-colored balls. This process continues until a
threshold number of balls τ is reached. We want to understand how the mix of
balls evolves over time.

3 Computational Results

To explore the effects of parameter variation and the introduction of noise into
the process, we run computational simulations of the proposed mechanism using



Python.3 While the process described above runs in continuous time, we can
identify discrete time steps marked every time an agent returns home to recruit
(i.e., every time a ball is drawn from the urn). Let the index µ count the number
of agents that have returned home for a visit, and denote the time when the µth

agent returns home as tµ. When there are w agents exploring the set of possible
choices, the expected time until the next agent returns home is 1

wλ . Setting
λ = 1

Cw0 , which amounts to normalizing the units of time so that E[t1] = 1, we
have

E[tµ+1 − tµ |
∑
c

wtµc = w] =
Cw0

w
.

Each simulation reports the average time until decision T (τ) and probability of
optimal choice pc∗(τ) as a function of the quorom threshold τ , based on 100, 000
trials.

3.1 The Baseline Model

We first establish a baseline, in which all targets initially have one agent recruit-
ing. The rate at which new agents join is 2 for the single high quality target and
1 for one or more low quality targets. Figure 1 shows the share of outcomes in
which the high quality site is the first to reach the threshold as a function of the
threshold and a function of continuous time.

We first observe in Figure 1 (top) that the process selects the high quality
target at a significantly higher rate than pure chance even for a very low thresh-
old of 5. The greatest marginal improvements occur early on, up to a threshold
of 50 with two targets. Increasing the number of potential targets decreases the
likelihood of picking the optimal site. With high thresholds, however, adding
more targets has only a very small effect. Even for small thresholds, the differ-
ence is not nearly as big as we would expect by chance. This suggests that the
decision algorithm converges quickly and that it effectively deals with multiple
unattractive options. Plotting the baseline as a function of time (Figure 1, bot-
tom) shows that adding more targets increases the time required to reach a given
accuracy of picking the high quality target (vertical distance). The additional
time required appears to increase linearly in the number of targets.

3.2 Disrupting Recruitment

We now introduce some probability (pD) with which recruitment for all sites
is disrupted at discrete time intervals. In Figure 2, we show simulation results
for pD = {0.05, 0.10, 0.15, 0.20}. Adding some chance of disruption makes it less
likely that the mechanism settles on the optimal target. For pD = 0.20, higher
thresholds lower the likelihood of choosing the optimal target, because a growing
number of simulations fails to achieve the quorum and no decision is made. These
results suggest that there is no benefit to disrupting agents’ recruitment efforts
given the baseline assumptions.

3 The source code – along with the simulation data and the R code to produce all
figures in this paper – is available at http://www.dhagmann.com/presentations/

http://www.dhagmann.com/presentations/
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Fig. 1. Share of optimal decisions with 2, 3, and 4 targets. The high quality site recruits
2 new agents, the low quality sites recruit 1.
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Fig. 2. Share of optimal decisions with 2, 3, and 4 targets, and a probability of disrup-
tion of 0, 0.05, 0.10, 0.20



3.3 Changing Quality Differentials

The high quality target has so far been twice as attractive as the low quality
targets. We now introduce a medium quality target and set the number of agents
recruited for the three qualities as follows: an agent recruiting for a high quality
target adds 3 new agents upon its return, an agent recruiting for a medium
quality site adds 2 new agents, and an agent recruiting for a low quality site
adds 1 new agent. Figure 3 shows the likelihood of picking the high quality
target if there is one high quality target and two low quality targets, vs. one
high, one medium, and one low quality target.
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Fig. 3. Likelihood of selecting a high quality site when the choice set consists of a high
quality and two low quality sites vs. one high, one medium, and one low quality site.

Introducing a medium quality site significantly reduces the likelihood that
the high quality target is selected. Surprisingly, increasing the threshold does
not diminish this difference and does not allow the high quality site to catch
up. We again observe that disruption reduces the likelihood of picking the high
quality target. However, the magnitude of the impact is considerably smaller if
there is a medium quality site.

3.4 Noisy Information

Until now, each target increased the number of agents recruiting by a fixed
amount. We now introduce some noise into the process and compare the algo-
rithm’s performance with a condition without noise. The simulation is initialized



with one high quality target and two low quality targets. In the condition with-
out noise, the rates of increase are 2 and 1, respectively, for the high and low
quality targets. In the condition with noise, the high quality target has a 25%
chance of adding 3 agents, a 50% chance of adding 2 agents, and a 25% chance
of adding 1 agent. The low quality targets have a 25% chance of adding 2 agents,
a 50% chance of adding 1 agent, and a 25% chance of adding no agent. Figure
4 compares the likelihood of picking a high quality in the two conditions. In-
troducting noise decreases slightly the likelihood of choosing the high quality
target, consistently across all thresholds. As before, introducing disruption de-
creases the rate with which the desirable site is chosen. However, disruption has
no effect on the relative performance of noise vs. no noise.
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Fig. 4. Likelihood of selecting a high quality site with noise vs. no noise.

3.5 Multiple Attributes

We now consider target attributes along two dimensions. A particular site may
be of high quality in one attribute and of low quality in another or it may be
of average quality in both. Of interest is whether the decision algorithm is more
likely to select a site with a high quality and a low quality attribute (the “risky”
target) with the same expected value as a site with two attributes of the same
quality (the “safe” target). An agent recruiting for the risky target will add
either 3 agents or 1 agent with equal probability. An agent recruiting for the



safe target always adds 2 agents. We also add a low quality target that always
adds 1 agent. The likelihood of picking the risky and the safe target are shown in
figure 5. The results show that the target with average attributes is more likely
to reach any given threshold before does the target with a high and a low quality
attribute. Moreover, adding disruption does not favor either type of choice.
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Fig. 5. The decision algorithm is more likely to select a target with average attributes
than one in which one attribute is high and another is low.

3.6 Information Cascades

Finally, we test the robustness of the decision algorithm to making mistakes early
on. In particular, we can imagine an information cascade in which a low quality
site is selected early on and ends up gaining a lead that the high quality site
cannot catch up to. We simulate this by setting the number of agents initially
recruiting for a high and low quality site to 1 and 3, respectively. The high
quality site again recruits 2 new agents upon selection and the low quality site
recruits 1 new agent. Figure 6 shows the likelihood that the high quality target
is selected using various rates of disruption.

We now see a benefit of disrupting recruitment efforts. Given a low threshold
and an initial advantage to a low quality site, introducing the possibility of
disrupting agents and dropping them from the decision process allows the system
to self-correct. As the threshold used increases, the optimal rate of disruption
decreases. With large thresholds (T > 100), the process again does best without
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Fig. 6. Likelihood of picking high quality target when there is one high quality and
one low quality target, starting off with 1 and 3 agents, respectively, recruiting for it.

disruptions. This suggests that for small groups, where high thresholds are not
achievable, may do best by introducing a process to reset some agents.

4 Conclusion

The natural systems we have outlined appear to have found a low-cost, efficient,
and robust mechanism by which a decentralized organization can make key de-
cisions. Modeling the decision process using a Polya urn process allows us to
replicate the quorum rule and incorporate positive feedbacks. This decentralized
decision mechanism may have useful applications in the design of new social and
artificial systems. Novel applications for such a mechanism range from improv-
ing human organizations to applying such techniques to artificial systems like
algorithmic search and the control of swarms of robots or networked computers.
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Appendix: Analytical Results

We can describe this Polya process with a diagonal C × C matrix with the vc
values along the diagonal. The evolution of the number of balls of a given color
is independent of the evolution of other colors (until the threshold is hit). Thus,
we can use existing results to obtain the distribution of balls of each color at any
time t (in the absence of a threshold for stopping the process). The moment gen-

erating function φc(t, s) = E
[
esw

t
c

]
is given by φc(t, s) =

(
evc(s−t)

evc(s−t)−evcs+1

)w0

vc

(see Lemma 3.1 of [12]). In principle, this moment generating function fully
characterizes the distribution of weights wtc. In practice, however, calculating
the likelihood of hitting a threshold τ at a given time t is complicated.

An asymptotic result is simple enough to obtain. Suppose the threshold τ is
infinite so that the Polya process can run forever. Eventually, almost all of the

weight converges on the choice with the highest quality. As t → ∞,
wtc
evct

D−→
Gamma

(
w0

vc
, vc

)
(see Theorem 3.1 of [12]). Thus, if there is a unique optimal

choice c∗ = arg maxc vc, then

lim
t→∞

wtc∑
j w

t
j

=

{
1 if c = c∗

0 otherwise.

While the asymptotic properties of the urn process are informative, as dis-
cussed above, feasible decentralized systems must make decisions in a finite
amount of time. Let λ denote the intensity of the Poisson process for each agent’s
return home. We have an Exponential(λ) distribution for the time until a given
agent returns home, and thus at any time t we have an Exponential(wtcλ) distri-
bution for the time until additional agents are recruited to explore choice c. Thus,
the time until the number of agents exploring choice c hits the threshold τ is the
sum of independent exponentially distributed variables with arithmetically in-
creasing parameters. That is, this time Tc(τ) has the Hypoexponential(λ0, λ1, . . . , λn)
distribution with

λi =
(
w0 + ivc

)
λ for all i (1)

and
w0 + nvc < τ ≤ w0 + (n+ 1)vc. (2)

Equation (2) implies

n = ceiling

(
τ − w0

vc

)
− 1. (3)

The hypoexponential density (pdf) is f(t) =
∑n
i=0 Ci,nλie

−λit with Ci,n =∏
j 6=i

λj
λj−λi . Taking n and λ1, . . . , λn to be functions of c and τ given by Equa-

tions (1) and (3), this gives us the density fc,τ (t) for each Tc(τ).
We can use the density functions for the Tc(τ) variables to get at the quan-

tities of interest in the system. The time until a decision is made by the decen-
tralized system is T (τ) = minc Tc(τ). The probability that the eventual decision
is for choice c is pc(τ) = Pr [Tc(τ) < minc′ 6=c Tc′(τ)].
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