
SOLUTION OF SPARSE LINEAR EQUATIONS

USING CHOLESKY FACTORS OF AUGMENTED SYSTEMS∗

ALAN GEORGE† AND MICHAEL A. SAUNDERS‡

Abstract. Cholesky factorizations have reached a high peak of efficiency for solving sparse
symmetric systems, largely because their Analyze and Factor phases do not conflict. We explore the
possibility of using Cholesky packages to solve sparse unsymmetric systems Ax = b by computing
indefinite LDLT factors of a regularized augmented system twice the size of A.

The same approach applies to rectangular systems (as an alternative to sparse Cholesky on ATA
or sparse QR on A). Here we focus on square systems and compare with sparse LU factorization, for
which Analyze and Factor do conflict. On data from the Harwell-Boeing collection, we find that LU
factors of A are usually more efficient, but the new approach performs reasonably on sparse banded
systems such as those arising from 2-D and 3-D finite-difference grids.

Key words. sparse linear equations, direct methods, unsymmetric matrices, indefinite matrices,
Cholesky factors, augmented systems, regularization

AMS subject classifications. 65F05, 65F50, 65N22

1. Introduction. We focus on direct methods for solving general unsymmetric
systems of linear equations

Ax = b,(1.1)

where A is a sparse, nonsingular matrix of order n (with n ≤ 106, say). Square
systems of this kind are typically handled by sparse LU software (notably MA48
[DR93] and SuperLU [DGL99, DGLL]). Row and column orderings can usually be
found to preserve sparsity and stability in the LU factors and to make effective use of
the hardware on present-day machines. The main disadvantage is that for any given
A, the storage and computation requirements cannot be predicted with certainty.

For symmetric positive-definite systems, sparse Cholesky factorizations have also
reached a high peak of efficiency (e.g., [DR95, Rot96]). Symmetric orderings can
usually be found to preserve sparsity; stability is guaranteed, and the storage require-
ments can be determined in advance. To capitalize on these advantages, our aim is
to solve unsymmetric systems (1.1) in a way that allows use of black-box Cholesky
packages.

Of course, sparse Cholesky is often effective on the normal equations ATAx = ATb.
However, iterative refinement with the Cholesky factors may not give full precision
in the computed x [Bjo67]. Also, ATA or its Cholesky factors are sometimes unac-
ceptably dense, even if A has no obviously dense rows. Sparse QR or LU packages
would give better precision, but they tend to be inefficient in the same cases as sparse
Cholesky.

We seek improved sparsity (and full precision) by applying sparse Cholesky to
regularized augmented systems Kδδz = d, as described below.

∗This is a revision of Report SOL 99-1 [Sau99]. First presented at the 7th Householder Sym-
posium, Pontresina, Switzerland, 1996. This research was partially supported by National Science
Foundation grant DMI-9500668, Office of Naval Research grants N00014-96-1-0274 and N00014-98-
1-0299-A00002, and the Natural Science and Engineering Research Council of Canada.

†Dept of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1 (jageorge
@sparse3.uwaterloo.ca).

‡Dept of Management Science and Engineering, Stanford University, Stanford, CA 94305-4026
(saunders@stanford. edu). Draft October 26, 2000

2 ALAN GEORGE and MICHAEL SAUNDERS

2. The RAS Method. Consider the following regularized normal equations,
where δ is a scalar and c is some vector, possibly zero:

(ATA+ δ2I)x = ATb− δc, (AAT+ δ2I)s = Ac+ δb.(2.1)

If δ is small (and A is square and nonsingular), we may regard these systems as
perturbations of Ax = b and ATs = c. More generally, they are equivalent to the
least-squares problems

min
x

∥

∥

∥

∥

∥

(

A

δI

)

x−
(

b

−c

)∥

∥

∥

∥

∥

2

2

, min
s

∥

∥

∥

∥

∥

(

AT

δI

)

s−
(

c

b

)∥

∥

∥

∥

∥

2

2

,(2.2)

which may be solved simultaneously via the following regularized augmented system:

(

δI A

AT −δI

)(

s

x

)

=

(

b

c

)

≡ Kδδz = d.(2.3)

We make use of the Cholesky-type factorization

PKδδP
T = LDLT ,(2.4)

where P is a permutation, L is unit lower triangular, and D is diagonal but indefi-
nite. Although Kδδ is indefinite, it is symmetric quasi-definite [Van95] and in exact
arithmetic its LDLT factors exist for any permutation P . Hence, P may be chosen for
sparsity reasons alone, as for Cholesky on definite systems. We find that Kδδ is better
conditioned than ATA+ δ2I and AAT+ δ2I, and its Cholesky factors are potentially
more sparse. Also, in finite precision the factors may be computed with “sufficient ac-
curacy” if δ is not too small, and they may be used to implement iterative refinement
for slightly different systems,

(

δ1I A

AT −δ2I

)(

s

x

)

=

(

b

c

)

≡ Kδ1δ2z = d,(2.5)

with δ1, δ2 ≥ 0. We therefore propose the following method.

Algorithm RAS to solve Ax = b and possibly ATs = c.
1. Choose δ > 0 and compute the Cholesky-type factorization (2.4).
2. Solve Kδδz = d (2.3) to obtain approximate solutions to Ax = b and ATs = c.
3. Refine Kδδz = d to solve the least-squares problems (2.2) more accurately.
4. Refine K0δz = d to solve Ax = b more accurately.
5. Refine K00z = d to solve Ax = b and ATs = c more accurately.

If Step 4 is performed, one could set c = 0. In Step 4 or 5, one could use 0 < δi ¿ δ
if residual norms of order δi are considered small enough.

2.1. Previous work. Use of the system Kδδz = d (2.3) was suggested in [Sau95,
Sau96] for both square and rectangular systems. It was motivated by Vanderbei’s
indefinite LDLT factorizations in LOQO [Van94, Van95] and by the stability analyses
in [GV79, GSS96]. Further stability analysis is given by Mathias [Math92]. When
applied to our matrix Kδδ, the results of [Math92] and [GSS96] both indicate that
LDLT factorizations of Kδδ should be sufficiently stable as long as ‖A‖/δ is not too
large.

SOLVING SPARSE EQUATIONS USING CHOLESKY FACTORS 3

System (2.3) has been used to implement a primal-dual barrier method for reg-
ularized linear programs within the mathematical programming system OSL [Sau96,
ST96, OSL]. In this context, “A” is a rectangular matrix of the form D̄ĀT , where D̄
is diagonal and Ā is the constraint matrix in the linear program. A sequence of prob-
lems is solved in which D̄ and hence “A” become increasingly ill-conditioned. With
δ ≈ 10−4‖A‖, reliable performance has been obtained without the aid of iterative
refinement.

Here we focus on systems where A is square, and we examine the convergence of
iterative refinement when δ ≈ 10−7‖A‖.

3. Condition of Kδδ. Let A be n× n with singular values σ1 ≥ σ2 ≥ · · · ≥ σn,
so that ‖A‖ = σ1 and cond(A) = σ1/σn. Also, let

B1 =

(

A

δI

)

, B2 =

(

AT

δI

)

, N = ATA+ δ2I.

The eigenvalues of Kδδ in (2.3) are λi(Kδδ) = ±
√

σ2
i + δ2, so that

cond(Kδδ) =
√

(σ2
1 + δ2)/(σ2

n + δ2)

= cond(B1) = cond(B2) =
√

cond(N).

Thus when A is square, x and s in (2.2) are defined by least-squares problems with
the same condition. Also, if A is square and nonsingular, x and s are well-defined for
any b and c, even if δ → 0. (This is the principal difference from the rectangular or
singular case.)

In practice we expect to have 0 < δ < ‖A‖. The condition of A is typically not
known, but we see that it affects the condition of Kδδ as follows:

If A is well-conditioned (σn > δ), cond(Kδδ) ≈ cond(A).
If A is ill-conditioned (σn < δ), cond(Kδδ) ≈ ‖A‖/δ.(3.1)

3.1. Effective condition with indefinite factors. As noted above, LDLT

factors of Kδδ exist for any ordering P , the same as for definite systems. The factor-
izations may be somewhat unstable, but following [GV79, Math92, GSS96] we find
that errors in computed solutions of systems Kδδz = d are bounded by an “effective
condition number”, Econd(Kδδ). This is proportional to the true condition number,
magnified by a factor that happens to be ‖A‖/δ [Sau95]. From (3.1), the following
hold when A is square:

If A is well-conditioned (σn > δ), Econd(Kδδ) ≈ (‖A‖/δ) cond(A).
If A is ill-conditioned (σn < δ), Econd(Kδδ) ≈ (‖A‖/δ)2.(3.2)

With machine precision ε, we can expect to solve Kδδz = d accurately (perhaps with
the aid of iterative refinement) as long as Econd(Kδδ) < 1/ε.

3.2. Well-conditioned A. If A is reasonably well-conditioned, (3.2) implies
that refinement will converge if δ > ‖A‖ cond(A)ε. On current machines with 64-bit

4 ALAN GEORGE and MICHAEL SAUNDERS

arithmetic, this means we can achieve residuals as follows:

cond(A) ‖b−Ax‖/‖b‖
≥ 108 10−7

106 10−9

104 10−11

102 10−13

10 10−14

If we really want to solve Ax = b, we can use LDLT factors of Kδδ to refine the
systems

(

A

AT −δI

)(

s

x

)

=

(

b

c

)

or

(

A

AT

)(

s

x

)

=

(

b

c

)

.

In exact arithmetic, refinement converges with any δ > 0, and the convergence is
rapid if δ < 0.5σmin(A), say. In practice, we can achieve the following:

cond(A) ‖b−Ax‖/‖b‖
≤ 107 10−15

3.3. Ill-conditioned A. When A is ill-conditioned (cond(A) > 1/
√
ε), (3.2)

implies that we must have δ > ‖A‖√ε for refinement of Kδδz = d to converge. This
means we can achieve ‖b − Ax‖/‖b‖ ≈ 10

√
ε ≈ 10−7 regardless of the condition of

A. (If 128-bit precision becomes commonplace, the achievable residual will be about
10−15.)

4. Preconditioning iterative methods. For the rare cases where iterative
refinement fails, we consider using LDLT factors of Kδδ to generate a preconditioner
for certain iterative solvers.

4.1. SYMMLQ. We propose applying SYMMLQ [PS75] to the symmetric in-
definite system

(

A

AT −δI

)(

s

x

)

=

(

b

0

)

,

using the positive definite preconditioner C = L|D|LT .

4.2. LSQR.

Kδδ = Kδ1δ2 = LDLT

K−1
δδ =

(

δ(AAT+ δ2I)−1 (AAT+ δ2I)−1A

(ATA+ δ2I)−1AT −δ(ATA+ δ2I)−1

)

.

Note that

(

0 I
)

K−1
δδ

(

I

0

)

= (ATA+ δ2I)−1AT ≈ A−1.

SOLVING SPARSE EQUATIONS USING CHOLESKY FACTORS 5

Hence define

C =
(

0 I
)

(LDLT)−1

(

I

0

)

≈ A−1.

• Refine K0δ

(

s

x

)

=

(

b

0

)

using Kδδ = LDLT (as before).

• Apply LSQR to (AC)∆y = b−Ax.
• Set ∆x = C∆y. Set x = x+∆x.

5. Numerical results. Here we give results for solving square systems Ax = b
by three different methods: LU, AS and RAS.

As test data we used the optimal basis matrices from some of the Netlib linear
programming (LP) problems [Gay85], and most of the unsymmetric examples in the
Harwell-Boeing collection [DGL89, DGL92], now conveniently available from the Ma-
trix Market [MM96]. Genuine values were available for the nonzeros in A. We applied
geometric-mean scaling (several passes through the columns and rows of A) to ensure
that ‖A‖ ≈ 1. We then defined b = Ae, where e is a vector of 1s, and we set c = 0.

Double precision arithmetic was used (ε ≈ 10−16), and cpu times are for a DEC
Alpha 3000/400 workstation. The regularization used for Kδδ in (2.3) was δ = 10−6.

5.1. AS versus RAS. To compare the AS and RAS methods we used the MA47
package of Duff and Reid [DR95, DR96b] to factorize K0 = LBLT and Kδδ = LDLT.
The threshold pivoting parameter was set to pivtol = 0.01 and 0.0 respectively.

Storage-wise, Table 5.1 shows that the LBLT factorizations of K0 perform well
for most of the LP bases, especially for ones that are somewhat triangular. (The
shell basis is exactly triangular.) Indeed, the number of nonzeros is comparable to
the LU factors of A (Table 5.3). However, pilots shows considerable fill-in during the
Factor phase, and Table 5.2 shows that for both Analyze and Factor, MA47’s LDLT

factorizations of Kδδ were always more efficient than LBLT.
Similar experience with MA47 is reported by Duff [Duf94] on augmented systems

constructed from rectangular LP matrices.
The same trend is shown on the Harwell-Boeing matrices, many of which have a

sparse banded structure common to finite-difference systems arising from PDEs. After
sherman5 strained the workstation limits, we didn’t run LBLT on larger examples.
(We tried pivtol = 10−6 on sherman5 and found that the LBLT Factor nonzeros
decreased from 942000 to 588000, and the Factor time decreased from 806 seconds to
180. However, the computed x had no digits of accuracy.)

These results show the RAS method to be quite promising.

5.2. LU versus RAS. Two efficient packages for solving unsymmetric systems
Ax = b are SuperLU (Demmel et al. [DGL99, DGLL]) and MA48 (Duff and Reid
[DR93, DR96a]).

Here we used MA48’s Analyze and First-factorize with pivtol = 0.01 to obtain
A = LU , and compared with the RAS method of (2.3): MA47 factorizing Kδδ =
LDLT. This is a fair comparison for any given matrix A.

(If there are further matrices with exactly the same sparsity pattern, both ap-
proaches can economize by omitting their Analyze phase. MA48’s First-factorize
makes use of the row and column orderings from Analyze, but may alter the row
permutation to retain stability (perhaps losing some sparsity in the factors). MA48’s
Fast-factorize keeps the orderings from Analyze (perhaps sacrificing stability). In

6 ALAN GEORGE and MICHAEL SAUNDERS

contrast, the RAS method retains the same sparsity and stability for all matrices of
the same sparsity pattern, assuming they are well scaled.)

Returning to single systems, Tables 5.3 and 5.4 show that A = LU is signifi-
cantly more efficient than Kδδ = LDLT on the LP examples and for some of the
Harwell-Boeing matrices (especially orani678). However, on the sparse banded sys-
tems (sherman5 and later), the trend is reversed. The number of LU nonzeros is
rather similar to the number of LDLT nonzeros. For the last six examples, the RAS
method is significantly more efficient.

5.3. Residuals and errors. Table 5.5 lists residuals and errors for the LU
and RAS methods. From the LU results we can estimate that the largest condition
numbers were cond(A) ≈ 105 for greenbea, fs 760 3 and lnsp3937, and cond(A) ≈ 107

for gre 1107. In all cases, the LU and RAS methods achieved ‖b− Ax‖/‖b‖ ≤ 10−12

and 10−9 respectively, which seems adequate in practice. The errors in x are certainly
larger for the RAS method (10−2 for the last two cases), but with these moderate
condition numbers, iterative refinement would have reduced the largest residuals and
errors significantly.

SOLVING SPARSE EQUATIONS USING CHOLESKY FACTORS 7

Table 5.1

Nonzeros for K0 = LBLT and Kδδ = LDLT (MA47, pivtol = 0.01 and 0.0 respectively).

Analyze Factor

LBLT LDLT LBLT LDLT

shell 2577 2577 7762
25fv47 6354 Same 16018 20568
stair 7632 as 8371 34598
greenbea 9584 Factor 17215 52248
pilotja 19714 20386 101154
degen3 27261 35455 163514
pilots 43090 126121 198698

west0655 6167 10117 33596
west2021 13805 17033 44863
nnc1374 30292 62229 73393
gemat12 60677 82094 142228
steam2 48592 89188 91528
fs 760 3 26848 139666 79976
pores 2 39707 216628 101426
sherman5 138061 941853 305715

Table 5.2

Times for K0 = LBLT and Kδδ = LDLT .

Analyze Factor

LBLT LDLT LBLT LDLT

shell .06 .10 .02 .02
25fv47 .36 .12 .27 .09
stair .22 .19 .43 .14
greenbea 1.29 .19 .74 .30
pilotja .58 .54 1.47 .46
degen3 2.65 1.86 3.74 1.56
pilots 5.44 1.31 20.20 2.60

west0655 .28 .11 .33 .13
west2021 1.96 .28 3.48 .14
nnc1374 1.22 .31 2.75 .28
gemat12 1.09 .65 1.93 .46
steam2 .13 .28 2.32 .68
fs 760 3 1.54 .27 31.35 .49
pores 2 2.47 .27 144.60 .62
sherman5 9.15 1.20 806.47 3.04

8 ALAN GEORGE and MICHAEL SAUNDERS

Table 5.3

Nonzeros for A = LU (MA48, pivtol = 0.01) and Kδδ = LDLT (MA47, pivtol = 0.0).

Factor

n LU LDLT

shell 537 3006 7762
25fv47 357 13194 20568
stair 822 9386 34598
greenbea 2393 16870 52248
pilotja 941 27354 101154
degen3 1504 37850 163514
pilots 1442 88977 198698

west0655 655 8603 33596
west2021 2021 17998 44863
nnc1374 1374 47297 73393
gemat12 4929 89541 142228
steam2 600 75786 91528
fs 760 3 760 50639 79976
pores 2 1224 62078 101426
gre 1107 1107 66145 170913
jpwh 991 991 69726 156322
mcfe 765 116273 117728
orani678 2529 190211 464924
sherman5 3312 282956 305715
orsreg 1 2205 294085 412200
watt 2 1856 346499 295907
sherman3 5005 490741 531832
lns 3937 3937 721472 569300
lnsp3937 3937 595816 568353

SOLVING SPARSE EQUATIONS USING CHOLESKY FACTORS 9

Table 5.4

Times for A = LU (MA48, pivtol = 0.01) and Kδδ = LDLT (MA47, pivtol = 0.0).

Analyze Factor

LU LDLT LU LDLT

shell .00 .10 .01 .02
25fv47 .04 .12 .02 .09
stair .06 .19 .03 .14
greenbea .08 .19 .02 .30
pilotja .11 .54 .03 .46
degen3 .22 1.86 .07 1.56
pilots 1.37 1.31 .35 2.60

west0655 .04 .11 .02 .13
west2021 .08 .28 .03 .14
nnc1374 .28 .31 .15 .28
gemat12 .47 .65 .17 .46
steam2 .43 .28 .33 .68
fs 760 3 .34 .27 .21 .49
pores 2 .43 .27 .23 .62
gre 1107 .56 .44 .36 1.74
jpwh 991 .30 .42 .38 1.87
mcfe .83 1.16 .69 1.34
orani678 1.86 86.16 .66 10.56
sherman5 4.11 1.20 2.98 3.04
orsreg 1 3.75 .86 2.76 4.94
watt 2 2.57 .74 5.40 3.00
sherman3 9.95 1.25 8.71 6.84
lns 3937 13.50 1.37 12.73 5.09
lnsp3937 22.76 1.31 10.99 5.12

10 ALAN GEORGE and MICHAEL SAUNDERS

Table 5.5

Residuals ‖b−Ax‖/‖b‖ and errors ‖x− e‖ for computed x via A = LU (MA48, pivtol = 0.01)

and Kδδ = LDLT (MA47, pivtol = 0.0).

‖b−Ax‖/‖b‖ ‖x− e‖
LU LDLT LU LDLT

shell 1e-15 4e-13 3e-14 1e-07
25fv47 7e-16 1e-12 2e-14 3e-09
stair 1e-16 1e-12 3e-13 2e-07
greenbea 1e-16 2e-10 1e-11 7e-04
pilotja 6e-16 1e-11 7e-14 8e-06
degen3 1e-15 3e-14 8e-15 5e-10
pilots 2e-15 1e-11 2e-12 7e-08

west0655 4e-14 6e-11 1e-12 1e-06
west2021 5e-14 3e-11 5e-14 7e-07
nnc1374 4e-14 2e-09 7e-11 8e-03
gemat12 1e-13 1e-09 8e-12 8e-04
steam2 5e-17 8e-16 2e-15 5e-14
fs 760 3 4e-13 1e-09 3e-08 5e-02
pores 2 1e-13 1e-09 4e-12 1e-07
gre 1107 3e-13 7e-12 1e-06 9e-03
jpwh 991 2e-16 2e-12 8e-17 1e-11
mcfe 5e-14 3e-15 2e-14 1e-14
orani678 3e-15 2e-11 3e-11 2e-06
sherman5 9e-13 1e-10 1e-11 2e-08
orsreg 1 7e-14 3e-12 2e-13 8e-11
watt 2 1e-12 2e-11 3e-11 1e-07
sherman3 3e-12 1e-11 3e-11 8e-07
lns 3937 3e-13 2e-10 7e-09 4e-02
lnsp3937 5e-13 2e-10 3e-08 4e-02

6. Conclusions. Developers of sparse QR packages normally have rectangular
systems in mind [GN84, Mats92, Mats94, Sun96]. In general they would be surprised
to find that they could compete with sparse LU packages on square systems Ax = b.

Similarly, the augmented-system approach is normally suited to rectangular sys-
tems, but in this paper we restricted ourself to square systems in order to compare
with sparse LU. On the Harwell-Boeing test set, a surprise did eventuate—the RAS
approach of (2.3) proved to be more efficient than MA48’s First-factorize A = LU on
sparse banded systems, such as those arising from discretized Navier-Stokes equations.
Iterative methods such as GMRES [SS86] are normally applied to such problems (since
they are often far larger than the examples used here). Perhaps the RAS approach
will be a useful direct method for solving smallish examples without concerns about
stagnation, and for obtaining preconditioners for larger cases.

The primary benefit of the RAS approach to unsymmetric Ax = b is that it can
utilize any new sparse LDLT package (as long as D is allowed to have negative ele-
ments!). Storage and work are determined by the Analyze phase, and small residuals
are attainable regardless of the condition of A.

SOLVING SPARSE EQUATIONS USING CHOLESKY FACTORS 11

Acknowledgements. We thank Iain Duff and John Reid for providing MA47
and MA48 for the experiments described. Comments from Iain Duff on the 1996 draft
are also gratefully acknowledged.

REFERENCES

[Adl99] M. Adlers, Computing sparse orthogonal factors in Matlab, Report LiTH-MAT-R-
1998-19, Department of Mathematics, Linköping University, Linköping, Sweden
(1999).

[Bjo67] Å. Björck, Iterative refinement of linear least squares solutions I, BIT, 7 (1967), 257–
278.

[Bjo96] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[DEG99] J. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li and J. W. H. Liu, SIAM J. Matrix

Anal. Appl., 20(3) (1999) 720–755.
[DGL99] J. Demmel, J. R. Gilbert and X. S. Li, SIAM J. Matrix Anal. Appl., 20(4) (1999)

915–952.
[DGLL] , The SuperLU library, http://www.nersc.gov/˜xiaoye/SuperLU/, 1999.
[Duf94] I. S. Duff, The solution of augmented systems, in D. F. Griffiths and G. A. Watson

(eds.), Numerical Analysis 1993, Longman, UK, 1994, 40–55.
[DGL89] I. S. Duff, R. G. Grimes and J. G. Lewis, Sparse matrix test problems, ACM Trans.

Math. Softw., 15(1) (1989), 1–14.
[DGL92] , User’s guide for the Harwell-Boeing sparse matrix collection, Technical Report

TR/PA/92/86, ftp://ftp.cerfacs.fr/pub/harwell boeing/userguide.ps.Z, 1992.
[DR93] I. S. Duff and J. K. Reid, MA48, a Fortran code for direct solution of sparse un-

symmetric linear systems of equations, Report RAL 93-072, Rutherford Appleton
Laboratory, Oxfordshire, England, 1993.

[DR95] , MA47, a Fortran code for direct solution of indefinite symmetric systems of
linear equations, Report RAL 95-001, Rutherford Appleton Laboratory, Oxfordshire,
England, 1995.

[DR96a] , The design of MA48, a code for the direct solution of sparse unsymmetric linear
systems of equations, ACM Trans. Math. Softw., 22 (1996), 187–226.

[DR96b] , Exploiting zeros on the diagonal in the direct solution of indefinite sparse sym-
metric linear systems, ACM Trans. Math. Softw., 22 (1996), 227–257.

[Gay85] D. M. Gay, Electronic mail distribution of linear programming test problems, Mathe-
matical Programming Society COAL Newsletter, 13 (1985), 10–12.

[GN84] A. George and E. Ng, SPARSPAK: Waterloo Sparse Matrix Package; User’s guide
for SPARSPAK-B, Report CS-84-37, Department of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, 1984.

[GSS96] P. E. Gill, M. A. Saunders and J. R. Shinnerl, On the stability of Cholesky factor-
ization for quasi-definite systems, SIAM J. Mat. Anal., 17(1) (1996), 35–46.

[GV79] G. H. Golub and C. F. Van Loan, Unsymmetric positive definite linear systems, Linear
Algebra Appl., 28 (1979), 85–98.

[Math92] R. Mathias, Matrices with positive definite Hermitian part: inequalities and linear sys-
tems, SIAM J. Matrix Anal. Appl., 13(2) (1992), 640–654.

[Mats92] P. Matstoms, QR27: Specification Sheet, Department of Mathematics, University of
Linköping, Linköping, Sweden, 1992.

[Mats94] , Sparse QR factorization in MATLAB, ACM Trans. on Math. Softw., 20(1) (1994),
136–159.

[MM96] The Matrix Market, Web pages and tools, R. Boisvert, R. Pozo, K. Remington, R.
Barrett and J. Dongarra, http://math.nist.gov/MatrixMarket/, 1996.

[OSL] OSL, Optimization Subroutine Library, IBMWatson Research Center, Yorktown Heights,
NY.

[PS75] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numerical Analysis, 12 (1975), 617–629.

[Rot96] E. Rothberg, Performance of panel and block approaches to sparse Cholesky factoriza-
tion on the iPSC/860 and Paragon multicomputers, SIAM J. Sci. Comput., 17(3)
(1996), 699–713.

[SS86] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving unsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856–
869.

[Sau95] M. A. Saunders, Solution of sparse rectangular systems using LSQR and CRAIG, BIT,

12 ALAN GEORGE and MICHAEL SAUNDERS

35 (1995), 588–604.
[Sau96] , Cholesky-based methods for sparse least squares: The benefits of regularization,

in L. Adams and J. L. Nazareth (eds.), Linear and Nonlinear Conjugate Gradient-
Related Methods, SIAM, Philadelphia, 92–100, 1996.

[Sau99] , Solution of sparse linear equations using Cholesky factors of augmented systems,
Report SOL 99-1, Dept of EESOR, Stanford University, 9 pages.

[ST96] M. A. Saunders and J. A. Tomlin, Solving regularized linear programs using barrier
methods and KKT systems, Report SOL 96-4, Department of EESOR, Stanford
University, Stanford, CA, 1996.

[Sun96] C. Sun, Parallel sparse orthogonal factorization on distributed-memory multiprocessors,
SIAM J. Sci. Comput., 17(3) (1996), 666–685.

[Van94] R. J. Vanderbei, LOQO: An interior-point code for quadratic programming, Report
SOR 94-15, Department of Statistics and Operations Research, Princeton University,
Princeton, NJ, 1994.

[Van95] , Symmetric quasi-definite matrices, SIAM J. Optim., 5(1) (1995), 100–113.

