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Abstract. We discuss the solution of regularized linear programs using a primal-dual barrier
method. Our implementation is based on indefinite Cholesky-type factorizations of full and reduced
KKT systems. Regularization improves the stability of the Cholesky factors and allows infeasibility
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1. Introduction. We consider primal-dual interior methods (barrier methods)
for solving sparse linear programs of the form

minimize
x

cTx subject to Ax = b, l ≤ x ≤ u.(1)

Most of the computational work lies in solving large indefinite systems of linear equa-
tions (KKT systems) to obtain search directions. We focus on techniques for making
these solves stable and efficient.

Following Vanderbei [Van95], we employ sparse Cholesky-type factorizations rather
than more stable indefinite solvers (which are typically less efficient [FM93, DR95]).
To make best use of existing and future Cholesky packages, we perturb or “regularize”
the LP problem as in Gill et al. [GMPS94]; see (4) below. This gives KKT matrices
of the form

K =

(

−H AT

A δ2I

)

, H ≡ Dx + γ2I,(2)

where γ and δ are specified scalars and Dx is a positive semidefinite diagonal ma-
trix that changes every iteration. If γ and δ are sufficiently positive, the triangular
factorization

PKPT = LDLT, D diagonal but indefinite(3)

exists for any permutation P , even in the presence of rounding error. Thus, P may
be chosen purely to preserve sparsity, and the same P may be used for all iterations.
In effect, K can be treated as if it were positive definite.

We have three aims in the present work. First, we explore the use of reduced
KKT systems [GMPS94]. These are formed by pivoting “manually” on some of the
diagonals of H (associated with sparse columns in A) and applying a sparse Cholesky
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package to the remaining indefinite matrix. We find that some such reduction is
usually more efficient than full reduction to the familiar matrix AH−1AT + δ2I, but
the optimal choice is problem-dependent.

Second, we vary the regularization parameters γ and δ over a wide range, to
determine values that give stable performance in practice. On scaled problems with
machine precision ε ≈ 10−16, we find that γ = δ = 10−3 is always reliable and that
smaller values often suffice. In addition, δ = 1 proves effective on infeasible models.

Finally, we examine the effect of regularization on the “Cross-over to Simplex”,
i.e., solution of the original (unperturbed) problem by the simplex method [Dan63],
starting from the barrier solution. We find that “sufficiently stable” values of γ and
δ do not affect Cross-over greatly in most cases.

2. Regularized LP. Most of our discussion applies to regularized linear pro-
grams of the form

minimize
x, p

cTx+ 1
2
‖γx‖2 + 1

2
‖p‖2

subject to Ax+ δp = b, l ≤ x ≤ u,
(4)

where the scalars γ and δ are specified and are usually “small”. We assume that the
problem has been scaled so that ‖A‖ ≈ 1, ‖b‖ ≈ 1 and ‖c‖ ≈ 1. In most of our
experiments, γ and δ range from 10−2 to 10−6.

Problem (4) is really a convex quadratic program. Throughout, we could re-
place the term 1

2
‖γx‖2 by 1

2
xTQx, where Q is symmetric and positive definite. The

terms γ2I below would become Q. We envisage Q = Q0 + γ2I, where Q0 is positive
semidefinite with perhaps many empty rows and columns.

Also, the term δp could be replaced by Mp for any matrix M . All terms δ2I
below would become MMT. For example, M could be diagonal with all diagonal
entries larger than some positive δ. Our statements about stability and sparsity are
true for that case.

Note that setting δ = 1 leads to a meaningful algorithm for solving bound-
constrained least-squares problems of the form

minimize
x

cTx+ 1
2

∥

∥

∥

∥

∥

(

A

γI

)

x−
(

b

0

)∥

∥

∥

∥

∥

2

subject to l ≤ x ≤ u.(5)

This has proved successful in the context of Basis Pursuit methods for de-noising
images [Chen95].

Finally, note that (4) is a completely general form for linear programs, suitable for
use with the industry-standard MPS format. The matrix A generally contains many
unit columns associated with slack variables on inequality rows, and x includes such
variables. Slacks on equality rows are specifically excluded (but the δ term covers all
rows).

In LOQO [Van94], Vanderbei includes a slack for every row of A, with zero upper
and lower bounds on equality rows. Algorithmically, this provides much of the effect of
our δ regularization without perturbing the problem. (However, the effect diminishes
as the solution is approached.) The γ regularization could be included explicitly
because LOQO handles quadratic programs, but it is not yet standard practice for
linear programs. Precautions must therefore be taken in LOQO when P is chosen in
the Cholesky-type factorization (3).
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3. The Newton equations. Following Megiddo [Meg89], Mehrotra [Meh90],
Lustig et al. [LMS92], Forrest and Tomlin [FT92], Kojima et al. [KMM93] and others,
we apply an infeasible primal-dual predictor-corrector algorithm to problem (4). The
nonlinear equations defining the central trajectory are p = δy and

x− s = l,
x+ t = u,
SZe = µe,
TWe = µe,

ATy + z − w = c+ γ2x,
Ax+ δ2y = b,

µ > 0,
s, t, z, w > 0,

(6)

where e is a vector of ones, S = diag(sj), and similarly for T , Z, W . (If l and u
contain infinite entries, the corresponding equations are omitted.)

The primal-dual algorithm uses Newton’s method to generate search directions
from equations of the form

∆x−∆s = û = (l + s)− x,
∆x+∆t = v̂ = (u− t)− x

S∆z + Z∆s = g = µe− Sz,
T∆w +W∆t = h = µe− Tw,

−γ2∆x+AT∆y +∆z −∆w = d = c+ γ2x−ATy − z + w,
A∆x+ δ2∆y = r = b−Ax− δ2y.

(7)

Eliminating ∆s and ∆t gives











I −I −γ2I AT

S Z

T −W
A δ2I





















∆z

∆w

∆x

∆y











=











d

ĝ

ĥ

r











,(8)

where ĝ = g+Zû and ĥ = h−Wv̂. As shown in a companion paper [ST96], (8) may
be reduced in a reasonably stable manner to the KKT system

(

−H AT

A δ2I

)(

∆x

∆y

)

=

(

d̄

r

)

,(9)

where H = S−1Z+T−1W + γ2I and d̄ = d−S−1ĝ+T−1ĥ. The eliminated variables
are then recovered from

q = d+ γ2∆x−AT∆y,

(S + T )∆w = ĝ + ĥ− Sq + (W − Z)∆x,
∆z = ∆w + q,
∆s = ∆x− û,
∆t = v̂ −∆x,

(10)

Individual equations simplify in (9)–(10) if a component of l or u is infinite, but all
cases lead to a similar KKT system (9).
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4. The effect of γ and δ. Regularization of a problem generally implies some
benefit in terms of the problem itself or methods for solving it (e.g., uniqueness of the
solution, or algorithmic simplicity).

Here, if γ and δ are both positive, problem (4) is feasible for any data (assuming
l ≤ u), and the primal and dual solutions are bounded and unique. Similarly, the
Newton equations have a nonsingular Jacobian, and the KKT systems are nonsingular.
One is tempted to conclude that some degree of regularization is only sensible. Indeed,
this is why it was used in [GMPS94].

In practice, moderate regularization produces most of the benefits if the unper-
turbed problem is feasible. Our results are mainly for that case. Infeasible examples
are discussed in §8.

5. Least-squares formulation. When γ > 0 and δ > 0, the KKT system (9)
can be written as the least-squares problem

min

∥

∥

∥

∥

∥

(

DAT

δI

)

∆y −
(

Dd̄

r/δ

)∥

∥

∥

∥

∥

, rLS ≡ D(d̄−AT∆y),(11)

where D ≡ H−1/2 and rLS is the associated residual vector. Thus, regularization al-
lows us to analyze the KKT systems using known theory about least-squares problems
(e.g., [Bjo96]).

5.1. Sensitivity. The sensitivity of ∆y to data perturbations depends on the
condition of the associated normal matrix N . We have

N = AD2AT + δ2I,

D2 = (S−1Z + T−1W + γ2I)−1,

‖N‖ ≤ ‖A‖2/γ2 + δ2,

‖N−1‖ ≤ 1/δ2,

cond(N) ≤ ‖A‖2/(γδ)2 + 1 ≈ ‖A‖2/(γδ)2,

and it is sensible to compute ∆y with machine precision ε as long as cond(N)¿ 1/ε.
With ‖A‖ ≈ 1, we can expect ∆y to be well defined as long as

γδ À
√
ε.(12)

The residual vector is less sensitive than ∆y to perturbations. Since ∆x = −DrLS ,
it seems likely that ∆x will also be well defined if (12) holds.

5.2. Stability. Let the KKT system (9) be denoted by

Kv = d, K =

(

−(Dx + γ2I) AT

A δ2I

)

,(13)

and let v̄ be the computed solution (used to form the search directions). Also, let
relerr ≡ ‖v− v̄‖/‖v‖ denote the relative error in v̄. Our particular method for solving
with K depends greatly on γ and δ being sufficiently large. For analyses of the
accuracy attainable without regularization, see Wright [Wri95, Wri96].

As described in the Introduction, we can allow a black-box Cholesky package
to compute the indefinite Cholesky-type factorization PKP T = LDLT (3) for any
ordering P . The necessary stability analysis follows from [GV79, GSS96, Sau96]. In
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particular, when the factors are used to solve Kv = d, relerr is bounded in terms of
an “effective condition number” of the form

Econd(K) ≈ ‖A‖2/(γδ)2.(14)

With ‖A‖ ≈ 1, this means that v̄ will have at least some digits of precision if (12) is
again satisfied: γδ À √ε. When γ = δ and ε = 10−16, typical values are as follows:

γ, δ Bound on relerr

10−2 10−8

10−3 10−4

4× 10−4 10−2

10−4 1

(15)

We see that the accuracy of the computed search directions may fall rapidly with the
size of the regularization parameters. The value γ = δ = (100ε)1/4 ≈ 4×10−4 appears
to be as small as one should risk, while γ = δ = 10−3 gives a more comfortable margin
(four digits of accuracy) with only slighter greater perturbation of the LP.

A concern is that (15) bounds the norm of the error, but not necessarily the
relative error in individual components of the search direction. Analysis along the
lines of [Wri95, Wri96] may be needed, but empirically the individual errors appear to
be sufficiently small (because the steplengths and rate of convergence remain good).

6. Reduced KKT systems. The KKT system (9) can often be solved by forc-
ing a block pivot on all of (diagonal) H and allowing a black-box Cholesky package
to process the resulting normal equations AH−1AT∆y = AH−1d̄+ r. This has been
standard procedure for most interior-point LP codes (which do not employ regulariza-
tion), and its numerical stability without regularization is analyzed by Wright [Wri95].
For regularized LP problems, it is clearly stable if γ and δ are sufficiently large, even
when A is rank deficient. However, it may be unsatisfactory when AH−1AT or the
Cholesky factor L are excessively dense—commonly as a result of A containing one
or more relatively dense columns.

Reduced KKT systems [GMPS94] are a compromise between the full KKT system
and the normal equations approach, formed by block pivoting on part of H (say HS).
When the regularization parameters are large enough, this partition can be based
solely on the sparsity of the associated columns of A.

Let A be partitioned as (AS AD ), where the columns of AD contain ndense or
more nonzeros, and partition H, ∆x and d̄ accordingly. Pivoting on HS (the first
part of H) gives a reduced KKT system of the form

Kr

(

∆xD

∆y

)

=

(

d̄D

r̂

)

, Kr ≡
(

−HD AT
D

AD ASH
−1
S AT

S + δ2I

)

,(16)

where r̂ = r+ASH
−1
S d̄S . A black-box factorization PKrP

T = LDLT may be used to
solve for (∆xD,∆y). Finally we solve HS∆xS = AT

S∆y − d̄S .
Acceptable values for ndense and P can be specified empirically for most prob-

lems. However, a more elaborate procedure might be useful in some situations. For
example, ndense = 100 may be successful for most cases (treating most columns of
A as sparse), but if ordering and symbolic factorization of Kr indicate that L will
exceed available storage, values such as 50, 20, 15, 10, 5, 1 could be tried in turn.
Some intermediate value will probably be optimal. We report on experiments with
the ndense parameter in §7.1.
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7. Numerical results. Our regularized LP implementation is based on OSL,
the IBM Optimization Subroutine Library [OSL]. It is the same implementation that
we used for experiments on stable reduction of the Newton-type equations (described
in a companion paper [ST96]). The following substantial modifications were required
to the OSL primal-dual predictor-corrector barrier code [FT92] and the Cholesky
factorization routines:

• Incorporation of regularization parameters to accommodate the LP form (4).
• Solution of full or reduced KKT systems (with normal equations becoming a

special case).
• Computation of sparse LDLT factors rather than LLT, where D is diagonal

but indefinite.

Though it would have been possible to investigate the behavior of regularized LPs
while retaining the normal equations approach, we felt it important to implement
reduced KKT systems in order to handle dense columns directly. The approach also
extends naturally to quadratic programs.

As test problems we used a subset of the Netlib collection [Gay85], namely all
problems with more than 1000 equations (with the exception of stocfor3, which is in
inconvenient form). In Tables 1–4, the problems are sorted according to the number
of nonzeros in A. All models were scaled but not presolved, to simplify comparison
with other implementations.

The tests were performed on an IBM RS/6000 workstation (model 550) with
machine precision ε ≈ 10−16.

7.1. Reduced KKT systems. We first report on the use of reduced KKT sys-
tems (16). The “Dense Column threshold” ndense affects the number of nonzeros
in the Cholesky factor L. Table 1 gives results for ndense = 0, 5, 10, 20, 50, ∞.
Note that ndense = ∞ leads to the normal equations, and ndense = 0 corresponds
to working with the full KKT system, except that we have always treated the logical
(unit) columns of A as sparse (and pivoted on their diagonal of H), regardless of the
value of ndense.

The ordering of the reduced KKT matrices was performed using the original
Watson Graph Partitioning package of Gupta [Gup96]. The minimum values for
each problem are marked by an asterisk. No single value of ndense is best for all
problems (despite the large number of ties), but a value of 20 seems to be best (or
nearly best) overall and we adopt it from now on. Note that problem fit2p has some
completely dense columns (3000 elements) and thus will not solve satisfactorily when
ndense =∞, since L is dense.

7.2. Regularization. The next important question to be determined numeri-
cally is appropriate values for the regularization parameters γ and δ. In these ex-
periments we set both parameters to a common value, to place equal emphasis on
minimizing ‖x‖ and ‖y‖. We expect to observe two phenomena:

• As γ and δ decrease, the condition of the reduced KKT systems will deterio-
rate and at some point the indefinite Cholesky factorization may fail.

• As γ and δ increase, the solution of the regularized problem will be further
from that of the underlying LP.

Hence, the aim must be to find values that are large enough to maintain stability
without perturbing the original problem too much. As discussed above, the value
γ = δ = 4 × 10−4 should be (just) safe on scaled data. We also experimented with
values of 10−6, 10−5, 10−4, 10−3 and 10−2.
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Table 1
Nonzeros in LDLT factors of the reduced KKT matrix Kr. Smallest values are marked by ∗.

Dense Column threshold
0 5 10 20 50 ∞

ship12s 23270 6517 6418∗ 6418∗ 6418∗ 6418∗

ship12l 34807 11591 12009∗ 12009∗ 12009∗ 12009∗

sierra 21626 13906∗ 13906∗ 13906∗ 13906∗ 13906∗

sctap2 24986 17932 15377∗ 15377∗ 15377∗ 15377∗

sctap3 35253 24387 22304∗ 22304∗ 22304∗ 22304∗

stocfor2 30998 30407 31463 25577∗ 25577∗ 25577∗

ganges 30714 22848 22848 20802∗ 20802∗ 20802∗

fit2p 50584 37084∗ 37084∗ 37084∗ 37084∗ –
80bau3b 80221 45015 44690 42406∗ 42406∗ 42406∗

woodw 113895 82924 53968 51237 49435∗ 49435∗

greenbea 148645 149939 88942 76707∗ 77340 77340
greenbeb 139265 140612 89623 79917 77666∗ 77666∗

bnl2 97878 101447 88817∗ 88817∗ 88817∗ 88817∗

cycle 74362 72038 56481 53628∗ 54951 54951
degen3 169368 166857 160581 127189 124127∗ 124127∗

d2q06c 132616 119412 102579 92249 88024∗ 88024∗

pilot 237222 224441 220709 204847 192903∗ 198864
pilot87 499841 498203 472463 479501 458917 431253∗

dfl001 2430093 1800383 1569817∗ 1597468 1597468 1597468

Barrier iterations were terminated when the relative gap between the (regularized)
primal and dual objectives was below 10−8, or the total complementarity sTz + tTw
(suitably normalized) was below 10−12. The barrier algorithm was also summarily
terminated if the Cholesky factorization failed; i.e., if the element to be pivoted on
fell below 10−12. In all such cases we have examined so far, the prospective pivot has
cancelled to zero.

7.3. Cross-over. After termination of the barrier algorithm, the final primal
and dual solution is used by the default OSL Cross-over procedure to obtain an
optimal solution and basis for the original LP. The time and number of basis changes
in Cross-over seemed the most practical way to determine the “closeness” of the
regularized solution to a true basic optimum.

Tables 2–4 give iteration counts and times for the Barrier and Cross-over portions
of each run. We also give the number of correct digits in the objective value cTx for
the regularized LP solution (compared to the true optimal objective). This number
is marked by an f if the barrier algorithm terminated with a pivot failure in the
Cholesky factorization. We see that there is no failure when γ, δ ≥ 4× 10−4, as our
analysis led us to expect.

The smaller and easier problems in Table 2 are remarkably insensitive to the
parameter values, as are most problems in Table 3 (with the exception of 80bau3b).
The larger problems in Table 4 show more sensitivity (particularly degen3, pilot87 and
dfl001), though surprisingly, the interior regularized solution often seems to provide
a good starting solution for Cross-over even when it has been halted by pivot failure.

Again it is difficult to find one ideal set of values for the parameters. Setting
γ = δ = 10−2 is very safe, but may be too great a perturbation for some problems. (It
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Table 2
Effect of γ, δ on Barrier time and Cross-over to Simplex.

Barrier Obj Cross-over Total

γ, δ Itns Time Digits Itns Time Time

ship12s 10−6 19 4.1 10. 138 .7 5.4

10−5 22 4.6 8. 138 .7 5.9

10−4 24 5.0 5. 138 .7 6.3

4× 10−4 25 5.2 4. 138 .7 6.6

10−3 25 5.1 3. 138 .7 6.5

10−2 24 5.0 9. 94 .4 6.0

ship12l 10−6 19 7.2 9. 170 1.3 9.7

10−5 19 7.2 7. 170 1.3 9.7

10−4 25 9.1 5. 170 1.3 11.6

4× 10−4 27 9.8 4. 170 1.3 12.3

10−3 26 9.4 3. 169 1.3 11.9

10−2 25 9.1 1. 177 1.9 12.2

sierra 10−6 22 5.0 7. 539 1.3 7.0

10−5 22 5.0 6. 539 1.3 7.1

10−4 24 5.4 4. 541 1.3 7.5

4× 10−4 23 5.2 2. 539 1.3 7.3

10−3 23 5.2 2. 527 1.3 7.2

10−2 23 5.1 1. 519 1.6 7.5

sctap2 10−6 14 3.1 10. 382 .8 4.4

10−5 14 3.1 10. 380 .7 4.4

10−4 16 3.4 7. 382 .7 4.7

4× 10−4 17 3.6 5. 247 .6 4.8

10−3 18 3.8 5. 227 .6 5.0

10−2 21 4.3 7. 209 .5 5.4

sctap3 10−6 15 4.5 10. 321 1.5 6.7

10−5 15 4.5 10. 321 1.5 6.7

10−4 17 4.9 6. 523 1.2 6.9

4× 10−4 19 5.4 5. 321 1.1 7.2

10−3 20 5.6 4. 320 1.0 7.4

10−2 22 6.1 2. 304 1.0 7.9

stocfor2 10−6 22 7.2 9. 1103 4.5 12.3

10−5 22 7.2 10. 1210 4.8 12.6

10−4 22 7.2 8. 1211 4.8 12.7

4× 10−4 22 7.2 6. 1211 4.7 12.6

10−3 23 7.4 6. 1211 4.8 12.9

10−2 23 7.4 3. 1256 5.0 13.1

ganges 10−6 19 4.3 7. 452 2.6 7.5

10−5 19 4.2 5. 451 2.5 7.3

10−4 20 4.5 3. 453 2.5 7.5

4× 10−4 21 4.6 2. 455 2.6 7.7

10−3 21 4.6 2. 439 2.6 7.8

10−2 24 5.3 9. 220 1.0 6.8

is disastrous here for dfl001.) Values of 10−4 or smaller lead to failure on some models
and give relatively small advantages in terms of closeness of the optimal solutions even
when there is no failure. A value of 4 × 10−4 is (just) safe but seems to give little
advantage in closeness of the solution over a choice of 10−3 in most cases. The latter
seems to be the safest choice.
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Table 3
Effect of γ, δ on Barrier time and Cross-over to Simplex.

Barrier Obj Cross-over Total

γ, δ Itns Time Digits Itns Time Time

fit2p 10−6 23 21.4 10. 6225 282.8 308.2

10−5 23 21.4 9. 6232 282.7 308.1

10−4 23 21.4 7. 6225 282.8 308.3

4× 10−4 23 21.4 6. 6232 282.7 308.0

10−3 23 21.4 5. 6232 282.6 308.1

10−2 21 19.6 3. 7271 269.3 293.0

80bau3b 10−6 18 16.0 0.f 15602 66.4 84.7

10−5 19 16.8 0.f 15254 61.3 80.3

10−4 25 21.1 0.f 14185 56.5 79.8

4× 10−4 56 43.1 6. 1402 11.4 56.9

10−3 64 48.9 5. 1393 11.6 62.7

10−2 50 37.7 4. 1737 13.7 53.7

woodw 10−6 28 20.1 7. 3941 61.2 83.7

10−5 29 20.6 6. 3673 55.1 78.1

10−4 34 23.8 4. 3319 51.2 77.3

4× 10−4 32 22.5 3. 3344 48.2 73.0

10−3 31 21.9 2. 3458 54.2 78.4

10−2 34 23.8 0. 3813 60.9 87.0

greenbea 10−6 37 28.9 3. 1561 8.4 39.4

10−5 42 32.4 3. 1534 8.3 42.8

10−4 40 31.0 3. 1523 8.3 41.4

4× 10−4 40 31.0 2. 1611 10.6 43.7

10−3 39 30.3 2. 1847 17.1 49.4

10−2 37 28.9 1. 5127 53.8 84.8

greenbeb 10−6 47 35.5 8. 1744 11.4 48.9

10−5 49 36.8 6. 1777 11.5 50.2

10−4 46 34.8 4. 1759 11.8 48.6

4× 10−4 50 37.4 3. 1761 12.1 51.5

10−3 52 38.8 3. 1744 11.7 52.5

10−2 45 34.1 2. 2875 24.6 60.7

bnl2 10−6 39 27.0 7. 935 3.8 32.3

10−5 37 25.6 6. 952 3.9 31.0

10−4 37 25.6 5. 933 3.9 31.0

4× 10−4 38 26.3 4. 908 3.9 31.8

10−3 38 26.2 3. 931 4.1 31.9

10−2 35 24.3 2. 1116 7.4 33.3

cycle 10−6 32 16.5 10. 1075 4.9 22.8

10−5 46 22.7 9. 1102 6.4 30.4

10−4 39 19.6 4. 1265 7.1 28.1

4× 10−4 38 19.2 4. 657 3.6 24.1

10−3 41 20.5 4. 1279 8.0 29.8

10−2 36 18.2 0. 1261 6.6 26.1

It should be remembered that other circumstances may argue for a different choice
of γ and δ. For example, these experiments were carried out on un-presolved models
with ndense = 20. Many of the models are significantly rank deficient (without reg-
ularization). This can be substantially remedied by an appropriate Presolve, leading
to less likelihood of pivot failure. Similarly, the existence of several “dense” columns
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Table 4
Effect of γ, δ on Barrier time and Cross-over to Simplex.

Barrier Obj Cross-over Total

γ, δ Itns Time Digits Itns Time Time

degen3 10−6 22 26.7 2.f 1499 11.7 39.7

10−5 18 22.9 3.f 1033 7.4 31.6

10−4 26 30.6 5. 1030 8.0 39.8

4× 10−4 26 29.9 6. 948 7.4 38.6

10−3 26 29.9 5. 948 7.4 38.6

10−2 23 27.1 3. 1088 8.5 36.9

d2q06c 10−6 35 30.6 9. 884 7.4 40.2

10−5 32 28.1 8. 902 7.4 37.7

10−4 33 28.9 6. 898 7.5 38.5

4× 10−4 34 29.8 5. 900 8.0 40.0

10−3 34 29.8 4. 908 7.8 39.7

10−2 33 28.9 2. 1210 15.5 46.6

pilots 10−6 48 79.7 8. 766 17.7 100.2

10−5 50 82.9 6. 661 14.0 99.6

10−4 44 73.5 4. 589 11.2 87.5

4× 10−4 40 67.4 3. 615 14.9 85.0

10−3 39 65.8 3. 640 17.4 86.0

10−2 33 56.5 3. 1275 37.7 97.0

pilot87 10−6 39 208.5 4.f 1256 55.8 268.7

10−5 39 208.5 5.f 876 34.2 247.0

10−4 38 199.1 6.f 860 36.1 239.6

4× 10−4 40 208.9 5. 852 27.2 240.6

10−3 38 199.0 4. 921 29.2 232.6

10−2 35 184.5 2. 1149 48.0 236.9

dfl001 10−6 34 1129.1 2.f 7398 195.9 1328.0

10−5 34 1129.8 2.f 6557 167.3 1299.9

10−4 47 1533.4 5. 5567 112.5 1648.7

4× 10−4 47 1503.5 6. 5887 124.0 1630.4

10−3 44 1411.0 5. 7321 163.5 1577.4

10−2 46 1472.0 2. 29602 1033.1 2508.1

in some of the more difficult models (when ndense = 20) means that there is a chance
of these being permuted to the front of the reduced KKT matrix, leading to pivots
on “naked” δ2 values. This might be avoided by a larger choice of ndense (though
the aim of regularization is to make any ordering safe). Finally, the parameter choice
might be influenced by the relative efficiency of the Cross-over procedure. We have
made no attempt to use any of the OSL tuning parameters to affect this, and instead
used the defaults.

8. Infeasible problems. If a problem is known to be infeasible, we can set δ = 1
and solve the least-squares problem (5). Most emphasis is then placed on trying to
satisfy Ax = b (with l ≤ x ≤ u).

We experimented with the non-trivial infeasible Netlib problems, using γ = 10−3

and two values of δ in order to obtain a comparison. Table 5 summarizes the results.

With δ = 1, we see that the barrier method converged remarkably quickly in all
cases, much as we would expect with feasible problems. It appears that this is an
efficient method of confirming infeasibility.
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With δ = 10−3, all problems behaved satisfactorily except klein3. For that prob-
lem, the iterates exhibited the symptoms of being not sufficiently interior. (The
search directions were computed with reasonable accuracy, but they were not good
directions. Many short steps were taken and the iteration limit was exceeded.) Note
however that Cross-over finished quite quickly.

Thus in practice, a question remains about models that are being solved for the
first time. Infeasibility is best detected by setting c = 0, δ = 1 and γ = 10−3, 10−4 or
10−5 (say), but if the problem is actually feasible, the final point is not very useful for
optimizing the true objective. Conversely, the true c and γ = δ = 10−3 are effective
if the problem is feasible, but otherwise there is a risk of slow convergence.

Table 5
Results for infeasible models with δ = 1 and 10−3 (when γ = 10−3).

Barrier Itns Barrier Time Cross-over Itns Cross-over Time

δ = 1 10−3 δ = 1 10−3 δ = 1 10−3 δ = 1 10−3

ceria3d 16 46 8.3 30.1 1188 1432 13.4 13.4

chemcom 15 77 1.0 7.6 135 234 .4 .3

cplex1 20 22 8.4 9.1 1255 1899 5.5 10.4

forest 17 23 .2 .3 62 20 .1 .0

gosh 28 52 82.4 142.5 1987 3378 69.7 35.9

gran 22 23 15.4 16.0 2339 899 39.2 17.1

greenbea 35 49 27.4 37.1 505 1855 2.2 13.2

klein2 20 52 1.1 3.4 47 54 .3 .4

klein3 22 100 2.8 17.8 79 87 1.0 1.0

pang 20 27 1.4 1.9 299 156 .9 .3

pilot4i 20 38 2.6 5.7 1010 248 7.1 .8

qual 16 21 .9 1.2 340 177 1.5 .8

reactor 20 40 1.4 3.7 109 122 .3 .2

refinery 16 45 .8 3.1 282 154 .9 .3

vol1 16 20 .9 1.0 382 165 3.9 .4

9. Conclusions. Our experiments show that regularized LPs can be solved ef-
fectively by interior methods, using Cholesky-type LDLT factorizations of full or re-
duced KKT systems without resorting to more stable indefinite solvers. In general,
adequate stability is achieved without severely perturbing the problem (as measured
by the effort required by Cross-over to obtain a basic optimal solution).

Use of reduced KKT systems is a way to limit the size of the fundamental linear
systems to be solved, while overcoming the difficulties that arise for problems with
dense columns. Use of arbitrary density thresholds, while satisfactory in practice,
clearly leaves room for improvement. Recognition of the KKT structure as an integral
part of the ordering and symbolic factorization is an area we plan to pursue in further
research.

For infeasible LP problems (1), the regularized problem (4) is sometimes useful.
To confirm infeasibility, the choice δ = 1 appears to be effective if c = 0 or if the
barrier solution is followed by Cross-over. If c 6= 0, setting δ = 1 provides a solution
to the least-squares problem (5), but we cannot be sure of satisfying Ax = b closely
even if a feasible point exists.

For general LP problems, the homogeneous algorithms of Ye et al. [YTM94,
XHY96] appear to be very successful in allowing for infeasibility. Incorporation of
regularization into that approach seems another promising line of future research.
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