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Abstract

We construct the first schemes that allow a client to privately outsource arbitrary program
executions to a remote server while ensuring that: (I) the client’s work is small and essentially
independent of the complexity of the computation being outsourced, and (II) the server’s work is
only proportional to the run-time of the computation on a random access machine (RAM), rather
than its potentially much larger circuit size. Furthermore, our solutions are non-interactive and
have the structure of reusable garbled RAM programs, addressing an open question of Lu and
Ostrovsky (Eurocrypt 2013). We also construct schemes for an augmented variant of the above
scenario, where the client can initially outsource a large private and persistent database to the
server, and later outsource arbitrary program executions with read/write access to this database.

Our solutions are built from non-reusable garbled RAM in conjunction with new types of
reusable garbled circuits that are more efficient than prior solutions but only satisfy weaker
security. For the basic setting without a persistent database, we can instantiate the required type
of reusable garbled circuits from indistinguishability obfuscation or from functional encryption
for circuits as a black-box. For the more complex setting with a persistent database, we can
instantiate the required type of reusable garbled circuits using stronger notions of obfuscation.
It remains an open problem to instantiate these new types of reusable garbled circuits under
weaker assumptions, possibly avoiding obfuscation altogether.

We also give several extensions of our results and techniques to achieve: schemes with
efficiency proportional to the input-specific RAM run-time, verifiable outsourced RAM compu-
tation, functional encryption for RAMs, and a candidate obfuscator for RAMs.

1 Introduction

Outsourcing computation from a weak client to a more powerful server is quickly becoming the
predominant mode of day-to-day computation, bringing with it new security challenges and flour-
ishing research into methods for addressing them. In this work we consider the challenge of private
outsourcing, where the client wants to execute a program on a remote server while hiding from it
the raw data to be used in the computation. Moreover, we want to ensure that:

1. The client should perform significantly less work than executing the program, and
2. The server should not have to do much more work than executing the program.

One method of outsourcing computation relies on fully homomorphic encryption (FHE) [RAD78,
Gen09], where the client simply encrypts her input and decrypts the output, and the server com-
putes the program on encrypted data. Unfortunately, this solution requires the server to translate
the program into a circuit and therefore work as hard as the circuit size of the computation, which
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in general, can be much larger than the work needed to execute the program on a random-access
machine (RAM). In particular, even if we reach the zenith of FHE efficiency, with no overhead
per homomorphic addition/multiplication, simply converting the computation into a circuit may
already be too inefficient.

In general, a RAM computation with run-time t can have Turing-Machine run-time and circuit
size as high as Õ(t2), which is already a considerably large overhead [CR73, PF79]. However, this
only applies to computations where the memory starts out empty, and the gap can be significantly
larger in a setting involving program executions over large data stored in memory (e.g., a database).
Consider for example the setting of private information retrieval (PIR) [CKGS98], where a server
holds a large database of size N and a client wants to simply retrieve a single record from that
database without the server learning the requested record. In this case, the RAM complexity of
the retrieval query can be as low as O(logN), but the circuit complexity must be Ω(N) since the
circuit must at least get the entire database as input. This a fully exponential gap can mean the
difference between and efficient Internet search and reading the entire Internet. The same gaps also
already appear if we were to consider the Turing-Machine run-time of the computation instead of
its circuit size.

We therefore would like to find an outsourcing protocol in which the server’s work is only related
to the RAM complexity of the program, while the client’s work is essentially independent of the
complexity of the program altogether. Furthermore, we would like to have such protocols in a
setting where the client can initially outsource some persistent memory data (e.g., containing a
database) and later outsource various RAM computations with read/write access to this memory.

Prior to this work, no such protocols were known. Although we do have private computa-
tion protocols over an outsourced memory based on oblivious RAM (ORAM) (e.g., [GO96, OS97,
GKK+12, LO13a, GHL+14]) where the server’s work is proportional only to the RAM complexity
of the computation, in all of these protocols the client also works as hard as the server. In particu-
lar, these protocols allow the client to save on storage by outsourcing the data to a remote server,
but they do not provide any savings in computation over executing the program locally on local
data.

In this work we describe reusable garbled RAM schemes, which offer the first solution to private
outsourcing of RAM computation, where the server’s work is only proportional to the RAM run-
time of the computation and the client’s work is essentially independent of the complexity of the
computation altogether. In addition, these protocols are non-interactive, i.e., they only use one-way
communication if the server is to learn the output (or two message communication if the client is to
learn the output), making them useful even beyond outsourcing in the “send and forget” settings.

1.1 Garbled Circuits and Garbled RAM

(Reusable) Garbled Circuits. Garbled circuits, introduced in the seminal work of Yao [Yao82],
allow a client to garble a circuit C and then an input x in such a way that a server can use these
garbled values to compute C(x) without learning anything more about x. Until recently, all such
known schemes became insecure if the server ever got to see more than one garbled input per
garbled circuit. In particular, such schemes are not very useful in the context of outsourcing
computation, since the client would have to create a fresh garbled circuit for each computation and
therefore perform work proportional to the circuit size. Last year Goldwasser et al. described the
first reusable circuit-garbling scheme [GKP+13b] where the client can garble a single circuit and
then garble many inputs to that circuit without losing security. This allows private outsourcing of
circuit computation where the client only needs to do a one-time pre-processing step to garble the
circuit, at a cost proportional to the circuit size. The client can then outsource many computations
of this circuit on many different inputs by garbling them, with essentially no additional work per
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computation beyond what is needed to send the input.

Reusable Garbled TMs. The work of Goldwasser et al. [GKP+13a] extends the notion of
reusable gabled circuits to Turing Machines (TMs). The main advantage is that the work of
garbling a TM and the size of the garbled TM can be made proportional to the TM description
size rather than the larger TM run-time or circuit size of the computation. In the context of
outsourcing computation, this translates to getting rid of the pre-processing step so that the client
never has to work as hard as evaluating the program. Another advantage of TMs over circuits
is that TM computation can have much smaller “per-instance run-time” on some inputs than its
“worst-case run-time”. The solution of [GKP+13a] allows the server to run in time proportional
to the per-instance TM run-time of the computation, at the security loss of leaking this run-time
to the server. These advantages are mainly orthogonal to our main goal of allowing the server to
work in time proportional to the RAM run-time of the computation, which could potentially be
much smaller than the TM run-time or the circuit size. For example, when outsourcing a binary
search over a large outsourced database of size N , both the circuit-size and the per-instance TM
run-time will be O(N) whereas the worst-case RAM run-time is O(logN).1

Garbled RAM. Also recently, Lu and Ostrovsky introduced the notion of garbled RAM [LO13a].
Similar to garbled circuits, the client can garble a RAM program P , and later garble an input x in
such a way that a server can use these garbled values to compute P (x) without learning anything
more about x. The complexity of garbling a RAM program (client complexity), the size of the
garbled RAM, and the complexity of evaluating a garbled RAM (server complexity) are all pro-
portional to the RAM run-time of the program rather than its circuit size.2 The constructions of
garbled RAM uses a clever combination of Yao garbled circuits and oblivious RAM (ORAM). Just
like in Yao’s circuits, the scheme is not reusable and becomes completely insecure if the server sees
more than a single garbled input per garbled program. In other words, the client has to garble a
fresh program for every computation, which requires as much work as doing the computation and
therefore does not offer any savings in the context of outsourcing.

However, garbled RAM does offer an opportunity for amortization in the more complex set-
ting involving multiple program executions over some persistent memory (e.g., a large outsourced
database). The client can garble the initial memory contents once, and then can garble many
different RAM programs and inputs (one input per program) that would be executed relative to
the garbled memory, updating the memory with every execution. This property is called persistent
memory, and allows the garbled memory to be reused. For example, the client can garble a large
database of size N only once in time O(N), and after that garble arbitrary queries to the database
where the client work (time to garble a query) and the server work (time to evaluate a garbled
query) are both proportional to the RAM run-time of the query. This provides a good solution
for cases where the memory is large and the client wants to save on storage by outsourcing the
contents, but the database queries are sufficiently simple that the client does not mind doing the
work of the computation. It improves on simply using ORAM by making the program executions
completely non-interactive. Nevertheless, it still provides no savings in terms of client computation
over having the client store the data and perform all computations locally.

1Although we mainly focus on our primary goal of having the server work in time proportional to the worst-case
RAM run-time, we will also show a simple extension that reduces this to the per-instance RAM run-time using the
techniques of [GKP+13b, GKP+13a].

2It was recently observed that the security proof for the scheme of [LO13a] has a subtle flaw, but the scheme can
be fixed so as to get essentially the same properties as the original scheme [GHL+14].
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Can Garbled RAM be Reusable? The above raises the natural question whether we can
obtain a reusable garbled RAM. In such a scheme, the client can garble a program once as a
potentially expensive pre-processing step, and later outsource many arbitrary computations of this
program to a server by efficiently garbling fresh inputs. The server can evaluate the garbled program
on a garbled input in time proportional to the RAM complexity of the program. Furthermore, we
would also like to do this in a setting where the client initially garbles a large persistent memory
(e.g., database) and the programs can read/write to this memory. Such reusable garbled RAM
schemes give a particularly nice solution to the problem of outsourcing private RAM computation
with no interaction in the case where the server is to learn the output, and one round of back-and-
forth communication when the client is to learn the output. The output can be made private from
the server by simply garbling an augmented program that returns the output encrypted under the
client’s key. Furthermore, it can be made verifiable so that the client can be sure that the received
output is correct, by simply garbling an augmented program that returns the output along with a
message-authentication-tag of the output, under a key provided with the input.3

1.2 Our Solutions

In this work we describe the first solutions to the above problem of reusable garbled-RAM, with
various tradeoffs between features/efficiency and the security assumptions needed to instantiate
them.

As our “basic” solution, we describe a protocol that works in the setting without persistent
memory, and requires the client to perform an expensive one-time pre-processing step to garble
the program. In particular, the client can take a RAM program P along with some bound t on its
run time and create a garbled version by working in time Õ(t). It can then very efficiently garble
arbitrarily many inputs xj to that program in time only proportional to the input (and output) size
of the program, but independent of the run-time t. The server can evaluate the garbled program
on each garbled input in time Õ(t). Furthermore, garbling new inputs only requires a public key,
so anybody can outsource computations by creating garbled inputs to the garbled program.4

As our “best-case” solution, we describe a protocol that also works in the more complex setting
involving persistent memory (e.g., database) and does not require any expensive pre-processing.
Specifically, in this solution the client has the option to garble some persistent memory of size
N in time Õ(N). It can then garble a RAM program P in time proportional to its description
length |P | but independent of its running time. Finally it can garble many “short inputs” xi to
the program P in time proportional to the input (and output) size of the program. The server can
evaluate the garbled program with the garbled input over the garbled memory in time proportional
to the program’s RAM run-time Õ(t). For example, the programs P could be a SQL database
implementation and the inputs xi could specify various complex database queries. We stress that
the program executions can both read and write to memory, and that the changes to memory made
by one program execution persist for the next program execution and cannot be “rolled back” by
a malicious server.

3We note that there are other approaches to verifiable RAM computation using SNARKs and proof-carrying data
[Val08, BCCT13, BSCGT13, BSCG+13, BFR+13], but no other prior approaches that provide privacy. Therefore,
we view the question of privacy as more pressing, but note that reusable garbled RAM gives us verifiability for free.

4By default, we do not require “program privacy” and allow the server to learn the description of the outsourced
program. In the public-key setting this is inherent since the server can create garbled inputs on his own and therefore
learn information about the functionality of the program. We only guarantee that the server does not learn anything
about the inputs that are garbled by the client, beyond the output of the computation. We will describe a simple
extension that achieves program privacy, but necessarily moves the construction to the secret key setting where only
the client that creates the garbled program can create garbled inputs.
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Assumptions. Our main contribution is to reduce the complex problems of reusable gar-
bled RAM to seemingly simpler problems dealing with reusable garbled circuits, and avoiding
the complexity of RAM altogether. The above constructions correspond to new notions of secu-
rity/efficiency for reusable garbled circuits, which may be of independent interest (see below). Ulti-
mately, we can instantiate these new notions of reusable garbled circuits using various obfuscation-
based assumptions. The garbled circuits that are used in our “basic” solution can be based on
indistinguishability obfuscation or on the existence of indistinguishability-secure functional encryp-
tion for circuits. In particular, the latter is a falsifiable assumption. The reusable garbled circuits
needed for our “best-case” solution can be based on stronger variants of obfuscation, related to
differing-inputs obfuscation. We stress that the use of obfuscation does not seem inherent, and
there is hope that these new notions of reusable garbled circuits could be instantiated under sim-
pler assumptions that avoid obfuscation altogether.

1.3 Our Techniques

We obtain reusable garbled RAM from a combination of non-reusable garbled RAM, and a new
form of reusable garbled circuits whose properties we discuss shortly.

Our solutions are based on a very simple intuitive idea: given a RAM program P , consider
the circuit C[P ] which has P hard-coded in its description, gets as input (r, x), and uses r as
randomness to created a one-time garbled program P̃one (garbling P ) and a garbled input x̃one
(garbling x). Garbled RAM ensures that the circuit-size of C[P ] is only dependent on the RAM
run-time t of the program P rather than its potentially much larger circuit size. Our main idea is
to create a reusable garbled circuit C̃reuse of the circuit C[P ], which the client gives to the server.
Each time the client wants to run a new program execution with input xi, she chooses some fresh
randomness ri, and garbles (ri, xi) under the reusable circuit garbling scheme. The server runs the
reusable garbled circuit C̃reuse on the garbled input from the client to create a one-time garbled
RAM program P̃one and garbled input x̃one, and then evaluates P̃one on x̃one.

The above idea is not entirely new, but it turns out that it cannot quite work right out of the
box.5 Notice that the circuit C[P ] above has a huge output of size Õ(t) even though its input is
small. Unfortunately, the reusable garbled circuit construction of Goldwasser et al. [GKP+13b],
requires that the size of the garbled input to the circuit always exceeds the size of the circuit’s
output, even if the size of the actual input of the circuit is small.6 We call this property output-
size dependence. In particular, to securely garble a short input (ri, xi), the client would have to
create a huge garbled input of size Õ(t), which would require that the client works at least as
hard as evaluating the program, and completely obliterate the efficiency benefits of outsourcing.
Unfortunately, this is also not an accidental property of the construction of [GKP+13b] and we
show that any reusable circuit garbling scheme with simulation-based security must have output-
size dependence (see Appendix C).

Our main observation is that we do not necessarily require full simulation-based security from
the reusable garbled circuit component, even though we insist on achieving full simulation-based
security for the final reusable garbled RAM construction. We come up with new notions of security
for reusable garbled circuits that we call “distributional indistinguishability” (with two flavors),
which turn out to suffice in our constructions and may be of independent interest elsewhere. In-
tuitively, these notions say that one cannot distinguish garbled inputs from two distributions that
produce indistinguishable outputs. Moreover, these weaker security notions seem to plausibly allow

5A variant of an idea along these lines appeared in an early version of [LO13a] and was outlined in a rump-session
talk [LO13b] but was retracted for exactly the reasons we describe here.

6The scheme and parameters of [GKP+13b] are described for circuits with 1-bit output, but can easily be extended
to the setting of multi-bit output at the above cost of having the size of the garbled-input grow with the output size.
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for more efficient constructions that avoid “output-size dependence”. Indeed, we propose new can-
didate constructions of such reusable garbled circuits based on obfuscation. Our two constructions
of reusable garbled RAM translate to two flavors of reusable garbled circuits with “distributional
indistinguishability”. The weaker flavor can be based on indistinguishability obfuscation while
the stronger one seems to require stronger obfuscation-based assumptions. It remains as an open
problem to achieve these notions from other assumptions, ideally avoiding obfuscation altogether.

1.4 Extensions

In Section 6 we explore several extensions and applications of our main results and techniques. We
discuss how to generically augment reusable garbled RAM to get output privacy (server does not
learn the output of the computation) and verifiability (client can be certain that the received output
is correct). We also discuss how to get program privacy where the server does not learn the code of
the program. Furthermore, we discuss how to leverage our solutions to get input-specific run-time
where the server’s work is only proportional to the RAM run-time of P (x) on the desired input x
rather than the worst-case run-time of P on inputs of size n. We also discuss applications to MPC
where only one party needs to work as hard as the program’s RAM run-time. Then in Section D,
we show how to leverage our techniques to build indistinguishability-secure functional encryption
(FE) for RAM programs (without persistent data) using FE for circuits as a black box. We show
that this also gives an alternate construction of reusable garbled RAM from FE for circuits, without
using obfuscation directly. However, the only known construction of FE for circuits in [GGH+13b]
relies on iO. Lastly, in Section E, we propose a speculative candidate construction for obfuscating
RAMs using obfuscation for circuits and conjecture that it can achieve iO for RAMs.

Concurrent Work. A concurrent and independent work of Apon et al. [AFK+14] achieves
similar results on outsourcing RAM computation, as well as functional encryption for RAMs.
Appendix D of this work, showing functional encryption for RAMs, was added after the work
of Apon et al. was posted. This appendix relies on simple extensions of our main ideas for reusable
garbled RAM, which we view as our main contribution.

2 Preliminaries

The two models of computation that we deal with in this work are circuits and RAM programs.
Intuitively, a RAM program has access to some memory of size N and each step of the program
can read/write to an arbitrary location of memory. We usually assume that the memory starts
out empty. However, when we consider program executions over a persistent memory/database,
it is useful to consider the case where the memory initially contains some data D. We use the
notation PD(x) to denote the execution of a program P with random-access memory containing
D and a short input x. For the RAM programs we consider in this work, we assume that we have
an absolute bound on their worst-case running time, input/output length, and memory usage. A
somewhat more detailed specification of the RAM model is found in Appendix B.1.

We use C[prm] or P [prm] to denote a circuit/program that depends on a parameter prm. The
parameter can be an arbitrary string, and can itself be another circuit or program. We think of
prm as being “hard wired” in the description of the corresponding circuit/program. The input to
a circuit/program is specified inside parenthesis, so C[prm](x) describes the computation of the
circuit C[prm] (whose definition depends on prm) on the input x.
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3 Reusable GRAM without Persistent Memory

3.1 Defining Garbled RAM

We begin by defining non-reusable (one-time) and reusable garbled RAM. The syntax of the scheme
is the same in both cases, and the difference is only in the security requirements.

Definition 3.1 (GRAM). A garbled RAM scheme (without persistent memory) consists of pro-
cedures GR = (GR.prog,GR.inp,GR.eval):

• (P̃ , s) ← GR.prog(1λ, P, (n,m, t)) : Gets a RAM program P , and bounds on the program’s:
input size n, output size m, and run-time t (say that all bounds encoded in binary). Outputs
a garbled program P̃ and a garbling key s.

• x̃ ← GR.inp(x, s, (n,m, t)) : Takes as input an n-bit value x, the garbling key s the same
bounds (n,m, t). It outputs the garbled input x̃.

• y = GR.eval(P̃ , x̃): This is a RAM program that takes (P̃ , x̃) as input and computes the
output y.

We require that for any program P with parameters (n,m, t), any input x ∈ {0, 1}n if P̃ , x̃ are
created as described, then GR.eval(P̃ , x̃) = P (x) with probability 1.

Definition 3.2 (GRAM Security). Let GR be a garbled RAM scheme as above.

• GR has reusable security if there exists a PPT simulator Sim such that, for all RAM programs
P with polynomial parameters (n,m, t) and all polynomial-length input-vectors (x1, . . . , xq),
the following distributions are computationally indistinguishable:

(P̃ , x̃1, . . . , x̃q)
comp
≈ Sim(1λ, P, (n,m, t), y1, . . . , yq)

where (P̃ , s) ← GR.prog(1λ, P, (n,m, t)), x̃i ← GR.inp(xi, s, (n,m, t)) and yi = P (xi). The
simulator is required to run in time poly(λ, |P |, n,m, t, q).

• GR has security with public input garbling if there exists a PPT simulator Sim′ such that the
above security holds even when including the input-garbling key s in the left-hand distribution,

(P̃ , s, x̃1, . . . , x̃q)
comp
≈ Sim′(1λ, P, (n,m, t), y1, . . . , yq).

• GR has one-time security (resp. one-time security with public input garbling) if the above
only holds for q = 1.

Efficiency. We will analyze the efficiency of our constructions in Section 5. The main aspect that
we will always require is that, for a program P with run-time t, the server’s run-time in evaluating
the garbled program (run-time of GR.eval on a RAM) should only scale with Õ(t) and the client’s
run-time in outsourcing a computation (run-time of GR.inp) should only depend logarithmically on
t. The run-time of garbling a program (GR.prog) can scale with Õ(t) in our “basic” construction,
in which case we think of it as a one-time pre-processing, or it can even be independent of t in our
“best case” construction.
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One-Time garbled RAM. We rely on prior constructions of one-time secure garbled RAM
schemes [LO13a, GHL+14]. See Appendix B for an overview of this construction. We state the
necessary assumptions and efficiency parameters of the construction in Section 5. The main effi-
ciency property which we will crucially rely on is that the program garbling procedure (P̃ , s) ←
GR.prog(1λ, P, (n,m, t)) in this construction can be expressed as a circuit whose size scales with
Õ(t). The evaluation of the garbled program P̃ on a garbled input is a RAM computation which
should only scale with Õ(t).

Remark on Program Privacy. Note that our definition does not explicitly consider program
privacy and we assume that the code of the program P is public. This can be fixed via standard
transformations, see Section 6.

3.2 Garbled Circuits

As a useful tool, we will rely on the notion of reusable garbled circuits and we begin by defining
the syntax of such schemes. We defer discussion of the security and efficiency properties that we
require from garbled circuits until later.

Definition 3.3 (Garbled Circuits). A garbled circuit scheme consists of three procedures, GC =
(GC.circ,GC.inp,GC.eval):

• (C̃, s)← GC.circ(1λ, C) : Gets an input circuit C and outputs a garbled circuit C̃ and key s.

• x̃← GC.inp(x, s) : Gets an input x and the same key s. Outputs the garbled input x̃.

• y ← GC.eval(C̃, x̃): Gets a garbled circuit C̃ and matching input x̃, and computes the output.

We require that for any circuit C, input x, setting (C̃, s) ← GC.circ(1λ, C) and x̃ ← GC.inp(x, s)
we get GC.eval(C̃, x̃) = C(x).

3.3 Construction of Reusable GRAM

Overview. We now show how to construct a reusable garbled-RAM scheme by combining reusable
garbled circuit with a one-time garbled RAM scheme. An alternative construction of reusable gar-
bled RAM from functional encryption for circuits appears in Appendix D, and it uses many of the
same ideas shown here.

Let GC = (GC.circ,GC.inp,GC.eval) be a reusable garbled circuit scheme whose required security
properties we specify later and GR1 = (GR1.prog,GR1.inp,GR1.eval) be a one-time garbled-RAM
scheme. Recall our first approach from the introduction, which was to consider the circuit C[P ](r, x)
that has P hard-wired in and gets as input randomness r and input x. The circuit C[P ](r, x) runs
(P̃one, s) ← GR1.prog(1λ, P, (· · · )) and x̃one ← GR1.inp(x, s, (· · · )), using r as randomness, and
outputs (P̃one, x̃one). Our hope was to create a reusable garbled circuit C̃ ← GC.circ(C[P ]) as our
reusable garbled RAM program.

Observe that the circuit C[P ] from above has short input and very long output, related to the
running time of P . Unfortunately, the construction of reusable garbled circuits of Goldwasser et al.
[GKP+13b], requires that the size of the garbled input to the circuit always exceeds the size of the
circuit’s output, even if the size of the actual input of the circuit is small. In particular, they have
output-size dependence. In Appendix C, we show that any reusable circuit garbling scheme with
simulation-based security must have output-size dependence. In our context, that would mean that
garbling an input to the program takes as much time as evaluating a program and therefore would
not be useful in the context of outsourcing.
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We fix the problem above by tweaking the above construction in a way that allows us to re-
duce the security requirement on the reusable garbled circuit to something weaker than simulation
security, while still achieving simulation security for our final construction. In particular, we first
present our modified construction of reusable garbled RAM from reusable garbled circuits, then we
present a new notion of security for reusable garbled circuits that we call “distributional indistin-
guishability”, and show that is suffices to make our construction secure (Section 3.4) and finally, we
show how to instantiate this new notion of reusable garbled circuits (Section 3.5) while achieving
output-size independent efficiency.

The main modification that we make to the first-attempt construction from above is to first
transform a program P with run-time t into a modified program P+ that we call the real-or-dummy
program. In addition to the input x, the new program P+ takes also an alleged output y and a
flag ψ. If ψ = 1 (real) then P+(x, ψ, y) simply executes P (x), ignoring y. If If ψ = 0 (dummy), on
the other hand, then P+ simply executes t dummy steps and outputs y, ignoring x.

Just as before, we consider the circuit C[P+](r, (x, ψ, y)) that outputs a one-time garbled pro-
gram P̃ garbling P+ and garbled input x̃ garbling (x, ψ, y) using r as randomness. We then
construct a reusable garbled circuit C̃ garbling C[P+] as the reusable garbled RAM program. In-
tuitively, the simulator of the reusable garbled RAM will simply provide a garbling of a “dummy
input” consisting of (r, 0n, ψ = 0, y) instead of the “real” input (r, x, ψ = 1, 0m). Proving security of
the new construction boils down to proving that, given C̃, one cannot distinguish many garbling of
real inputs vs. dummy inputs. Notice that the outputs P̃ , x̃ derived from real-inputs vs. dummy-
inputs look indistinguishable by the security of the one-time garbled RAM. Therefore, we reduce
simulation-based security of the full scheme to showing a new type of “distributional indistinguisha-
bility” for reusable garbled circuits, where it should be hard to distinguish garbled inputs from two
different distributions (e.g., read or dummy) that produce indistinguishable outputs. This idea is
similar in spirit to one used by De Caro et al. [CIJ+13] to convert indistinguishability-based secu-
rity to simulation-based security for functional encryption. However, our notion of “distributional
indistinguishability” is new.

The real-or-dummy program P+. In more detail, for a RAM program P with input-size n,
output-size m and running-time bound t, let P+ be a RAM program that gets as input (x, ψ, y)
with |x| = n, |ψ| = 1 and |y| = m. If ψ = 1 then P+(x, ψ, y) outputs P (x), and if ψ = 0 then it
outputs y after t steps. Note that the complexity of P+ is essentially the same as P , except that
it has input of size n+m+ 1 rather than just n.

The program-garbling circuit. A central component of our construction is a circuit that runs
the program- and input-garbling routines of the underlying one-time GRAM scheme. For a RAM
program P with input-size n, output-sizem and running-time bound t, and for security parameter λ,
define C[P, n,m, t, λ] as the following circuit with n+m+ 2λ+ 1 input bits:7

C[P,n,m, t, λ](r, x, ψ, y): // r = (r1, r2) ∈ {0, 1}2λ, x ∈ {0, 1}n, ψ ∈ {0, 1}, y ∈ {0, 1}m

1. Run (P̃one, sone)← GR1.prog(1λ, P+, (n,m, t); r1), x̃one ← GR1.inp((x, ψ, y), sone, (n,m, t); r2),

2. Output (P̃one, x̃one).

GR: Reusable Garbled RAM Construction. We describe our reusable GRAM construction
GR = (GR.prog,GR.inp,GR.eval) in the following figure.

7For simplicity, we assume that GR1.prog, GR1.inp uses exactly λ bits of randomness each. This can always be
made the case by using a pseudorandom generator.
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(P̃ , s)← GR.prog(1λ, P, (n,m, t)):
1. Construct the circuit C[P, n,m, t, λ] as shown above.

2. Compute a garbling of this circuit (C̃, s)← GC.circ(1λ, C[P, n,m, t, λ]), and output P̃ := C̃, s.

x̃← GR.inp(x, s, (n,m, t)):

1. Choose a random r ← {0, 1}2λ, set ψ = 1, y = 0m, and w = (r, x, ψ, y),
2. Garble the input to C[P . . .], outputting w̃ ← GC.inp(w, s).

y = GR.eval(P̃ , w̃):

1. Evaluate the garbled circuit C̃ := P̃ to get (P̃one, x̃one)← GC.eval(C̃, w̃).
2. Evaluate the 1-time GRAM and output y = GR1.eval(P̃one, x̃one).

3.4 Simulation Security From Distributional Indistinguishability

A crucial observation is that we can prove simulation-security for the above reusable GRAM con-
struction GR using a new notion of “distributional indistinguishability” security for the underlying
garbled circuit scheme and the usual simulation security for the underlying one-time GRAM scheme.
“Distributional indistinguishability’ says that one cannot distinguish garbled inputs from any two
sets of independent distributions that produce individually indistinguishable outputs.

Definition 3.4. Let GC = (GC.circ,GC.inp,GC.eval) be a garbled circuit scheme. We say that GC
provides distributional indistinguishability if for every circuit ensemble C = {Cλ}, every polynomial
q = q(λ), and every 2q polynomial-time samplable distributions D1, . . . , Dq and D′1, . . . , D

′
q, if for

all j ∈ [q] it holds that C(wj)
comp
≈ C(w′j) where wj ← Dj(1

λ), w′j ← D′j(1
λ) then it also holds that

〈C̃, w̃1, . . . w̃q〉
comp
≈ 〈C̃, w̃′1, . . . w̃′q〉

where (C̃, s)← GC.circ(1λ, Cλ), wi ← Di(1
λ), w′i ← D′i(1

λ), w̃i ← GC.inp(wi, s), w̃
′
i ← GC.inp(w′i, s).

We say that the scheme has security with public input garbling if the above holds when we
include the garbling key s in the two distributions on the bottom.

We remark that this notion is clearly implied by simulation security for reusable garbled circuits,
but simulation security of reusable garbled circuits requires “output-size dependence” where the
size of the garbled input must exceed that of the circuit’s output (see Appendix C). Furthermore,
we remark that for any scheme with public input garbling, distributional indistinguishability for
q = 1 implies security for arbitrary q by a simple hybrid argument. Interestingly, this does not hold
for simulation security where simulation security for q = 1 does not seem to imply security for a
larger q, even if the scheme has public input garbling.

In Section 3.5 we show how to construct a reusable circuit-garbling scheme with output-size
independence satisfying this definition using indistinguishability obfuscation.

Theorem 3.5. If GC = (GC.circ,GC.inp,GC.eval) is a reusable garbled-circuit scheme satisfying
distributional indistinguishability and GR1 = (GR1.prog,GR1.inp, GR1.eval) is a one-time garbled-
RAM scheme, then the scheme GR from above is a reusable garbled-RAM scheme satisfying simu-
lation security. Furthermore, if GC has security with public input garbling, then so does GR.

See Appendix F.1 for a formal proof of the above theorem. On an intuitive level, the simulator
for the GR scheme will simply rely on the “dummy mode” of the program P+ by garbling inputs to
the reusable garbled circuit that have the flag ψ = 0 (indicating dummy mode) and a hard-coded
output yi. Such inputs result in outputs of the reusable garbled circuit that are distributionally
indistinguishable from real, by the security of the 1-time garbled RAM GR1.
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3.5 Achieving Distributional Indistinguishability

We now construct reusable garbled circuits with “distributional indistinguishability” and “output-
size independent efficiency”. Furthermore, our construction has public input-garbling. The con-
struction is based on “indistinguishability obfuscation” (see Appendix A.1) and a NIZK which is
“statistically simulation sound” (see Appendix A.2). It is inspired by the construction of functional
encryption from indistinguishability obfuscation of [GGH+13b].

Construction. Let O be an obfuscation scheme, let PKE = (Setup,Encrypt, Decrypt) be a pub-
lic key encryption scheme, and let Π = (K,P, V ) be a NIZK scheme with statistical simulation
soundness. Let LEQ be the NP language defined as

LEQ = { (pk1, pk2, c1, c2) : ∃ m, r1, r2, c1 = Encrypt(pk1,m; r1) ∧ c2 = Encrypt(pk2,m; r2)} .

For any circuit C : {0, 1}n → {0, 1}m define the circuit C∗[σ, pk1, pk2, b, sk, u, v] where: σ is a
CRS for the NIZK, pk1, pk2 are encryption keys, b ∈ {1, 2} is an index, sk is the decryption key for
pkb, u is of size |(c1, c2, π)| where c1, c2 are ciphertexts of n-bit messages and π is a NIZK for LEQ,
and v ∈ {0, 1}m.

C∗[σ, pk1, pk2, b, sk, u, v](c1, c2, π):

1. If u = (c1, c2, π) output v.
2. Verify that π is a proof of (pk1, pk2, c1, c2) ∈ LEQ by running V (σ, (pk1, pk2, c1, c2), π).

If this rejects, output ⊥.
3. Compute x = Decrypt(sk, cb). Output C(x).

We define the circuit garbling scheme GC = (GC.circ,GC.inp,GC.eval), which has public input
garbling, as follows:

• (C̃, s) ← GC.circ(1λ, C): Generate (pk1, sk1) ← Setup(1λ), (pk2, sk2) ← Setup(1λ), σ ←
K(1λ). Construct the circuit C∗ := C∗[σ, pk1, pk2, 1, sk1, u = ⊥, v = ⊥] from C as shown.
Output C̃ ← O(1λ, C∗) and s := (σ, pk1, pk2).

• x̃← GC.inp(x, s): output x̃ := (c1, c2, π), where c1 ← Encrypt(pk1, x; r1), c2 ← Encrypt(pk2, x; r2)
and π ← P (σ, (pk1, pk2, c1, c2), (r1, r2)) is an NIZK that (pk1, pk2, c1, c2) ∈ LEQ.

• GC.eval(C̃, x̃): Interpret C̃ as an obfuscated circuit and output C̃(x̃).

See Appendix F.2 for a proof of the following theorem.

Theorem 3.6. If O is an indistinguishability obfuscator, Π is a statistical-simulation-sound (SSS)
NIZK, and PKE is a semantically secure encryption scheme, then the above construction GC is a
reusable garbled circuit with distributional indistinguishability and public input garbling.

4 Reusable Garbled RAM with Persistent Memory

We now move to consider the harder setting with persistent memory. The construction is very
similar to the one above, in particular here too we construct a reusable garbled-RAM scheme by
combining a reusable garbled circuit with a one-time garbled RAM scheme. The main differences
are that the one-time GRAM that we use has persistent memory, and the garbled circuit satisfies
a stronger notion of security.
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4.1 Definitions

A GRAM scheme with persistent memory has an additional procedure GR.data used to garbled
the initial memory data D to a garbled data D̃. We envision the case where the user has a
program P and wants to run many executions of this program with different “short-inputs” xi
where each execution P (xi) can read and write to the persistent memory, and the changes persist
for future executions. This means that the order of executions is important and does not commute.
In particular, we need to ensure that the server only learns the outputs of the executions when
performed in the correct order and cannot (e.g.,) reorder the executions or roll-back the changes
made by one execution when performing the next execution.

In order to do this, we need to incorporate the index i of the execution into the program/input
garbling procedures. In the case of reusable schemes the user garbled the program only once to get
the garbled version P̃ , and then can garble many different inputs x̃i, so in this case only the input
garbling is given the index i. For one-time scheme the user has to garble the program P afresh
for each new execution to get a garbled program P̃i and garbled input x̃i, so in this case both the
program and input garbling procedures are given the index i.

Definition 4.1 (GRAM with persistent memory). A garbled RAM (GRAM) scheme with per-
sistent memory consists of four procedures: GR = (GR.data,GR.prog,GR.inp,GR.eval):

• (D̃, k) ← GR.data(1λ, D) : Gets data D ∈ {0, 1}N and outputs the garbled data D̃ and a
data-key k.

• (P̃ , s)← GR.prog(P, k, (N,n,m, t), [i]) : Gets a RAM program P , data-key k, and bounds on
the memory size N , input size n, output size m, and run-time t (say that all bounds encoded
in binary). For one-time scheme, the procedure is also given an index i indicating the order
in which this program is to be executed. Outputs a garbled program P̃ and program-key s.

• x̃← GR.inp(x, k, s, (N,n,m, t), i): Takes as input an n-bit value x, the keys k, s, and an index
i for the order of the execution. It outputs the garbled input x̃.

• y = GR.evalD̃(P̃ , x̃): This is a RAM program that takes (P̃ , x̃) as input, has memory D̃, and
computes the output y. The program updates the memory contents of D̃ during its execution
and these changes persist for the following execution.

Correctness. Consider initial memory data D ∈ {0, 1}N , program P with bounds (N,n,m, t)
and a sequence of inputs xi ∈ {0, 1}n for i = 1, . . . , q. Let yi = PD(xi) where the executions are
performed in the correct order starting with i = 1 and the memory data D is updated with each
execution. We define one-time and reusable correctness separately.

One-time: Consider running (D̃, k) ← GR.data(1λ, D), (P̃i, si) ← GR.prog(P, k, (N,n,m, t), i),

x̃i ← GC.inp(xi, k, si), y
′
i ← GC.evalD̃(P̃i, x̃i) where the evaluations are executed in the correct order

and the garbled memory D̃ is updated with each evaluation. We require that y′i = yi for all i ∈ [q]
with probability 1.

Reusable: Consider running (D̃, k)← GR.data(1λ, D), (P̃ , s)← GR.prog(P, k, (N,n,m, t)), x̃i ←
GC.inp(xi, k, s, i), y

′
i ← GC.evalD̃(P̃ , x̃i) where the evaluations are executed in the correct order and

the garbled memory D̃ is updated with each evaluation. We require that y′i = yi for all i ∈ [q] with
probability 1.

Efficiency. We will analyze the efficiency of our constructions in Section 5. On a high level,
we will always require that the data-garbling GR.data runs in time N · poly(λ), the run-time of
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GR.prog and GR.eval should only scale linearly with t and poly-logarithmically with N , and and
the run-time of GR.inp should only depend logarithmically on t,N . We will also discuss compact
solutions where the run-time of GR.prog is only logarithmic in t.

Security. We require the usual simulation-based security from our garbled-RAM constructions.
To simplify notation, we define a polynomial size input specification in = ((N,n,m, t), D, P, 〈xi〉i∈[q])
as consisting of polynomial bounds (N,n,m, t), initial memory data D ∈ {0, 1}N , program P , and
a polynomial-size sequence of inputs xi ∈ {0, 1}n for i = 1, . . . , q. We define the corresponding
output specification out = ((N,n,m, t), P, 〈yi〉i∈[q]) with yi = PD(xi) where the executions are
performed in the correct order starting with i = 1 and the memory data D is updated with each
execution. Intuitively, the output specification is the only thing that the evaluator should learn
from the garbled data/program/input.

Definition 4.2 (GRAM with Persistent Memory ). Let GR = (GR.data, GR.prog, GR.inp, GR.eval)
be a garbled RAMs with persistent memory. We say GR has one-time/reusable security, if there
exists a simulator Sim such that for any poly-size input specification in = ((N,n,m, t), D, P, 〈xi〉i∈[q])
with corresponding output specification out = ((N,n,m, t), P, 〈yi〉i∈[q]) we have

Real[in, λ]
comp
≈ Sim(1λ, out),

where Real[in, λ] is defined separately for one-time and reusable security as follows:

One-Time. Define Real[in, λ] = (D̃, 〈P̃i, x̃i〉i∈[q]) where (D̃, k)← GR.data(1λ, D), and for i ∈ [q]

(P̃i, si)← GR.prog(P, k, (N,n,m, t), i), x̃i ← GC.inp(xi, k, si).

Reusable. Define Real[in, λ] = (D̃, P̃ , 〈x̃i〉i∈[q]) where (D̃, k)← GR.data(1λ, D),

(P̃ , s)← GR.prog(P, k, (N,n,m, t)), and for i ∈ [q]: x̃i ← GC.inp(xi, k, s, i).

We require that Sim runs in time poly(N, t, n,m, q, λ).

Remarks on Definition. For simplicity, we only consider the scenario involving a single program
P . This is without loss of generality as P can be a universal RAM that executes code stored in
memory at a location which is indicated as part of the short input x. This approach of storing
code in memory most closely resembles computation in real life. We also do not explicitly consider
program privacy and assume that the code of the program is public. (The approach of setting P to
be a universal RAM and executing programs stored in memory also provides privacy for the code
of the programs being executed, see Section 6.)

Note that garbled RAM with persistent memory cannot have public input garbling, as this
allows the attacker to learn more information than allowed about the garbled database D by
executing its own programs over it. Hence, the data key k is kept secret and the evaluator only
learns the outputs of the specified program P with specified inputs xi when executed in the correct
order. This prevents the attacker from, e.g., learn the outputs of additional programs, roll back the
changes to data made by one program and see how it affects the outputs of future programs, etc.

The works of [LO13a, GHL+14] provide constructions of one-time GRAM with persistent mem-
ory satisfying the above definition. The syntax of [GHL+14] is somewhat more complicated since
it considers a scenario with many different programs Pi, but it is easy to see that it implies our
simplified syntax/definition. Seer Appendix B for an overview of the construction.
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4.2 Constructing Reusable GRAM with Persistent Memory

The construction of garbled RAM scheme with persistent memory from a one-time garbled RAM
and a reusable garbled circuits is very similar to the case without persistent memory, and we essen-
tially just make the needed syntactic changes to accommodate the persistent memory. However,
the security analysis will require some more substantial changes.

Let GC = (GC.circ,GC.inp,GC.eval) be a reusable garbled circuit scheme and GR1 = (GR1.data,
GR1.prog,GR1.inp,GR1.eval) be a one-time garbled-RAM scheme with persistent memory. For a
program P , let P+ be the “real-or-dummy” program defined previously. For a RAM program P ,
with memory-size N , input-size n, output-size m, running-time bound t, and security parameter λ,
define C[P,N, n,m, t, λ] as the following circuit with n+m+ 2λ+ 1 input bits:

C[P,N,n,m, t, λ](k, r = (r1, r2), x, ψ, y, i): // k, r1, r2 ∈ {0, 1}λ

// x ∈ {0, 1}n, ψ ∈ {0, 1}, y ∈ {0, 1}m

1. Run (P̃one, sone)← GR1.prog(P+, k, (N,m+ n+ 1,m, t), i; r1),
x̃one ← GR1.inp((x, ψ, y), k, sone; r2),

2. Output (P̃one, x̃one).

Reusable Garbled RAM with Persistent Memory. We describe the scheme GR in the
following figure.

(D̃, k)← GR.data(1λ, D): Use the the underlying GR1 and output: (D̃, k)← GR1.data(1λ, D).

(P̃ , s)← GR.prog(P, k, (N,n,m, t)):
1. Construct the circuit C = C[P,N, n,m, t, λ],

2. Garble this circuit (C̃, s)← GC.circ(1λ, C) and output P̃ = C̃, s.

w̃ ← GR.inp(x, k, s, i):

1. Choose a random r ← {0, 1}2λ, set ψ = 1, y = 0m, and w = (k, r, x, ψ, y, i),
2. Garble the input to C[P . . .], outputting w̃ ← GC.inp(w, s).

y = GR.eval(P̃ , w̃):

1. Set C̃ = P̃ and evaluate the garbled circuit, (P̃one, x̃one)← GC.eval(C̃, w̃).
2. Evaluate the 1-time GRAM and output y ← GR1.eval(P̃one, x̃one).

Security. The proof of security is very similar to the case of no persistent memory, except that
we need a stronger variant of “distributional indistinguishability”. In the previous case without
persistent memory, each garbled input wi = (ri, xi, ψ = 1, 0m) was chosen with its own fresh and
independent randomness ri and there was no relationship between different garbled inputs. In the
case of persistent memory, the inputs wi = (k, ri, xi, ψ = 1, 0m, i) all include the same “data key”
k. In other words, the inputs have some common correlated secret and we cannot argue that they
come from independent distributions Di, D

′
i. Therefore, we are forced to rely on a stronger notion

of security of reusable garbled circuit than Definition 3.4, a notion we define below.

Definition 4.3 (Correlated Distributional Indistinguishability). Let GC = (GC.circ,GC.inp,GC.eval)
be a garbled circuit scheme. We say that GC provides correlated distributional indistinguishability
if for every circuit ensemble C = {Cλ} and two PPT distribution samplers D,D′ over vectors of
inputs to C, if the two distributions satisfy

〈Cλ(w1), . . . , Cλ(wq), aux〉
comp
≈ 〈Cλ(w′1), . . . , Cλ(w′q), aux

′〉
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where (w1, . . . , wq, aux)← D(1λ), (w′1, . . . , w
′
q, aux

′)← D′(1λ), then also

〈C̃, w̃1, . . . w̃q, aux〉
comp
≈ 〈C̃, w̃′1, . . . w̃′q, aux′〉

where (C̃, s)← GC.circ(1λ, Cλ) and w̃i ← GC.inp(wi, s), w̃
′
i ← GC.inp(w′i, s).

We note that this definition is still weaker than simulation security, but stronger than Defini-
tion 3.4 (which considers only wi’s that are sampled independently). The proof of the following
theorem is similar to that of Theorem 3.5.

Theorem 4.4. If GC = (GC.circ,GC.inp,GC.eval) is a reusable garbled-circuit scheme with output-
size independence satisfying correlated distributional indistinguishability and GR1 = (GR1.data,
GR1.prog,GR1.inp,GR1.eval) is a garbled-RAM scheme with persistent memory satisfying one-time
simulation security, then the scheme GR from above is a reusable garbled-RAM scheme with per-
sistent memory satisfying simulation security (Definition 4.2).

See Appendix F.3 for a proof of the above theorem, which closely follows the proof of Theo-
rem 3.5.

4.3 Achieving Correlated Distributional Indistinguishability

Below we present two candidate constructions of reusable garbled circuits from obfuscation. The
first one is very simple, but essentially relies on a “special-purpose” virtual black-box (VBB) obfus-
cation conjecture of some relevant functionality. The second construction is slightly more complex,
and we can prove its security under an notion of obfuscation that we call strong differing-inputs
obfuscation (and which generalizes differing-inputs obfuscation [BGI+12, BCP13, ABG+13]). Tech-
nically, the two assumptions needed to prove security of our two constructions are incomparable,
and therefore we present both options.

Construction 1 (Obfuscating a “decrypt-then-evaluate” circuit). Let PKE = (Setup,
Encrypt, Decrypt) be a public-key encryption scheme. For any circuit C : {0, 1}n → {0, 1}m and
decryption secret key sk we define the circuit C∗[sk](c) which computes x = Decrypt(sk, c) and
outputs C(x). We define the circuit garbling scheme GC = (GC.circ,GC.inp,GC.eval) as follows:

• GC.circ(1λ, C): Generate (pk, sk)← Setup(1λ). Construct the circuit C∗ := C∗[sk] from C as
shown. Output C̃ ← O(1λ, C∗) and s := pk.

• GC.inp(x, s): Output x̃← Encrypt(pk, x).

• GC.eval(C̃, x̃): Interpret C̃ as an obfuscated circuit and output C̃(x̃).

We simply conjecture that this construction is secure when instantiated with a standard-construction
PKE and a “good” obfuscator, such as the candidate construction of [GGH+13b].

Conjecture 4.5. There exists a CCA-secure public-key encryption scheme PKE and an obfuscator
O, for which the above construction GC is a reusable garbled circuit with correlated distributional
indistinguishability.

As a “sanity check”, it’s easy to show that the conjecture holds if the attacker were only given
black-box access to the circuit C∗[sk] rather than the obfuscated circuit C̃ ← O(1λ, C∗[sk]). In
particular, this follows from a sequence of hybrids where: (I) one-by-one, we modify the ith garbled
input w̃i to be an encryption of 0 instead of wi but make C∗[sk] return wi when queried with w̃i
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(CCA-security), (II) we modify all the values returned by C∗[sk] from wi to w′i and switch aux to aux′

(correlated ind. assumption) and (III) we go back one-by-one and modify ith garbled input to be
an encryption of w′i and C∗[sk] to decrypt correctly (CCA-security). We note that our conjecture
does not formally require full VBB security and, for example, is not defined using a simulator.
None of the known negative results for obfuscation seems to apply to the above conjecture, when
instantiated with a “natural” public-key encryption (e.g., Cramer-Shoup construction [CS98]).

Construction 2 (Using Strong Differing-Inputs Obfuscators). Next we present a construc-
tion for reusable garbled circuits with correlated distributional indistinguishability, which we prove
secure under a new stronger form of the differing-inputs obfuscation assumption. Differing-inputs
obfuscation (diO) [BGI+12, BCP13, ABG+13] guarantees that for any two circuits C0 and C1, if
it is difficult to find an input x on which C0(x) 6= C1(x), then it should be hard to distinguish the
obfuscation of C0 from the obfuscation of C1. We define a stronger version of the assumption which
maintains the indistinguishability of the obfuscations even when given several points x1, . . . , xn on
which the two circuits have different but computationally indistinguishable outputs, as long as it is
hard to find any other inputs on which the circuits differ. In particular, feeding these inputs xi
to the obfuscated circuit does not help distinguish C0 from C1. We formalize this intuition in the
following definition.

Definition 4.6. A family of circuits C with a sampler (C0, C1, x1, . . . , xn, aux0, aux1)← Sam(1λ),
which samples C0, C1 ∈ C together with inputs x1, . . . , xn is said to be a strong differing inputs
family if

{x1, . . . , xn, C0(x1), . . . , C0(xn), aux0}
comp
≈ {x1, . . . , xn, C1(x1), . . . , C1(xn), aux1}

and for all PPT adversaries A there is a negligible function ε such that

Pr

[
C0(x) 6= C1(x)

∧ x 6∈ {x1, . . . , xn}

∣∣∣∣ (C0, C1, x1, . . . , xn, aux0, aux1)← Sam(1λ)
x← A(1λ, C0, C1, x1, . . . , xn, aux0, aux1)

]
≤ ε(λ).

Definition 4.7 (Strong Differing-Inputs Obfuscator (sdiO)). A PPT algorithm O satisfying cor-
rectness is a strong differing-inputs obfuscator (sdiO) for a strong differing-inputs family C with a
sampler Sam, if for all PPT distinguisher algorithms D, there is a negligible function ε such that

|Pr[D(1λ,O(1λ, C0), x1, . . . , xn, aux0) = 1]− Pr[D(1λ,O(1λ, C1), x1, . . . , xn, aux1) = 1]| ≤ ε(λ),

where (C0, C1, x1, . . . , xn, aux0, aux1)← Sam(1λ).

We note that this is a very strong definition, and it is not clear if it is preferable to Conjecture
4.5. The main advantage is that it is a general definition and not specifically tied to a particular
construction. The recent work of [GGHW13] gives some evidence that general-purpose diO relative
to arbitrary auxiliary input is unlikely to exist. The same negative result would hold for the stronger
notion of general-purpose sdiO. However, the counterexample relies on highly contrived auxiliary
input which is itself an obfuscation. Therefore, it still makes sense to assume diO and sdiO holds
when the auxiliary input aux0, aux1 and the samples xi have some concrete structure. In our case,
the auxiliary input and the points x1, . . . , xn will simply contain a public-key of an encryption
scheme and some simulated NIZK proofs. Therefore, the results of [GGHW13] do not apply to
sdiO for the restricted type of strong differing input circuit families (C,Sam) that we rely on.

We also note that, for a differing inputs family for which the outputs of C0, C1 differ on the
inputs x1, . . . , xn, the circuits C0, C1 must be chosen from some high entropy distribution and
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cannot be known even given aux0, aux1. Otherwise, an attacker could simply feed the inputs to the
two circuits and distinguish C0(xi) from C1(xi).

The construction of reusable garbled circuits from sdiO is similar to (but simpler than) the one
from Section 3.4. Let O be a strong differing-inputs obfuscator, PKE = (Setup,Encrypt,Decrypt) be
a semantically secure encryption scheme, and Π = (K,P, V ) be a simulation-sound NIZK scheme.
For any circuit C : {0, 1}n → {0, 1}m we define a circuit C∗[σ, pk0, pk1, b, sk](c0, c1, π), which takes
as input two ciphertexts c0, c1 and an NIZK proof π for (pk1, pk2, c1, c2) ∈ LEQ, where LEQ is
defined as in the previous section, and computes the following:

C∗[σ, pk1, pk2, b, sk](c1, c2, π):

1. Verify that π is a proof of (pk1, pk2, c1, c2) ∈ LEQ by running V (σ, (pk1, pk2, c1, c2), π).
If this rejects, output ⊥.

2. Compute x = Decrypt(sk, cb). Output C(x).

We define the circuit garbling scheme GC = (GC.circ,GC.inp,GC.eval) as follows:

• GC.circ(1λ, C): Generate (pk0, sk0) ← Setup(1λ), (pk1, sk1) ← Setup(1λ), σ ← K(1λ). Con-
struct the circuit C∗ := C∗[σ, pk0, pk1, 0, sk0] from C as shown above. Output C̃ ← O(1λ, C∗)
and s := (σ, pk0, pk1).

• GC.inp(x, s): Compute c0 ← Encrypt(pk0, x; r0), c1 ← Encrypt(pk1, x; r1) and
π ← P (σ, (pk0, pk1, c0, c1), (r0, r1)) is a NIZK that (pk0, pk1, c0, c1) ∈ LEQ.
Output x̃← (c0, c1, π).

• GC.eval(C̃, x̃): Interpret C̃ as an obfuscated circuit and output C̃(x̃).

We note that in the above construction we need only simulation sound NIZK scheme, which
does not have to provide statistical security. In particular, previously we needed statistical security
to make sure that there are no inputs on which two different circuits (decrypting with sk0 vs sk1)
differ. Now, it suffices that such inputs are hard to find.

We define a class of relevant circuit families (C,Sam) where:

• C consists of circuits of the form C∗[σ, pk1, pk2, b, sk] as described above.

• (C0, C1, x̃1, . . . , x̃n, aux0, aux1) ← Sam(1λ) consists of setting C0 = C∗[σ, pk0, pk1, b = 0, sk0],
C1 = C∗[σ, pk0, pk1, b = 1, sk1] where σ is a simulated CRS chosen via (σ, τ) ← S1(1

λ) with
trapdoor τ .

• The inputs x̃i = (ci0, c
i
1, π

i) consist of encryptions cib ← Encrypt(pkb, x
i
b) and simulated proofs

πi ← S2(σ, τ, c
i
0, c

i
1).

• The encrypted messages xib and the auxiliary information aux0, aux1 are chosen independently
of σ, τ .

Although this may seem like a complicated class of relevant circuit families, we notice that when
instantiated with standard construction cryptosystem and and NIZK, the above restricted class
already prevent counterexamples such as the one of [GGHW13] from going through. In particular,
such counterexamples crucially rely on the auxiliary input (or the additional values xi) containing
and obfuscated circuit which has embedded secret information that can be used to come up with
an input on which C0, C1 would distinguishably differ. In our case, the only way to come up with
such an input is to know the NIZK trapdoor τ but we only give out some selected few simulated
proofs πi using τ and do not provide any other information about it in any other context. It seems
reasonable to postulate the existence of sdiO for all relevant differing-inputs families relative to
some standard-construction encryption scheme PKE and simulation sound NIZK scheme Π.
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Theorem 4.8. If Π is simulation-sound NIZK, and PKE is a semantically secure public-key en-
cryption scheme and O is a strong differing-inputs obfuscator for relevant differing-inputs circuit
families, then the above construction GC is a reusable garbled circuit with correlated distributional
indistinguishability.

See Appendix F.4 for a proof of the above theorem.

5 Analyzing Efficiency and Putting it All Together

In the past two sections, we have shown how to construct reusable GRAM with and without
persistent memory from one-time GRAM and a certain type of reusable garbled circuits. We then
constructed such garbled circuits using obfuscation. So far, we have largely ignored efficiency
considerations, and in this section we will analyze the efficiency of the constructions.

Overview. Recall that, on a high-level, all our constructions of reusable garbled RAM work
as follows: to reusably garble a program P , we need to reusably garble some related circuit C
that computes a one-time garbled program/input P̃one, x̃one. To reusably garble C, we in turn
need to obfuscate some related circuit C∗. On a high level, the size of C and C∗ in all of the
constructions scales with Õ(t), where t is run-time of the program P . Therefore, to get the right
level of efficiency for the server, we would need to rely on a reusable circuit garbling scheme where
the size of a garbling of a circuit C and the time it takes to evaluate it is only linear in the circuit
size O(|C|). This, in turn, would require us to rely on an obfuscation scheme where the size of an
obfuscation of C∗ and the time it takes to evaluate it is linear is the circuit size O(|C∗|). As we
discuss in Appendix A.1, such general obfuscation schemes with linear slowdown can be conjectured
to exist, but do not seem to follow directly from the basic constructions in the literature. Luckily,
it turns out that we can avoid this requirement via a more careful analysis.

Bitwise Compact. We can rely on additional structure of the circuits C,C∗ which will allow us
to get the right level of efficiency for the full construction without relying on general obfuscation
with linear slowdown. In particular, we will rely on the fact that, although these circuits are large
and have a large output size, each output bit can be computed by a much smaller circuit. We call
this property bitwise compactness.

Definition 5.1 (Bitwise Compact). Let C : {0, 1}n → {0, 1}m be a function or a circuit. We say
that C is s-strongly bitwise compact if there exists a circuit Cbit : {0, 1}n × [m] → {0, 1} of size
|Cbit| = s such that Cbit(x, i) output the i’th bit of C(x).

We say that C is s-weakly bitwise compact if for each i ∈ [m] there exists a circuit Cbit,i of size
|Cbit,i| = s such that Cbit,i(x) outputs the i’th bit of C(x).

We also require that a strongly (resp. weakly) bitwise compact circuit C is given in some
canonical format that makes it efficient to recover the bitwise representation Cbit (resp. for each
i ∈ [m], recover Cbit,i) from C in Õ(|C|) time.8,9

A circuit C with large output-size m can be s-(strongly/weakly) bitwise compact where s� m
is much smaller than the output size. We will show how to use bitwise compactness to get more
efficient circuit garbling and obfuscation schemes.

8For example, a canonical representation C = (Cbit[1], . . . , Cbit[m]) consists of m parallel copies of the bitwise
representation circuit with different hard-coded indices i.

9Note that strongly bitwise-compact implies weakly bitwise compact by defining Cbit,i(·) := Cbit(·, i).
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Structure. We first begin by examining the efficiency of one-time GRAM from the literature
in Section 5.1. Then we follow a “top down” approach, by looking at how the parameters of the
reusable GRAM depend on those of the reusable circuit garbling schemes (Section 5.2), how the
parameters of circuit garbling schemes depend on those of obfuscation (Section 5.3), and how we
can optimize obfuscation parameter by relying on bitwise compactness (Section 5.4). Lastly, in
Section 5.5, we summarize the efficiency analysis and state the parameters and assumptions needed
for our constructions.

5.1 Efficiency of One-Time GRAM

We begin by recalling the efficiency of one-time GRAM construction of [LO13a, GHL+14]. We
will state the parameters for the most efficient variant which uses identity-based encryption (IBE).
See Appendix B for an overview of this construction and the following theorem. We mention that
there is also an alternate construction which uses only one-way functions at the cost of a slight
degradation in parameters.

Theorem 5.2 ([LO13a, GHL+14]). Assuming the existence of selectively-secure identity-based en-
cryption (IBE), there exists a garbled RAM scheme GR1 = (GR1.data,GR1.prog,GR1.inp,GR1.eval)
with persistent memory and one-time security. Furthermore, for a program P with run-time t,
input size n, and output size m and memory-data of size N :

• GR1.data runs in time N · poly(λ)

• GR1.prog can be described by a circuit of size Õ(t+ |P |+n+m) ·poly(λ, logN). Furthermore,
this circuit is s-strongly bitwise-compact where s = Õ(|P |+ n+m) · poly(λ, logN, log t).

• GR1.inp can be described by a circuit of size n · poly(λ).

• GR1.eval is a RAM program with run-time Õ(t+ |P |+ n+m) · poly(λ, logN).

In the case without persistent memory, there is a scheme GR1 = (GR1.prog,GR1.inp,GR1.eval)
that achieves the same parameters as above when we replace the memory size by N = t.

On a high level, the procedure GR1.prog is bitwise compact in these constructions because it
essentially consists of many copies of a one-time garbled circuit (e.g., Yao) computing a single CPU
step of a RAM. Each such garbled circuit can be computed very efficiently. See Appendix B for
more details.

Throughout this section, it will be convenient to discuss the settings without and with persistent
memory simultaneously. In this case we will follow the convention initiated in the above theorem,
where any parameters involving the memory-size N will apply to the setting without persistent
memory by setting N = t.

5.2 Efficiency of Reusable GRAM from Reusable Circuits

Let us analyze the efficiency of the reusable garbled RAM constructions in Section 3.3 and Sec-
tion 4.2 in terms of the efficiency of the underlying reusable circuit garbling scheme. Recall that
these constructions show how reusably garble a RAM program P by reusably garbling a related
circuit C = C[P, . . .]. The circuit C computes a one-time garbling (P̃one, sone)← GR1.prog(P+, . . .),
x̃one ← GR1.inp(x . . .).
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The Circuit C. Assume we start with a program P with run-time t, input size n, and output
size m and memory-data of size N (in the case without persistent memory, set N = t). To garble P
we construct a corresponding circuit C which, in both constructions, has the following parameters:

• The size of the circuit C is q = Õ(t+ |P |+ n+m) · poly(λ, logN).

• The input-size of C is n′ = n+m+O(λ).

• The output-size of C is m′ = Õ(t+ |P |+ n+m) · poly(λ, logN).

• The circuit C is s-strongly bitwise compact where s = Õ(|P |+ n+m) · poly(λ, logN, log t).

The Construction. The constructions of reusable garbled RAM in Section 3.3 (without per-
sistent memory) and Section 4.2 (with persistent memory) define the scheme GR = ([GR.data],
GR.prog, GR.inp, GR.eval) in terms of the circuit C and the circuit-garbling scheme GC = (GC.circ,
GC.inp, GC.eval). In both cases, the efficiency parameters can be summarized as follows.

• In the setting of persistent memory, the procedure GR.data runs in time N · poly(λ).

• The efficiency of GR.prog equals that of GC.circ for a circuit C with the parameters above.

• The efficiency of GR.inp equals that of GC.inp for a circuit C with the parameters above.

• The efficiency of GR.eval equals that of GC.eval for a circuit C with the parameters above,
plus an Õ(t+ |P |+ n+m) · poly(λ, logN) overhead (to evaluate the one-time GRAM).

5.3 Efficiency of Reusable Circuits from Obfuscation

We gave three different constructions of reusable garbled circuits from obfuscation: a construc-
tion in Section 3.5 which we will call “Construction 0” and which achieves basic distributional
indistinguishability, and Constructions 1 & 2 in Section 4.3 which achieve correlated distributional
indistinguishability. All of the three constructions rely on public-key encryption, and we assume
w.l.o.g. that a long message of size ` is encrypted bit-by-bit so that the complexity of encryp-
tion/decryption is ` · poly(λ). Constructions 0 & 2 also rely on (SSS or SS) NIZKs for plaintext
equality. Again, we assume w.l.o.g. that for a message of size `, plaintext equality is proved
bit-by-bit so that the complexity of constructing and verifying such a NIZK is ` · poly(λ).

The Circuit C∗. Assume we have a circuit C of size q = |C|, input-size n′, output size m′ and
which is s-strongly bitwise compact. In all of our constructions, the problem of reusably garbling
a circuit C is translated into the problem of obfuscating a related circuit C∗ with the following
parameters.

• In all constructions, the circuit C∗ is of size q∗ = q · poly(λ).

• In all constructions, the circuit C∗ has input size n∗ = n′ · poly(λ) and output size m∗ = m′.

• In Construction 0, the circuit C∗ is s∗-weakly bitwise-compact and in Constructions 1,2 it is
s∗-strongly bitwise compact, where s∗ = s · poly(λ).

The reason that the circuit C∗ in Construction 0 is only weakly bitwise compact is that C∗ =
C∗[σ, pk1, pk2, b, sk, u, v] has a hard-coded value v which is of size |v| = m′ related to the (potentially
huge) output size. However, the i’th output bit of C∗ only depends on the i’th bit vi of v. In other
words, there are small circuits C∗bit,i = C∗bit,i[σ, pk1, pk2, b, sk, u, vi] that compute the i’th output bit
of C∗. On the other hand, Constructions 1, 2 do not have any hard-coded value and are strongly
bitwise compact.
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The Construction(s). Let O be an obfuscation scheme. The parameters of GC = (GC.circ,
GC.inp, GC.eval) in Constructions 0,1,2 can be summarized in terms of O as follows.

• The efficiency of GC.inp in all constructions is just n′ · poly(λ).

• The efficiency of GC.circ is equal to that of obfuscating the circuit C∗ with parameters above.

• The efficiency of GC.eval is equal to that of evaluating the obfuscated circuit for C∗ with
parameters above.

5.4 Efficiency of Obfuscation

Finally, we get to the parameters of obfuscation for a circuit C∗ of size q∗, input-size n∗, and output
size m∗, which is s∗-(strongly or weakly) bitwise compact. We especially care about the setting
where the circuits have huge output size, but a small compact representation: q∗,m∗ � s∗.

Recall that we need different definitions of obfuscation for Constructions 0,1,2, but for now we
focus on efficiency consideration. Let O be any circuit obfuscation scheme. In general, if we only
rely on the fact that C∗ is of size q∗, then the only efficiency guarantee we have on the obfuscation
C̃ ← O(1λ, C∗) in terms of the run-time of O, the size of C̃, and evaluation time of C̃, is that
they are bounded by poly(q∗, λ). As we discuss in Appendix A.1, we can conjecture that there are
general obfuscation schemes with linear slowdown, where all of the above parameters are bounded
by q∗ ·poly(λ), but this does not seem to be the case for the basic constructions from the literature.
In particular, it would require improved parameters for multilinear maps or stronger assumptions.
Luckily, we can get improved efficiency for obfuscation when the circuit being obfuscated is bitwise
compact.

Optimized Obfuscators. Let O be an obfuscator. We define an optimized way of obfuscating
bitwise compact circuits using O.

Definition 5.3. Let O be an arbitrary obfuscation scheme for circuits.
We say that an obfuscation scheme OwOpt is weakly bitwise optimized if it works as follows.

For a circuit C∗ which is s∗-weakly bitwise compact with bitwise-representation circuits C∗bit,i and

output size m∗, the obfuscation OwOpt(1λ, C∗) outputs C̃ = [C̃1, . . . , C̃m∗ ] where C̃i ← O(1λ, C∗bit,i).
We say that an obfuscation scheme OsOpt is strongly bitwise optimized if it works as follows.

For any circuit C∗ which is s∗-strongly bitwise compact and has bitwise-representation C∗bit and
output size m∗, the obfuscation OsOpt(1λ, C∗) outputs C̃ ← O(1λ, C∗bit). To evaluate C̃ on input x,
evaluate [C̃(x, 1), . . . , C̃(x,m∗)].

Note that for a weakly bitwise optimized scheme, the time it takes to create C̃ and its size
are bounded by m∗ · poly(s∗, λ). In a strongly optimized scheme this is reduced to poly(s∗, λ) and
independent of m∗. In particular, notice that the obfuscated representation C̃ can be smaller than
the original circuit C∗.10 In both cases, the time it takes to evaluate the obfuscated circuit C̃ on
an input x is m∗ · poly(s∗, λ). These parameters hold if we assume arbitrary polynomial efficiency
of the underlying obfuscator O. If we further assume that the underlying obfuscator O has linear
slowdown, all of the above factors of poly(s∗, λ) become s∗ · poly(λ).

10Technically speaking, C̃ is not in itself a circuit that evaluates C∗. However, it provides all of the information
needed to evaluate C∗ at any input.
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Can we Assume Obfuscator is Optimized? In the case of indistinguishability obfuscation
(iO) the obfuscation schemes OwOpt and OsOpt satisfy the definition of iO whenever O does, with
the following caveat: in the security definition, instead of just requiring that the circuits C∗0 , C

∗
1 are

of the same size |C∗0 | = |C∗1 |, we now also require that their strongly/weakly bitwise representations
are also of the same size.11 In particular, we rely on the fact that if the two circuits C∗0 , C

∗
1 compute

the same function than so do their bitwise representations.
In the case of strong differing inputs obfuscation (sdiO) the strongly bitwise optimized scheme

OsOpt satisfies sdiO security for a differing inputs family (C0, C1, x1, . . . , xn, aux0, aux1)← Sam(1λ)
as long asO satisfies sdiO security for a closely related differing inputs family (C0

bit, C
1
bit, {(xi, j) : i ∈

[n], j ∈ [m]}, aux0, aux1) ← Sam′(1λ) where Cbbit denotes the bitwise representation of Cb. There-
fore, assuming sdiO security of the strongly optimized scheme OsOpt is conceptually not a very
different assumption. 12

In the case of the obfuscation conjecture (Conjecture 4.5) used in Construction 1, we can simply
augment the conjecture to hold for a strongly or weakly optimized obfuscation scheme OsOpt or
OwOpt, but there is no simple reduction to show that this is implies by the security of O. Still, such
an augmented conjecture does not seem conceptually very different from the original form.

5.5 Summary

We summarize the discussion from the above sections and state the final parameters and assump-
tions of our schemes.

Without Persistent Memory. Let us start with the case without persistent memory, relying
on indistinguishability obfuscation. Following the above discussion, the problem of garbling a
program P translates to reusably garbling some related strongly bitwise compact circuit C with
(basic) distributional indistinguishability, which translates to iO for some weakly bitwise compact
circuit C∗ via Construction 0 in Section 3.5. We assume w.l.o.g. that the iO scheme is weakly
bitwise optimized.

Combining all of the above and the facts that indistinguishability obfuscation + one-way func-
tion implies selectively secure functional encryption which implies selectively secure IBE [GGH+13b],
and that statistically simulation sound NIZK can be constructed from statistically sounds NIZK
[GGH+13b], we get the following theorem.

Theorem 5.4. If indistinguishability obfuscation (iO), one-way functions, and statistically sounds
NIZKs exist, then there exists a reusable garbled-RAM scheme without persistent memory satisfying
Definition 3.2. Furthermore, it supports public input garbling. For a program P with run-time bound
t, input size n, and output size m it achieves the following efficiency:

• GR.inp runs in time (m+ n) · poly(λ).

• GR.prog and GR.eval run in time Õ(t) · poly(λ+ n+m+ |P |). If we further assume iO with
linear slowdown, then GR.prog and GR.eval run in time Õ(t+ |P |+ n+m) · poly(λ).

An alternate construction of reusable garbled RAM without persistent memory from functional
encryption appears in Section D.

11In our case, the circuits are the same up to the setting of some hard-coded flag, and therefore this requirement
is satisfied.

12Interestingly, it is not clear if the same holds for a weakly optimized scheme.
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With Persistent Memory, No Preprocessing. In the case of persistent memory, the prob-
lem of garbling a program P translates to reusably garbling some related strongly bitwise-compact
circuit C. The garbling now needs to satisfy the stronger notion of correlated distributional indistin-
guishability. This translates to obfuscating a strongly bitwise compact circuit C∗ via Constructions
1 or 2 in Section 4.3. Note that we can also use Constructions 1,2 in the case without persistent
memory to get better efficiency, since correlated distributional indistinguishability clearly implies
basic distributional indistinguishability. In particular, the advantage of Constructions 1 or 2 is that
the resulting circuit C∗ is strongly bitwise compact and therefore can be obfuscated very efficiently.
This allows us to get rid of pre-processing – the time it takes to garble a program P is small
and essentially independent in the program’s run-time t. Summarizing the discussion, we get the
following theorem.

Theorem 5.5. Assume the existence of selectively secure IBE schemes, statistically sound NIZKs
and a strongly bitwise optimized obfuscator OsOpt which either (1) satisfies Conjecture 4.5, or (2)
satisfies sdiO security for relevant circuit families (Definition 4.7).13 Then there exist reusable
garbled-RAM schemes both with and without persistent memory. For a program P with run-time
bound t, input size n, output size m, and memory-data size N (in the case without persistent data
set N = t) it achieves the following efficiency:

• In the case of persistent data, the procedure GR.data runs in time N · poly(λ).

• GR.inp runs in time (m+ n) · poly(λ).

• GR.prog runs in time poly(λ, log t, logN, |P |, n,m) and, in particular, is sub-linear in t. If we
further assume that the underlying obfuscator has linear slowdown then GR.prog runs in time
Õ(|P |+ n+m)poly(λ, log t, logN).

• GR.eval run in time Õ(t)poly(λ, logN, |P |, n,m). If we further assume that the underlying
obfuscator has linear slowdown then GR.eval run in time Õ(t+ |P |+ n+m)poly(λ, logN).

6 Extensions and Applications

Program Privacy. Our default definitions of garbled RAM do not include program privacy,
and the garbled program P̃ may reveal information about the code of the actual program P to
the server. There are several simple standard techniques that can be employed to add program
privacy to our constructions. Firstly, we can garble a program Puni which is the universal RAM
that runs for some fixed number of steps t. The code of the actual program P that we want to
execute can then be provided as part of the input to Puni or, in the case of persistent memory, it
can be included as part of the initial memory data D. Alternatively, to avoid sending the code of
the program P with each input in the case without persistent memory, we can use the following
approach of [GKP+13b]: Instead of garbling the program P , we encrypt it to get a cipehrtext
cP = Enck(P ). We then garble a program Qenc[cP ] that has cP hard wired in it, and on input (k, x)
it decrypts cP with key k, interpret the result as a program, and run that program on input x.
Notice that the input size for Qenc[cP ] is independent of the size of P itself, and that the description
of Qenc[cP ] does not reveal anything about the actual program P .

Output Privacy. Our default definition of garbled RAM assumes that the server who evaluates
the garbled program on the garbled input learns the output y of the program. This might be useful
in some scenarios, but in other cases the output y is intended for the client and the server simply

13The latter is implied by the existence of any sdiO obfuscator O for a related class of circuit families, as discussed.
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sends it back to the client. In such cases, we may also want the output y of the program to remain
secret from the server and only be revealed to the client. We can achieve output privacy by simply
garbling an augmented program PoutEnc which gets as input (k, x), evaluates y = P (x) and outputs
an encryption c = Enck(y), where (Enc,Dec) is some (one-time) encryption scheme (e.g., one-time
pad). The client garbles inputs (xi, ki) where ki is a fresh key for encryption, the server evaluates
the garbled program on the garbled input to get back ci = Encki(yi) where yi = P (xi), sends ci
to the client, and the client decrypts yi = Decki(ci). Notice that the entire view of the server can
be simulated given the values ci and therefore the server learns nothing about the inputs xi or the
outputs yi of the program executions.

Verifiable Computation. In the above scenario, where the program outputs yi are intended for
the client, we may also want to add verifiability, where the client is sure that the received outputs
yi are indeed the correct outputs of the computation. To do so, we can garble an augmented
program PoutAuth which gets as input (k, x), evaluates y = P (x) and outputs (y, σ) where σ is
an authentication-tag σ = MACk(y) for some (one-time) message-authentication code MAC. The
client garbles inputs (xi, ki) where ki is a fresh key for the MAC, the server evaluates the garbled
program on the garbled input to get back (yi, σi) which it sends to the client, and the client verifies
σi = MACki(yi). Notice that the entire view of the server can be simulated given the values (yi, σi)
and therefore the server cannot come up with a valid tag σ′i for any y′i 6= yi. This gives us verifiable
computation. Furthermore, we can always combine privacy and authentication by garbling an
augmented program PoutEncAuth which encrypts the output and then authenticates the ciphertext.

Input-Specific Run-Time. Our default notion of garbled RAM assumes that the program P
has some fixed worst-case run-time t = t(n) for all inputs x of size n, and and the running time
of the server during each evaluation is proportional to t. However, a program might have vastly
different run-times for different inputs, and we would like the server’s work when evaluating the
garbled program P̃ on garbled inputs x̃ to only depend on the input-specific run-time of P (x)
rather than the worst-case run-time t. Of course, this means that we have to leak the input-specific
run-time of P (x), but the goal is to only leak this information and nothing else. The works of
[GKP+13b, GKP+13b] show how to do this in the case of Turing Machine computation, where the
server’s run-time is proportional to the input-specific Turing-Machine run-time, and we can use
some of the same techniques to get analogous results for RAM computation.

In the setting without persistent memory, the high-level idea goes as follows. To garble a
program P , we separately garble ` = log(t) programs P1, P1, . . . , P` where each program Pj(x)
runs P (x) for 2j steps, and if the computation completes returns the output else indicates that
the computation is incomplete. The server gets these independently garbled programs P̃1, . . . , P̃`.
To garble an input x, the client just creates ` independently garbled inputs x̃j for each of the
reusable garbled RAM programs P̃j and the server evaluates them one by one (starting with j = 1)
until the first one terminates. If the input-specific run-time is tx then the time to evaluate all of
the additional programs only introduces a constant amount of overhead and therefore the server’s
run-time is Õ(tx). Notice that if we use a garbled RAM scheme with parameters as in Theorem 5.5,
then the client never does work proportional to t but only proportional to log(t) where t is the
worst-case run-time

In a setting with persistent memory, the solution becomes more complex for several reasons:

• The most serious issue is that our solution of reusable GRAM with persistent memory only
allows us to garble a single program per database, and moreover we assume that this program
always takes the same number of steps to run (since we are garbling a circuit whose output
length depends on the run-time of the program). This issue can be addressed by using the
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“strongly bitwise compact” representation (see Section 5). In particular, we can reusably
garble a single circuit C[P, . . .] with a similar description as before but taking an additional
input tcur ∈ {1, . . . , t} and outputting a variable-length output consisting of (P̃ , x̃) where P̃
runs for tcur steps. In particular, this circuit is “strongly bitwise-compact” even if the total
number of output bits is not fixed. The client can sequentially garble her input with the
values tcur = 2j for j = 1, . . . , log t until she hits a value tcur for which the computation
completes. Several minor issues remain.

• One issue is that each program execution which does not complete must “clean up after itself.”
Namely if execution does not halt within tcur steps then it needs to restore the memory to
its original state. This can be done without increasing the running time by too much.

• Yet another problem is that when garbling the i’th input, the client must know the total
number of CPU steps executed so far (see generalized definition of one-time garbled RAM
in [GHL+14]). Here we must revert to an interactive solution, where the client garbles these
inputs one at a time and waits for the server to tell it whether the computation completed
before it garbles the same input again (or a different input if the computation was completed).

The above outlines the high-level ideas and we defer a formal treatment of this to future work.

Applications to MPC. We have discussed garbled RAM in the context of outsourcing compu-
tation where the program specification, persistent memory/databse, and inputs are all chosen by
a single client. However, we can also employ garbled RAM in the setting of two-party or multi-
party computation (MPC) where these values belong to multiple parties. In particular, we can run
standard MPC protocols to garble memory data D and program P where the underlying data be-
longs to several mutually distrustful parties. Later, the parties can run MPC protocol(s) to create
garbled inputs xi, which may also depend on the inputs of several parties. The main advantage is
that there can now be one designated (and untrusted) party that does the work of evaluating the
garbled program on the garbled input in time proportional to the RAM computation, and all other
parties only need to work in time proportional to the input size. This is in contrast to standard
MPC approaches where all parties work as hard as the circuit size of the program evaluation, or
the work of [GKK+12] where all parties work as hard as the RAM complexity of the computation.

Functional Encryption for RAMs. In Appendix D, we also show how to extend our techniques
to get functional encryption for RAMs (without persistent memory). In such a scheme, secret keys
are associated with functions f . If a user gets a secret keys SKf1 , . . . ,SKfq for functions f1, . . . , fq
and a ciphertext c encrypting some message x, she should only learn f1(x), . . . , fq(x) and nothing
else. Unfortunately, it is known that simulation based security cannot be achieved in this setting
if an attacker can get secret keys for arbitrarily many different functions (see [AGVW13]), and
therefore we must settle for indistinguishability based security. Prior work of [GGH+13b] showed
how to construct such functional encryption for circuits, where the size of the secret key and the
decryption time were proportional to the circuit size of f . We essentially show how to convert any
such functional encryption scheme for circuits into a functional encryption for RAMs where the
size of the secret keys and the decryption time are proportional to the RAM run-time of f . In
particular, we get such constructions assuming indistinguishability obfuscation. We also show how
to convert any such FE for RAMs (with indistinguishability security) into a reusable garbled RAM
(with simulation security) and therefore this gives us an alternate construction of reusable garbled
RAM from FE for circuits.
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Obfuscation for RAM programs. In Appendix E, we propose a candidate scheme that con-
verts an obfuscator for circuits into an obfuscator for RAM programs. In particular, the size of the
obfuscated program is only proportional to the size of the original program and the running time of
the obfuscated program is only proportional to the (worst-case) running time of the original RAM
program. We merely conjecture the security of the construction but do not have a reduction from
any simple-to-state assumption.

7 Conclusions

We have shown how to privately outsource RAM computation from a weak client to a more power-
ful server via reusable garbled RAM schemes. Our main contribution was to reduce the problem of
reusable garbled RAM into seemingly simpler problems dealing with reusable garbled circuits. In
doing so, we introduced new notions of security for such garbled circuit that we call “distributional
indistinguishability” and “correlated distributional indistinguishability” which may be of indepen-
dent interest and seem to allow for greater (output-size independent) efficiency than the stronger
simulation-based security. Lastly, we showed how to construct such schemes under obfuscation-
based assumptions. The main open problem is to provide constructions of such reusable garbled
circuits under weaker assumptions. Ideally, such constructions would avoid obfuscation altogether,
but a more limited goal would be to get “correlated distributional indistinguishability” from indis-
tinguishability obfuscation.
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A Additional Preliminary Definitions

A.1 Obfuscation

Definition A.1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an
indistinguishability obfuscator if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function
α such that the following holds: For all security parameters λ ∈ N, for all circuit families
C0 = {C0

λ}λ∈N, C1 = {C1
λ}λ∈N of size |C0

λ| = |C1
λ|, we have that if C0

λ(x) = C1
λ(x) for all inputs

x, then ∣∣∣Pr
[
D(iO(1λ, C0

λ)) = 1
]
− Pr

[
D(iO(1λ, C1

λ)) = 1
]∣∣∣ ≤ α(λ)

The work of Garg et al. [GGH+13b] presents a candidate construction for indistinguisha-
bility obfuscation based on a new assumption regarding multilinear maps. Followup works of
[BR13, BGK+13, PTS13] give variants of this construction that can be proven secure in the generic
multilinear group model and/or under simpler-to-state assumptions.

Linear Slowdown. Our efficiency analysis in Section 5 would be simplified and the parameters
would be slightly improved if we assumed that an iO scheme has linear slowdown. This means that
the run-time of C ′ ← iO(1λ, C) is bounded by |C| · poly(λ) and this also serves as a bound on the
size of the obfuscated circuit |C ′|. We now explore this assumption and how it fits in with known
constructions.

The main approach to constructing iO in all prior work [GGH+13b, BR13, BGK+13, PTS13]
consists of two steps:

Circuit to Branching-Program Conversion: The first step reduces the problem of obfuscat-
ing an arbitrary polynomial-time circuit C to the problem of obfuscating a constant-width
polynomial-size branching program (BP). One can decompose this into two further sub-steps.

The first sub-step reduces the problem of obfuscating C to that of obfuscating some “shal-
low” circuit C ′. The circuit C ′ gets as input O(|C|) ciphertexts under a fully homomorphic
encryption. It first performs O(|C|) “consistency checks” on various triples of ciphertexts,
where it checks that the third ciphertext in the tripple is a result of a homomorphic operation
on the first two, and if all of these checks pass, it then decrypts one of the ciphertext. The
“consistency checks” and the “decryption” procedures can be expressed as sub-circuits with
fan-in-2 and depth O(log λ). The circuit C ′ can be expressed as an AND of these O(|C|)
sub-circuits (if all the checks pass, then the output is the decrypted bit, else the output is 0).

The second sub-step relies on Barrington’s theorem [Bar86] to transform C ′ into a constant-
width, polynomial-size BP. Unfortunately, since C ′ has depth O(log λ+log |C|) using fan-in-2
gates, a naive application of Barrington’s theorem to C ′ directly would result in a BP of size
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O(|C|2)poly(λ). However, there is a better approach to transforming C ′ into a BP, relying on
the fact that it consists of an AND of O(|C|) shallow sub-circuits. We only apply Barrington’s
theorem on each of the sub-circuits separately to convert each of them into a width-5 BP of
size poly(λ). We can then compute the AND of O(|C|) different width-5, poly(λ)-size BPs
using a width-6 BP of size O(|C|) · poly(λ). In particular, the new BP runs the underlying
component BPs sequentially but has an extra state to indicate that the current AND of the
BPs executed so far is 0. If any of the component BPs evaluates to 0, the combined BP just
goes to the 0 state and stays there. To summarize, with the above modification, we reduce the
problem of obfuscating an arbitrary polynomial-time circuit C to the problem of obfuscating
a width-6 BP of size O(|C|)poly(λ).

Obfuscating Branching Programs: The second step provides a way to obfuscate BPs using
multilinear maps. The high-level idea is to encode the matrices that define the BP in the
exponent. There are several variants of this approach. The initial work of Garg et al.
[GGH+13b] used a somewhat more complex approach that was simplified by subsequent
works [BR13, BGK+13, PTS13]. In particular, these latter results take a BP of size n and
create an obfuscate circuit consisting of O(n) group elements. Unfortunately, for the known
constructions of multilinear maps in [GGH13a], the size of the group elements themselves
depends on the degree of multilinearity which depends on n.

Summarizing the above, we would get obfuscation with linear slowdown if we assumed the existence
of multilinear maps where the size of the group elements would be some fixed polynomial in the
security parameter and unrelated to the amount of multilinearity. Unfortunately, we do not have
such candidates.

An Alternate Approach to Linear Slowdown. We also note that we can use ideas similar
to those of [ABG+13, BCP13] to construct candidate obfuscation schemes with linear slowdown.
Instead of obfuscating a circuit C directly, we can do the following:

• Provide two encryptions of C under different FHE schemes.

• Obfuscate a circuit C ′ which contains a hash σ of the encryption of C and the secret key for
one of the FHE schemes. It gets as input two ciphertexts and a succinct proof (succinct-non-
interactive argument of knowledge, SNARK) that they were both computed by homomorphi-
cally by evaluating an encrypted circuit C where the hash of the encryptions is σ on some
input x. If the proof verifies then C ′ decrypts one of the ciphertexts.

The size of the circuit C ′ is only poly(λ) and independent of that of C. Moreover the resulting
scheme can be shown to satisfy iO is the obfuscation of C ′ satisfies differing input obfuscation
(diO). Therefore, this requires stronger assumptions.

A.2 Statistically Simulation-Sound Non-Interactive Zero Knowledge (NIZK)

Another primitive introduced by [GGH+13b], which we will use, is statistically simulation sound
NIZK. It was shown that such NIZKs can be constructed from standard NIZKs and a commitment
scheme.

Definition A.2. A statistically simulation-sound non-interactive zero-knowledge proof (K,P, V )
for a relation R has the following properties:

Perfect completeness. A proof system is complete if an honest prover with a valid witness can
convince an honest verifier. Formally we have

Pr
[
σ ← K(1λ) : ∃(x, π) : x /∈ L : V (σ, x, π) = 1

]
= 1.
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Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. For all (even unbounded) adversaries A we have

Pr
[
σ ← K(1λ); (x, π)← A(σ) : V (σ, x, π) = 1 : x 6∈ L

]
= negl(λ).

Computational zero-knowledge [FLS99]. A proof system is computational zero-knowledge
if the proofs do not reveal any information about the witnesses to a bounded adversary. We say a
non-interactive proof (K,P, V ) is computational zero-knowledge if there exists a polynomial time
simulator S = (S1, S2), where S1 returns a simulated common reference string σ together with a
simulation trapdoor τ that enables S2 to simulate proofs without access to the witness. For all
non-uniform polynomial time adversaries A we have for all x ∈ L

Pr

[
A(x, σ, π) = 1 :

σ ← K(1λ)
π ← P (σ, x, w)

]
≈ Pr

[
A(x, σ, π) = 1 :

(σ, τ)← S1(1
λ, x)

π ← S2(σ, τ, x)

]
.

Statistical Simulation-Soundness (SSS). A proof system is said to be statistically simulation
sound if it is infeasible to convince an honest verifier of a false statement even when the adversary
itself is provided with a simulated proof. For all statements x and all (even unbounded) adversaries
A we have

Pr
[
(σ, τ)← S1(1

λ, x);π ← S2(σ, τ, x) : ∃(x′, π′) : x′ 6= x : V (σ, x′, π′) = 1 : x′ /∈ L
]

= negl(λ).

B Overview of One-Time GRAM and Bitwise Compactness

We briefly describe a high-level framework for construction one-time garbled RAM as defined in
[LO13a, GHL+14]. The original instantiation of [LO13a] had a subtle bug which was later fixed by
[GHL+14]. See [GHL+14] for full details. Our main focus here is on the syntax of the construction
and explaining why it satisfies our efficiency requirements such as bit-wise compactness. We begin
by recalling the RAM model of computation.

B.1 Random Access Machines

A RAM program can be represented by a CPU-Step Circuit

CPU(s, bread) = (s′, iread, iwrite, bwrite),

which also has access to external memory. The RAM program is executed by repeatedly taking as
input the current state s and data bread and applying the CPU-step function from above. This step
determines the state for the next step s′, some data bwrite to write to memory location iwrite, and
another memory location iread from which to read the data for the next step. The initial s of the
computation consists of the input, and the computation concludes when it reaches a designated
“halt” s, at which point the output is found in the external memory, starting from position iread.
The initial memory content is often taken to be empty, but when we consider repeated computations
with persistent memory then the memory content is assumed to persist from the previous execution.

B.2 The One-Time GRAM Construction

The main idea for how to garble a RAM program P is to just use Yao garbled circuits to garble
t copies of the CPU step circuit as described above. The state of the computation s remains
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garbled from one circuit to the next. The main difficulty is how to allow the computation to access
(read/write) values in memory. To do so, we define a “garbled memory” which contains a secret
keys ski,j,b for each memory location i, where b corresponds to the bit that should be in that location
and j corresponds to the CPU step in which that bit was written (or 0 if it was initialized that
way). Each garbled CPU step circuit also outputs (in the clear) the locations iread, iwrite that it
wants to read/write as well as:

• A secret key skwrite = skiwrite,j,bwrite where bwrite is the bit being written to in location iwrite and
j is the current CPU step index.

• Two ciphertexts c0, c1 that encrypt the labels corresponding to bit 0 and 1 respectively for the
wire corresponding to the bit bread in the next garbled circuit. The encryptions are created
in such a way that cb can only be decrypted by ski,j,b where j is the time period in which
location i was last written to.

Originally, the garbled memory consists of secret keys ski,0,D[i] where D[i] is the i’th bit in the
persistent data D, or we set D[i] = 0 in the case where we have no persistent data and just want
to initialize the memory to all 0s. The evaluator starts evaluating the garbled CPU step circuits
one-at-a-time. After each evaluation, it gets our the values iread, iwrite, skwrite, c0, c1. It writes skwrite

to the location iwrite of garbled memory and reads skread from location iread. It attempts to decrypt
both ciphertexts c0, c1 with skread and, depending on whichever one decrypts correctly, it uses the
corresponding decrypted message as the label of the bit bread for the next garbled circuit.

Loose Ends. The above already described the main idea, but there are several loose ends in the
above description:

• The evaluator learns all of the locations iread, iwrite being accessed by the program, which
can reveal sensitive information about the program execition. This can be fixed by using an
oblivious RAM scheme to compile the computation into one where these locations do not
reveal any private information.

• Each garbled CPU circuit, when reading location iread needs to know the index j in which
that location was last written to. There are generic ways to convert any program execution
into one that makes this easy, and some ORAM constructions already have this type of
“predictably-timed writes” property.

The original scheme from [LO13a] has one master secret key that was hard-coded in each garbled
CPU step circuit and could be used to generate the values c0, c1, skwrite. This lead to a subtle
circularity problem as outlined in [GHL+14], but this can be fixed using identity-based encryption,
as shown in [GHL+14, GHRW14]. Note that [GHL+14, LO14] also present an alternate approach
which does not require identity-based encryption but loses in efficiency, and therefore we do not
consider it in this work.

Efficiency. The main take-away from the above description is the following: to create a garbled
one-time RAM program with run-time t, we need to create t garbled copies of (an augmented
version of) the CPU step circuit under Yao’s garbled circuit construction. Each such circuit is of
some small size poly(λ). The circuits aren’t completely independent - the labels of the output wires
in one circuit must match the labels of the input wires of the next circuit. However, in Yao’s garbled
circuits, we can choose the wire labels pseduorandomly via a PRF of the wire identifier. Therefore,
we can compute each of the t garbled circuits individually in time poly(λ) without computing all
of the other circuits. In particular, there is a short circuit of size poly(λ) that outputs the ith bit
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of the one-time garbled program P̃ by only computing a single garbled circuit and outputting 1 bit
of it.

C Reusable Garbled Circuits with Output-Size Independence

We show that any construction of reusable garbled circuits satisfying simulation-based security must
have have garbled inputs of length at least as large as the outputs of the circuit being garbled. In
other words, if we garble a circuit with short inputs and huge outputs, the length of the garbled
input will unfortunately need to be huge. Note that this is in contrast to standard (non-reusable)
garbled circuits, for which the above does not hold. In our work, we also show that the above does
not hold for reusable garbled circuits if we give up on simulation security, and instead only consider
an indistinguishability-based security. The impossibility argument follows the “incompressibility
analysis” used in [AGVW13]. On a high level, a simulator that can simulate many garbled inputs
of a reusable garbled circuit given many outputs has found a way to “compress” the outputs: given
the garbled inputs and the garbled circuit one can recover all the outputs. If the outputs are
pseduorandom (e.g., the outputs of a pseudoranom generator) then this should be impossible.

Theorem C.1. Let GC = (GC.circ,GC.inp,GC.eval) be any reusable garbled-circuit scheme with
simulation security. Then for any polynomial m = m(λ) there is a family of circuits Cλ : λ →
m(λ) for which the garbled inputs must be of length at least m: i.e., for x ∈ {0, 1}λ, (C̃, k) ←
GC.circ(1λ, Cλ), x̃← GC.inp(x, k), we have |x̃| ≥ m. 14

Proof. For any polynomial m = m(λ), let prg : {0, 1}λ → {0, 1}m be a pseudo-random generator
(PRG), let Cprg,λ be a circuit family computing the function prg. Assume that the theorem does
not hold so there is some ` = `(λ) < m such that the garbled inputs to the garbled Cprg,λ are of
size `. Let p = p(λ) be some bound on the size of C̃prg,λ given by (C̃prg,λ, k) ← GC.circ(1λ, Cprg,λ).
Let q = q(λ) be such that q ·m > q · `+ p+ λ. Let Sim be the simulator for GC.

We construct a distinguisher Dist for the PRG. The distinguisher gets q values y1, . . . , yq
which are either all random or all pseudo-random. Dist(1λ, y1, . . . , yq) runs (C̃ ′prg,λ, x̃

′
1, . . . , x̃

′
q) ←

Sim(1λ, Cprg, y1, . . . , yq). It tests if GC.eval(C̃ ′prg,λ, x̃
′
i) = yi for all i ∈ [q] and, if so, it outputs 1 else

it outputs 0.
We claim that if y1, . . . , yq are pseudorandom with yi = prg(xi) for some xi ∈ {0, 1}λ, then

Dist(y1, . . . , yq) = 1 with probability 1− negl(λ). This is because, by the security of the simulation,
we have

(C̃ ′prg,λ, x̃
′
1, . . . , x̃

′
q)

comp
≈ (C̃prg,λ, x̃1, . . . , x̃q)

where (C̃prg,λ, k)← GC.circ(1λ, Cprg,λ) is the real garbled circuit and x̃i ← GC.inp(xi, k) are the real
garbled inputs. By the correctness of the garbled circuit we must have GC.eval(C̃prg,λ, x̃i) = yi and
therefore we must also have GC.eval(C̃ ′prg,λ, x̃

′
i) = yi with overwhelming probability.

On the other hand, if ȳ = (y1, . . . , yq) is random then Dist(y1, . . . , yq) = 1 with probabil-
ity negl(λ). This is because there are 2mq possible values of ȳ but only 2p+q` possible values of
(C̃ ′prg,λ, x̃

′
1, . . . , x̃

′
q) of the right size. Therefore there is only a 2mq−(p+q`) = 2−λ fraction of values ȳ

that the simulator can “explain” with some (C̃ ′prg,λ, x̃
′
1, . . . , x̃

′
q).

Together, this proves the theorem.

14For simplicity, we assume that for a fixed Cλ, the sizes of C̃, x̃ are also fixed and do not vary.
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D Functional Encryption for Random Access Machines

In this section we present a construction of a functional encryption (FE) scheme for RAM programs
using functional encryption for circuits as a building block. In both cases, we consider indistin-
guishability-based security, and it is known that simulation security is unachievable in this setting
when an attacker can get keys for arbitrarily many different programs/functions [AGVW13]. How-
ever, we then show a simple transformation from functional encryption for RAMs that satisfies
indistinguishability-based security into reusable garbled RAM with simulation security. Therefore,
this section gives us an alternate approach to the one in Section 3.3 for constructing reusable gar-
bled RAM (without persistent memory) from indistinguishability-based functional encryption for
circuits.

D.1 Definitions

First, we present a formal definition for FE for RAMs and the indistinguishability security notion
for it.

Definition D.1 (Functional Encryption for RAMs). A functional encryption scheme for RAM
programs consists of four algorithms FEram = (FEram.setup,FEram.keygen, FEram.enc, FEram.dec):

• (PK,MSK)← FEram.setup(1λ) – takes as input the security parameter λ and outputs a public
parameters PK and a master secret key MSK.

• SKP ← FEram.keygen(MSK, P, (n, t,m)) – a polynomial time algorithm that takes as input
the master secret key MSK and a description of a RAM program P with input size n, output
size m, and run-time bound t, and outputs a corresponding secret key SKP .

• c ← FEram.enc(PK, x) – a polynomial time algorithm that takes the public parameters PK
and a string x ∈ {0, 1}n and outputs a ciphertext c.

• y ← FEram.dec(SKP , c) – a polynomial time algorithm that takes a secret key SKP and
ciphertext encrypting message x ∈ {0, 1}n and outputs P (m).

A functional encryption scheme is correct for all RAM programs P with run-time t, input size
n, and output size m, and all messages x ∈ {0, 1}n, all (PK,MSK) ← FEram.setup(1λ), SKP ←
FEram.keygen(MSK, P, (n, t,m)), all c← FEram.enc(PK, x), we have FEram.dec(SKP , c) = P (x).

Indistinguishability Security. We now define indistinguishability security for functional en-
cryption. Intuitively, this notion says that the attacker cannot distinguish the encryptions of two dif-
ferent messages x0, x1 even given secret keys SKP for various programs P as long as P (x0) = P (x1).
We will only consider selective security where the attacker picks the challenge messages ahead of
time before seeing PK. (Note that selective security automatically implies fully adaptive security
via a reduction that simply guesses the message and therefore loses a factor of 2−n in advantage,
where n is the message size.) For simplicity, we will make selective security our default notion and
avoid specifying this in the future. We consider the following game between an attacker A and a
challenger.

Challenge: A submits two messages x0, x1 ∈ {0, 1}n.

Setup: The challenger runs (PK,MSK)← FEram.setup(1λ), picks a bit b← {0, 1} at random, and
computes c← FEram.enc(PK, xb). It gives PK, c to A.
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Key Query: A adaptively submits queries consisting of P, t,m and is given
SKP ← FEram.keygen(MSK, P, (n, t,m)). This step can be repeated any polynomial number
of times by the attacker.

Guess: A eventually outputs a bit b′ ∈ {0, 1}.

We say that A is legal if the messages x0, x1 and the key queries (Pi, ti,mi) satisfy Pi(x0) = Pi(x1)
for all i, where both executions finish in at most ti steps. The advantage of an algorithm A in this
game is AdvA = Pr[b′ = b]− 1

2 .

Definition D.2. An functional encryption scheme for RAM programs has indistinguishability
security if for all poly-time legal attackers A the function AdvA(λ) is negligible.

We also define q-key-query indistinguishability security, where the attacker A is further re-
stricted to making at most q key queries.

Functional Encryption for Circuits. The notion of functional encryption for circuits satisfy-
ing indistinguishability security was recently defined and constructed by [GGH+13b] using indistin-
guishability obfuscation. We will show how to transform functional encryption for circuits into one
for RAMs in a black-box way. A functional encryption scheme for circuits consists of algorithms
FEcirc = (FEcirc.setup,FEcirc.keygen,FEcirc.enc,FEcirc.dec) which have essentially the same syntax
as the RAM scheme, except that the algorithm SKC ← FEcirc.keygen(MSK, C) now takes as input
some circuit C with input size n and arbitrary output size m.15 The indistinguishability security
game is the same for circuits as for RAM schemes, with the obvious syntactical modifications.

D.2 Our Construction

We rely on similar techniques to the ones needed to construct reusable garbled RAM without
persistent memory from Section 3.3 to construct functional encryption from RAMs. The overall idea
for our construction will combine a functional encryption scheme for circuits with one-time garbled
RAM. More specifically the decryption key for an FE scheme for RAMs will be an FE decryption
key for a circuit that outputs one time use garbled RAM program and the corresponding garbled
input for it. For the following, let FEcirc = (FEcirc.setup,FEcirc.keygen,FEcirc.enc,FEcirc.dec) be a
functional encryption scheme for circuits and let GR1 = (GR1.prog,GR1.inp,GR1.eval) be a one-time
garbled-RAM scheme.

The RAM-Garbling Circuits. We first show how to translate a RAM program P for which
we want to create an FE secret key into a corresponding circuit CFE [P, . . .] on which we will
call the circuit FE scheme. Let FK(·) be a pseudorandom function with key size |K| = λ, input
size λ and variable-length output size. Let P be a RAM program with input size n, output
size m and run-time t. Assume that for these parameters, the one-time garbled RAM scheme
(P̃ , s) ← GR1.prog(1λ, P, (n,m, t); r1), x̃ ← GR1.inp(x, s, (n,m, t); r2), has output size |P̃ , x̃| = M
and randomness sizes |r1| = `1, |r2| = `2.

15Alternatively, we could restrict ourselves to circuits with 1-bit output. In the case of unbounded key queries, the
two notions are equivalent since we can always just give a separate key for each output bit of the circuit.
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CFE[P,n,m, t,V, id, λ](x,K0,K1, flag):

// K0,K1, id ∈ {0, 1}λ, x ∈ {0, 1}n, V ∈ {0, 1}M , flag ∈ {0, 1}

If flag = 1, compute R = FK1(id) of size |R| = M and output R⊕ V .
Else if flag = 0:

1. Generate (r1, r2)← FK0(id) of size |r1| = `1, |r2| = `2.

2. Run (P̃ , s)← GR1.prog(1λ, P, (n,m, t); r1), x̃← GR1.inp(x, s, (n,m, t); r2),

3. Output (P̃ , x̃).

Functional Encryption for RAMs. We describe our FE for RAMs construction FEram =
(FEram.setup,FEram.keygen,FEram.enc,FEram.dec) in the following figure.

FEram.setup(1λ):

1. Run (PK,MSK)← FEcirc.setup(1λ).
2. Output (PK,MSK).

FEram.keygen(MSK, P, (n, t,m)):

1. Choose a random string V ← {0, 1}M and a random identifier id← {0, 1}λ.
2. Construct the circuit CFE = CFE [P, n,m, t, V, id, λ] as shown above.
3. Output SKCFE ← FEcirc.keygen(MSK, CFE).

FEram.enc(PK, x):

1. Choose a random K0 ← {0, 1}λ, set w = (x,K0, 0
λ, 0).

2. Output the encryption c← FEcirc.enc(PK, w).

FEram.dec(SKCFE [P,...], c) :

1. Run the FE decryption (P̃ , x̃)← FEcirc.dec(SKCFE [P,...], c). // = CFE [P, n,m, t, V, id, λ](w)

2. Evaluate the 1-time GRAM and output y ← GR1.eval(P̃ , x̃). // = P (x)

Theorem D.3. If FEcirc = (FEcirc.setup,FEcirc.keygen,FEcirc.enc,FEcirc.dec) is a functional en-
cryption scheme satisfying indistinguishability security, and GR1 = (GR1.prog,GR1.inp, GR1.eval) is
a one-time garbled-RAM scheme, then the scheme FEram above is a functional encryption scheme
satisfying indistinguishability security. Moreover, if FEcirc only satisfies q-key-query indistinguisha-
bility security for some bounded q, then so does FEram.

Proof. We prove the theorem via a sequence of hybrid arguments.

• Hyb0: Let this be the indistinguishability security game with the challenger using the bit
b = 0. In particular, the challenger computes

c← FEram.enc(x0){ FEcirc.enc(PK, (x0,K0, 0, flag := 0)) }

SKPi ← FEram.keygen(Pi, (n, t,m)){ FEcirc.keygen(MSK, CFE [P, n,m, t, V, id, λ]) }

where K0 ← {0, 1}λ, id← {0, 1}λ, V ← {0, 1}M .

• Hyb1: in this hybrid, we change the way the decryption keys SKP are generated for each
key query (P, n, t,m). At the very beginning of the game, we choose a random PRF key
K1 ← {0, 1}λ. To compute SKP we do the following:
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– Choose a random id← {0, 1}λ as before.

– Compute (r0, r1) = FK0(id), (P̃ , s)← GR1.prog(1λ, P, (n,m, t); r1),
x̃← GR1.inp(x0, s, (n,m, t); r2).

– Set V := (P̃ , x̃)⊕ FK1(id).

– Output as decryption key SKP ← FEcirc.keygen(MSK, CFE [P, n,m, t, V, id, λ]).

Notice that the only difference between Hyb0 and Hyb1 is the way that V is generated.
Previously, it was uniformly random for each key, whereas now it is computed as V :=
(P̃ , x̃)⊕ FK′1(id).

The indistinguishability of Hyb0 and Hyb1 follows from the pseudorandom property of F
under key K1 (which does not appear anywhere else in the game, and in particular, is not
used during the creation of the ciphertext c). We also rely on the fact that id is chosen
randomly in each key query and therefore is fresh with overwhelming probability.

• Hyb2: in this hybrid we set the challenge ciphertext as FEcirc.enc(PK, (0, 0,K1, flag = 1)).

The indistinguishability of Hyb1 and Hyb2 follows from the FE indistinguishability security
of FEcirc since, for all of the queried programs P , we have

CFE [P, n,m, t, V, id, λ](x0,K0, 0, 0) = CFE [P, n,m, t, V, id, λ](0, 0,K1, 1) = (P̃ , x̃)

where (r0, r1) = FK0(id), (P̃ , s)← GR1.prog(1λ, P, (n,m, t); r1), x̃← GR1.inp(x0, s, (n,m, t); r2).

Furthermore, note that if we only have q key-queries in the RAM FE security game, then
we only need q key-queries for the circuit FE security to prove indistinguishability of these
hybrids.

• Hyb3: In this hybrid we change how the value V is chosen in each key query when construct-
ing the circuit CFE [P, n,m, t, V, id, λ]. In particular, instead of choosing (r0, r1) = FK0(id)
pseudorandomly, we choose (r0, r1) uniformly at random. Then we continue as before to
compute (P̃ , s)← GR1.prog(1λ, P, (n,m, t); r1), x̃← GR1.inp(x0, s, (n,m, t); r2) and set V :=
(P̃ , x̃)⊕ FK1(id).

The indistinguishability of Hyb2 and Hyb3 follows from the pseudorandom property of F
under key K0, which is not used anywhere else in either game beyond computing the values
V .

• Hyb4: In this hybrid we change how the value V is chosen in each key query when con-
structing the circuit CFE [P, n,m, t, V, id, λ] once again. In particular, after choosing (P̃ , s)←
GR1.prog(1λ, P, (n,m, t); r1), instead of setting x̃ ← GR1.inp(x0, s, (n,m, t); r2) to be a gar-
bling of x0, we now set it to x̃← GR1.inp(x1, s, (n,m, t); r2) to be a garbling of x1. Then we
again set V := (P̃ , x̃)⊕ FK1(id).

The indistinguishability of Hyb3 and Hyb4 follows from the one-time security of the garbled
RAM scheme and the fact that P (x0) = P (x1) for each program P . In particular, for each
program P we have:

(P̃ , x̃0)
comp
≈ GR1.Sim(1λ, P, (n,m, t), P (x0) = P (x1))

comp
≈ (P̃ , x̃1)

where (P̃ , s)← GR1.prog(1λ, P, (n,m, t); r1) , x̃e ← GR1.inp(xe, s, (n,m, t); r2), for e ∈ {0, 1}.
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• Hyb5 − Hyb7: We now do everything in reverse. In particular, hybrids 5,6,7 are the same as
hybrids 3,2,1 (respectively) with the only difference being that x1 is used instead of x0.

In particular, in hybrid 5 we again choose (r0, r1) = FK0(id) pseudorandomly instead of
randomly (security of PRF with K0). In hybrid 6, we compute the challenge ciphertext
honestly as FEcirc.enc(PK, (x1,K0, 0, flag = 0)) (FE security for circuits). In hybrid 7 we go
back to choosing V ← {0, 1}M uniformly at random (security of PRF with K1).

Notice that Hybrid 7 is the FE RAM indistinguishability game with the challenge bit b = 1.
Therefore, this proves the theorem.

D.3 Efficiency Analysis

The efficiency of the setup procedure is the same for FEram scheme as for the underlying FEcirc
scheme, which is poly(λ). Similarly the efficiency of encryption is the same for FEram and FEcirc,
up to an O(λ) additive overhead in the message size n. We assume that the complexity is n·poly(λ).

For a program P with run-time bound t, input size n and output size m, the efficiency of key
generation and decryption of the FE-RAM scheme are the same as those of the underlying FE-
Circuit scheme with the circuit CFE = CFE [P, . . .]. Recalling the parameters of one-time GRAM
in Section 5, the size of the circuit CFE is q = Õ(t + |P | + n + m) · poly(λ), its output size is
m′ = Õ(t+ |P |+ n+m) · poly(λ) and its input size is n′ = n+O(λ). Moreover, the circuit CFE is
s-weakly bitwise compact (see Definition 5.1) where s = Õ(|P |+ n) · poly(λ, log t).

If we do not make any assumptions on the efficiency of the underlying FEcirc scheme and use
it naively, then the efficiency of key generation and decryption could be poly(q, λ) = poly(t) which
could potentially obliterate all efficiency benefits of using a RAM rather than converting it into a
circuit. However, we can leverage bitwise compactness to recover efficiency by assuming that the
FEcirc scheme is optimized, similarly to the analysis in Section 5. In particular, for i = 1, . . . ,m′,
let CFEbit,i be the bitwise representation circuits for CFE .

• Optimized Circuit FE: An optimized FE scheme for circuits works as follows. Given a bit-
wise compact circuit CFE , the key-generation procedure SKCFE ← FEcirc.keygen(MSK, CFE)
computes SKCFE = (SK1, . . . ,SKm′) where SKi ← FEcirc.keygen(MSK, CFEbit,i). The decryption
procedure computes FEcirc.dec(SKCFE , c) = (b1, . . . , bm′) where bi := FEcirc.dec(SKi, c).

In this case the efficiency of key generation and decryption is Õ(t) · poly(|P | + n + λ). Note that
the security of the optimized scheme follows directly from the security of the underlying scheme,
and therefore we can assume that the scheme is optimization without loss of generality.

D.4 From FE for RAMs to Reusable Garbled RAM

We note that indistignuishability-secure FE for RAMs with unlimited key queries can also be
converted into a simulation-secure FE for RAMs with 1 key query. This is done via the same
“real-or-dummy” program paradigm we used in Section 3.3 and based on the ideas of De Caro et
al. [CIJ+13] which showed how to convert indistinguishability-based security to simulation-based
security for functional encryption for circuits. The notion of “simulation-secure FE for RAMs with
1 key query” is essentially the same as reusable garbled RAM with public input garbling. Therefore
we present the result in that terminology.

For a program P (x), let P+(x, ψ, y) be the real-or-dummy program define in Section 3.3 which
outputs P (x) if ψ = 0 (real) or y if ψ = 1 (dummy). Let FEram = (FEram.setup,FEram.keygen,
FEram.enc,FEram.dec) be a functional encryption scheme satisfying indistinguishability security
with q = 1 key queries. We define GR = (GR.prog,GR.inp,GR.eval) via:
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• GR.prog(P, (n,m, t)): Compute (MPK,MSK)← FEram.setup(1λ),
P̃ ← FEram.keygen(MSK, P+, (n+m+ 1, t,m)). Output (P̃ , s = MPK).

• GR.inp(x, s = MPK, (n,m, t)): Return x̃← FEram.enc(MPK, (x, ψ = 0, 0m)).

• GR.eval(P̃ , x̃): Output FEram.dec(P̃ , x̃).

Theorem D.4. If FEram satisfies indistinguishability based security for q = 1 key queries, then
GR defined above is a resuable garbled RAM scheme with public input garbling.

Proof. The correctness and efficiency requirements follow immediately.
For security, we define the simulator Sim(1λ, P, (n,m, t), y1, . . . , y`) generates (P̃ , s = MPK) ←

GR.prog(P, (n,m, t)) and x̃′i ← FEram.enc(MPK, (0n, ψ = 1, yi)) for i = 1, . . . , `.
To prove security we simply need to show that for every program P with parameter (n,m, t)

and any ` inputs x1, . . . , x` such that P (xi) = yi we have

(MPK, P̃ , x̃1, . . . , x̃`)
comp
≈ (MPK, P̃ , x̃′1, . . . , x̃

′
`)

where x̃i ← GR.inp(xi, s) : {FEram.enc(MPK, (xi, ψ = 0, 0m)}. Since we have public input garbling,
this simply follows via a hybrid argument as long as we show that for each i ∈ [`]:

(MPK, P̃ , x̃i)
comp
≈ (MPK, P̃ , x̃′i)

Note that P+(xi, ψ = 0, 0m) = yi = P+(0n, ψ = 1, yi). Therefore, the above follows directly from
FE indistinguishability security for RAMs with a single key query for program P+ and challenge
messages w0 = (xi, ψ = 0, 0m), w1 = (0n, ψ = 1, yi).

Using the efficiency of the functional encryption schemes from the literature ([GGH+13b]) the
above construction achieves the same asymptotic efficiency as that of Theorem 5.4.

E Obfuscation for RAMs

We propose a candidate construction of obfuscation for random access machines using obfuscation
for circuits. In particular, such scheme ensures that the size of the obfuscated program and the
running time of the obfuscated program are only proportional to the size and worst-case running-
time of the original program. We note that the recent works of [BCP13, ABG+13] construct
obfuscation for Turing Machines (where the size and running-time of the obfuscated program are
proportional to the TM size and running time) assuming differing-inputs obfuscation.

Our idea is similar to our construction of reusable garbled RAM without persistent memory. We
simply generate an obfuscation for a circuit C(x) that, on input x, will output a one-time GRAM
P̃ of the program P and a corresponding garbled input x̃. The randomness used to generate P̃
and x̃ is simply chosen by evaluating a pseudorandom function FK(x) on the input x, where the
key K is hard-coded in the circuit C. Unfortunately, the circuit C itself is huge, but as noted in
Section 5, it is bit-wise compact. In particular, there is a small circuit Cbit(x, i) that outputs the
i’th bit of C(x). Therefore, we will simply obfuscate Cbit.

The main differences between this approach and our constructions of reusable garbled RAM
are that: (1) the input to the circuit is given in the clear rather than being encrypted, (2) the
randomness used to create P̃ , x̃ is created via a PRF of x rather than being provided as part of the
encrypted input. The security goals are also vastly different: in the case of reusable garbled RAM
we are attempting to hide something about the encrypted input x whereas here we are trying to
hide something about the program P . One implication of this is that we will need to rely on a
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one-time GRAM scheme that satisfies program privacy. This means that we modify Definition 3.1
so that the simulator does not get the program P . As mentioned in Section 6, there are standard
techniques for adding program privacy.

Let P be a program with input size n, output size m, and worst-case running time t. We define
the following circuit for our obfuscation construction.

C[P,n,m, t, λ,K](x): // x ∈ {0, 1}n

1. Generate randomness for the execution (r1, r2)← F (K,x).

2. Run (P̃ , s)← GR1.prog(1λ, P, (n,m, t); r1). x̃← GR1.inp(x, s, (n,m, t); r2),

3. Output (P̃ , x̃).

We also define the circuit Cbit[P, n,m, t, λ,K](x, i) which gets as input i and only outputs the
i’th bit of the output of C[P, n,m, t, λ,K](x). As noted in Section 5, the latter can be expressed
as a circuit of size Õ(|P |+ n+m) · poly(λ, log t) where t is the worst-case running time of P .

We define an obfuscation scheme for RAMs ORAM = (Obfuscate,Evaluate) as follows:

• Obfuscate(P ): On input a RAM program P with input and output size n and m and running
time t, generate a PRF key K and output an obfuscation C̃ ← O(Cbit[P, n,m, t, λ,K]).

• Evaluate(C̃, x): Evaluate C̃(x, i) for sufficiently many output bits i = 1, . . ., so as to obtain a
one-time use garbled program P̃ and a garble input for it x̃. Output y ← GR1.eval(P̃ , x̃).

The above construction would give us a virtual black-box obfuscation for RAMs if we assume
VBB obfuscation for circuits. We make the following conjecture.

Conjecture E.1. There exists a pseudorandom function F , a one-time use garbled-RAM scheme
GR1 = (GR1.prog,GR1.inp, GR1.eval) and an obfuscation O, for which the above construction
ORAM = (Obfuscate,Evaluate) is an indistinguishability obfuscation for RAMs.

We note that our conjecture does not formally require full VBB security from O. None of the
known negative results for obfuscation seem to apply to the above conjecture, when instantiated
with “standard-constructions” of the underlying primitives and a “good” obfuscator O such as the
candidate from [GGH+13b].

F Proofs Omitted from Main Body

F.1 Proof of Theorem 3.5

Proof of Theorem 3.5. The simulator was sketched above: On input (1λ, (n,m, t), P, y1, . . . , yq)
with |yi| = m for all i, the simulator GR.sim begins just as the garbling procedure of the actual
scheme, namely by constructing the circuit C[P, n,m, t, λ] and applying to it the circuit-garbling
procedure to get (C̃, s) ← GC.circ(1λ, C[P, n,m, t, λ]). Next, for every yi the simulator chooses a
uniformly random ri ∈ {0, 1}2λ, sets w′i = (ri, 0, ψ = 0, yi) and w̃′i ← GC.inp(wi, s). The output of
the simulator GR.sim consists of (C̃, w̃′1, . . . , w̃

′
q).

We next prove indistinguishability between the real and simulated outputs. Fix the program
P and inputs x1, . . . , xq for P , and denote yi = P (xi) for all i. Let wi = (ri, xi, ψ = 1, 0m) where
ri ∈ {0, 1}2λ. We first argue that the output distributions on inputs wi and w′i are indistinguishable.

Claim F.1. Denote C = C[P, n,m, t, λ]. If the scheme GR1 = (GR1.prog,GR1.inp,GR1.eval)
satisfies one-time GRAM security then for every x ∈ {0, 1}n and y = P (x) we have

{C(wi)}
comp
≈ {C(w′i)},
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where wi, w
′
i are chosen as described above.

Proof. Note that C(wi) = (P̃i, x̃i) and C(w′i) = (P̃i, x̃
′
i) where P̃i is a garbled version of the program

P+, x̃i is a garble version of the input (xi, 1, 0
m) and x̃′i is a garbled version of the input (0n, 0, yi).

The one-time simulation-security of the underlying GR1 scheme implies that:

(P̃i, x̃i)
comp
≈ GR1.Sim(1λ, P, (n,m, t), yi)

comp
≈ (P̃i, x̃

′
i)

since yi = P+((xi, 1, 0
m)) = P+((0n, 0, yi)). This proves the claim.

Claim F.1 implies that the distributions of the wi, w
′
i’s satisfy the condition of Definition 3.4,

and by the distributional indistinguishability of GC we conclude that also

〈C̃, w̃1, . . . w̃q〉
comp
≈ 〈C̃, w̃′1, . . . w̃′q〉.

This completes the proof, since these are exactly the output distributions of the scheme GR and its
simulator GR.sim.

F.2 Proof of Theorem 3.6

Proof of 3.6. Let C = {Cλ} be a circuit (ensemble) and D1, . . . , Dq and D′1, . . . , D
′
q be efficiently

samplable input distributions (ensembles) such that, for all j = 1, . . . , q it holds that

{C(xj) : xj ← Dj(1
λ)}

comp
≈ {C(x′j) : x′j ← D′j(1

λ)}.

We will show that:{
〈s, C̃, x̃1, . . . x̃q〉 : xi ← Di(1

λ), (C̃, s)← GC.circ(1λ, C), x̃i ← GC.inp(xi, s)
}

comp
≈

{
〈s, C̃, x̃′1, . . . x̃′q〉 : x′i ← D′i(1

λ), (C̃, s)← GC.circ(1λ, C), x̃′i ← GC.inp(x′i, s)
}

Since we consider public input garbling (by including s in the distributions), we can rely on a simple
hybrid argument to show that the above holds as long as for each i ∈ [q]:

〈s, C̃, x̃i〉
comp
≈ 〈s, C̃, x̃′i〉 (1)

In particular, given s, we can efficiently sample the values xj ← Dj(1
λ), x̃j ← GC.inp(xj , s) as well

as x′j ← D′j(1
λ), x̃′j ← GC.inp(x′j , s) for all j 6= i ourselves.

To show (1), we define the following hybrid distributions:

• Hyb0: This is the distribution 〈s, C̃, x̃i〉. Recall that s = (σ, pk1, pk2), C̃ = O(C∗), where
C∗ = C∗[σ, pk1, pk2, 1, sk1, u = ⊥, v = ⊥]), and x̃i = (c1, c2, π).

• Hyb1: In this hybrid, we switch the real proof to a simulated one for the statement st =
(pk1, pk2, c1, c2). In particular, we now choose (σ, τ)← S1(1

λ, st) to be a simulated CRS and
π ← S2(σ, τ, st) where (S1, S2) are the simulators of the NIZK scheme. We claim:

Hyb0

comp
≈ Hyb1

This follows directly from the computational zero-knowledge property of the NIZK Π.
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• Hyb2: In this hybrid, we encrypt c2 ← Enc(pk2, 0̄) in the second ciphertext, where 0̄ is the
same length as xi. The first ciphertext c1 still encrypts xi ← Di(1

λ). We claim:

Hyb1

comp
≈ Hyb2

This follows directly from the semantic security of the encryption scheme. Notice that sk2
does not appear anywhere in either hybrid.

• Hyb3: In this hybrid, we switch the circuit being obfuscated from C∗1 = C∗[σ, pk1, pk2, 1, sk1, u =
⊥, v = ⊥] to C∗2 = C∗[σ, pk1, pk2, 2, sk2, u = (c1, c2, π), v = yi] where yi = C(xi). Notice C∗2
now uses sk2 to decrypt but has the values u, v hard-coded. We claim that C∗1 , C

∗
2 are function-

ally equivalent: for any input u′ = (c′1, c
′
2, π
′) such that u′ 6= u and π′ verifies, the ciphertexts

(c′1, c
′
2) must encrypt the same message (by the statistical-simulation-soundness of the NIZK)

and hence C∗1 (u′) = C∗2 (u′). On the other hand, for input u, we have C∗1 (u) = C∗2 (u) = yi.
We claim:

Hyb2

comp
≈ Hyb3

This follows directly from the indistinguishability obfuscation property, by noting the C∗1 and
C∗2 are functionally equivalent.

• Hyb4: In this hybrid, we also encrypt c1 ← Enc(pk1, 0̄) in the first ciphertext, where 0̄ is the
same length as xi. We claim:

Hyb3

comp
≈ Hyb4

This follows directly from the semantic security of the encryption scheme. Notice that sk1
does not appear anywhere in either hybrid.

• Hyb5: In this hybrid, we switch the hard-coded value in C∗[σ, pk1, pk2, 2, sk2, u, v] from v = yi
to v = y′i = C(x′i) where x′i ← D′i(1

λ). We claim:

Hyb4

comp
≈ Hyb5

This follows from the condition that C(xi)
comp
≈ C(x′i). Notice that no other information

about xi, x
′
i other than yi = C(xi), y

′
i = C(x′i) appears in either hybrid.

• Hyb6 to Hyb10: These are the same as Hyb4 through Hyb0 but using (x′i, y
′
i) in place of (xi, yi).

Notice that Hyb10 is just the distribution 〈s, C̃, x̃′i〉. By symmetry, we get:

Hyb5

comp
≈ Hyb10

Combining the above, we get Hyb0

comp
≈ Hyb10, which proves equation (1) and the theorem follows.

F.3 Proof of Theorem 4.4

Proof of Theorem 4.4. Let us fix some polynomial size input specification in = ((N,n,m, t), D, P, 〈xi〉)
with corresponding output specification out = ((N,n,m, t), P, 〈yi〉) where i = 1, . . . , q.

The simulator GR.sim gets input (1λ, out). It begins by garbling a dummy database (D̃′, k) ←
GR.data(1λ, 0N ). It then constructs the circuit C = C[P,N, n,m, t, λ] and applies the circuit-
garbling procedure to get (C̃, s) ← GC.circ(1λ, C). Next, for every yi the simulator chooses a
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uniformly random ri ← {0, 1}2λ, sets w′i = (k, ri, 0
n, ψ = 0, yi, i) and w̃i

′ ← GC.inp(w′i, s). The
output of the simulator GR.sim consists of

( D̃′, C̃, w̃′1, . . . , w̃
′
q ).

We next prove indistinguishability between the real and simulated outputs. Notice that

Real[in, λ] = ( D̃, C̃, w̃1, . . . , w̃q )

where (D̃, k)← GR.data(1λ, D), (C̃, s)← GC.circ(1λ, C), and we set wi = (k, ri, xi, ψ = 1, 0m, i) for
random ri ← {0, 1}2λ and w̃i ← GC.inp(w′i, s).

Claim F.2. Denote C = C[P,N, n,m, t, λ]. If the scheme GR1 = (GR1.prog,GR1.inp,GR1.eval)
satisfies one-time security with persistent memory (Definition 4.2) then

( D̃, C(w1), . . . , C(wq) )
comp
≈ ( D̃′, C(w′1), . . . , C(w′q) ).

Proof. Note that C(wi) = (P̃i, x̃i) and C(w′i) = (P̃i, x̃
′
i) where each P̃i is a freshly garbled version

of the program P+, x̃i is a garbled version of the input (xi, ψ = 1, 0m), and x̃′i is a garble version of
the input (0n, ψ = 0, yi). The one-time simulation-security of the underlying GR1 scheme implies
that:

( D̃, 〈P̃i, x̃i〉i∈[q] )
comp
≈ GR1.Sim(1λ, out)

comp
≈ ( D̃′, 〈P̃i, x̃′i〉i∈[q] ).

This proves the claim.

We now conclude that the simulated and real distributions are the indistinguishable:

( D̃′, C̃, 〈w̃′i〉i∈[q] )
comp
≈ ( D̃, C̃, 〈w̃i〉i∈[q] )

This follows by the above claim in conjunction with the definition of correlated distributional
indistinguishability on the circuit garbling scheme. We think of D̃ = aux and D̃′ = aux′ as auxiliary
input.

F.4 Proof of Theorem 4.8

Proof of Theorem 4.8. Let C be a circuit (ensemble) and D and D′ be efficiently samplable input
distributions (ensembles) such that it hold that

〈C(x01), . . . , C(x0n), aux0〉
comp
≈ 〈C(x11), . . . , C(x1n), aux1〉.

where 〈x01, . . . , x0n, aux0〉 ← D(1λ), 〈x11, . . . , x1n, aux1〉 ← D′(1λ). We will show that

〈C̃, x̃01, . . . x̃0n, aux0〉
comp
≈ 〈C̃, x̃11, . . . x̃1n, aux1〉

where (C̃, s)← GC.circ(1λ, C), x̃0i ← GC.inp(x0i , s) , x̃
1
i ← GC.inp(x1i , s).

We consider the following sequence of hybrid distributions to show the indistinguishability of
the above distributions:

• Hyb0: This is the distribution 〈C̃, x̃01, . . . x̃0n, aux0〉, where C̃ ← O(C∗) for C∗ := C∗[σ, pk0, pk1, 0, sk0],
and x̃0i = (ci0, c

i
1, π

i) where cib ← Enc(pkb, x
0
i ; r

i
b), π

i ← P (σ, (pk0, pk1, c
i
0, c

i
1), (r

i
0, r

i
1)) for all

1 ≤ i ≤ n.
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• Hyb1: In this hybrid, we compute the proofs πi using the NIZK simulators (S1, S2), i.e.,
(σ, τ)← S1(1

λ), πi ← S2(σ, τ, c
i
0, c

i
1) for 1 ≤ i ≤ n.

The indistinguishability Hyb0

comp
≈ Hyb1 follows from the computational zero-knowledge of

property of the NIZK Π.

• Hyb2: In this hybrid, we also change the way we compute the garbled inputs by setting
ci1 ← Encrypt(pk1, x

′
i) to be an encryption of x1i rather than x0i , for all 1 ≤ i ≤ n,. The NIZK

CRS and proofs πi are still computed using the NIZK simulator.

The indistinguishability Hyb1

comp
≈ Hyb2 follows from the semantic security of the encryption

scheme PKE since sk1 does not appear anywhere in the garbled circuit.

• Hyb3: In this hybrid, we change the way we compute the garbled circuit by obfuscating
C∗[σ, pk0, pk1, b = 1, sk1] with the bit b = 1 and the secret key sk1 (instead of b = 0 and sk0).
That is, we set C̃ ′ ← O(C∗[σ, pk0, pk1, b = 1, sk1]). We also change the auxiliary input from
aux0 to aux1 We claim that:

Hyb2

comp
≈ Hyb3.

This follows from the strong differing-inputs obfuscation property. Firstly, we claim that
(C,Sam) is a relevant differing-input family where C = {C∗[σ, pk0, pk1, b, sk]} and

(C0 = C∗[σ, pk0, pk1, b = 0, sk0], C1 = C∗[σ, pk0, pk1, b = 1, sk1], x̃1, . . . , x̃n, aux0, aux1)← Sam(1λ)

is defined by sampling (pk0, sk0) ← Setup(1λ), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1
λ),

〈x01, . . . , x0n, aux0〉 ← D(1λ), 〈x11, . . . , x1n, aux1〉 ← D′(1λ) and setting x̃i = (ci0, c
i
1, π

i) where
cib ← Enc(pkb, x

b
i) and πi ← S2(σ, τ, c

i
0, c

i
1).

This follows since

(〈x̃i, C0(x̃i) = x0i 〉i∈[q], aux0)
comp
≈ (〈x̃i, C1(x̃i) = x1i 〉i∈[q], aux1)

by assumption on the distributions D,D′. Furthermore, coming up with an input x̃ 6∈
{x̃1, . . . , x̃n} such that C0(x̃) 6= C1(x̃) requires coming up with a valid NIZK proof for a
new false statement, which is hard by the simulation-soundness security of the NIZK even
given C0, C1, 〈x̃i〉, aux0, aux1.

Now that we showed (C, Sam) is a relevant differing-input family, we can rely on sdiO security

of the obfuscator O to argue that Hyb2

comp
≈ Hyb3. In particular one cannot distinguish

(O(1λ, C0), 〈x̃′i〉i∈[q], aux0 ) from (O(1λ, C1), 〈x̃′i〉i∈[q], aux1 ) where x̃′i are chosen as in hybrid 2.

• Hyb4 to Hyb6: These hybrid are symmetric to the changes introduced by Hyb1 to Hyb3 in a
slightly different order. In Hyb4 we change the encryptions to ci0 = Encrypt(pk0, x

1
i ) (semantic

security), in Hyb5 we switch to honestly generated NIZK proofs πi (ZK property) and finally
in Hyb6 we switch back to an obfuscation of the circuit C0 = C∗[σ, pk0, pk1, b = 0, sk0] (sdiO).
The last Hyb6 is just the distribution 〈C̃, x̃11, . . . x̃1n〉. By the same arguments as described
above, we get

Hyb3

comp
≈ Hyb6.

Combining the above, we get that Hyb0

comp
≈ Hyb6, which completes the proof of the theorem.
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