Peter W. Glynn Home Short Bio Vita Academic Tree

Research Publications Students

Courses

MS&E121 MS&E321 MS&E322 MS&E323

Tail Asymptotics for the Maximum of Perturbed Random Walk

V. Araman and P. W. Glynn

Annals of Applied Probability, Vol. 16, 1411-1431 (2006)

AramanG06.pdf

Consider a random walk $S = (S_n:n \ge 0)$ that is "perturbed" by a stationary sequence $(\xi_n:n \ge 0)$ to produce the process $(S_n + \xi_n:n \ge 0)$. This paper is concerned with computing the distribution of the all-time maximum $M_{\infty} = \max \{S_k + \xi_k:k \ge 0\}$ of perturbed random walk with a negative drift. Such a maximum arises in several different applications settings, including production systems, communications networks and insurance risk. Our main results describe asymptotics for $P(M_{\infty} > x)$ as $x \to \infty$. The tail asymptotics depend greatly on whether the ξ_n 's are light-tailed or heavy-tailed. In the light-tailed setting, the tail asymptotic is closely related to the Cramér–Lundberg asymptotic for standard random walk.