
Note of Multidimensional MITM Attack on
25-Round TWINE-128

Long Wen1, Meiqin Wang1?, Andrey Bogdanov2?, Huaifeng Chen1

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

longwen@mail.sdu.edu.cn, mqwang@sdu.edu.cn
2 Technical University of Denmark, Denmark

anbog@dtu.dk

Abstract. TWINE is a lightweight block cipher proposed in SAC 2012
by Suzaki et al.. TWINE operates on 64-bit block and supports 80 or 128-
bit key, denoted as TWINE-80 and TWINE-128 respectively. TWINE
has attracted some attention since its publication and its security has
been analyzed against several cryptanalytic techniques in both single-
key and related-key settings. In the single-key setting, the best attack
so far is reported by Boztaş et al. at LightSec’13, where a splice-and-
cut attack on 21-round TWINE-128 and a multidimensional meet-in-
the-middle (MITM) attack on 25-round TWINE-128 are presented. Yet,
the evaluation of the time complexity of the multidimensional MITM
attack on 25-round TWINE-128 is somehow controversial in the way
we understand. We here describe the attack in detail and explains our
concerns about the time complexity of the attack. And it turns out that
the multidimensional MITM attack on 25-round TWINE-128 may have
a time complexity higher than exhaustive search.
Keywords: Block Ciphers, Cryptanalysis, TWINE, Multidimensional
MITM Attack

1 Description of TWINE

TWINE [1] is a 64-bit block cipher supporting two key lengths, 80 or 128 bits (de-
noted as TWINE-80 and TWINE-128 respectively). The two versions of TWINE
algorithm differ only in the key schedule. The global structure of TWINE is a
variant of Type 2 generalized Feistel structure with 16 4-bit nibbles. TWINE’s
round function consists of a nonlinear layer using 4× 4 S-boxes and a diffusion
layer permuting the 16 nibbles. The r-th (1 ≤ r ≤ 36) round of TWINE is illus-
trated in Figure 1, where we use Xi

r, 0 ≤ i ≤ 15 to denote the 16 input nibbles
into round r. Each round function takes a 32-bit subkey RKr, 1 ≤ r ≤ 36. The
i-th nibble of RKr is denoted as RKi

r, 0 ≤ i ≤ 7.
The key schedules produce 36 32-bit subkeys RKr, 1 ≤ r ≤ 36 from the

key κ. κ could be 80 or 128 bits depending on which version of TWINE we are
dealing with. For details of the key schedule, we refer to [1].

? Corresponding authors.

F F F F F F F F

S

X 2
r+1 X 3

r+1 X 4
r+1 X 5

r+1 X 6
r+1 X 7

r+1 X 8
r+1 X 9

r+1 X10
r+1 X11

r+1 X12
r+1 X13

r+1 X14
r+1 X15

r+1X 0
r+1 X 1

r+1

X 0
r X 2

r X 3
r X 4

r X 6
r X 7

r X 8
r X 9

r X10
r X11

r X12
r X13

r X14
r X15

r
5X r

1X r

RK 0
r

RK2
r RK3

rRK0
r RK1

r RK6
r RK7

rRK4
r RK5

r

Fig. 1: r-th round of TWINE

2 Multidimensional MITM Attack on 25-Round
TWINE-128 [4]

In [4], Boztaş et al. combined Splice-and-Cut technique [2] and multidimensional
MITM technique [3] and mounted a key recovery attack on 25-round TWINE-
128. The attack requires 248 chosen plaintexts, 2122 encryptions and 2125 blocks
memory. The idea of their attack is interesting. However, after a careful evalua-
tion on the attack procedure, we find some flaws in term of the time complexity
of the attack on 25-round TWINE-128 [4]. The actual time complexity of their
attack on 25-round TWINE-128 should be higher than what is claimed and
unfortunately even higher than exhaustive search.

In the following, we firstly introduce the two dimensional MITM (2D-MITM)
technique used in [4]. Then we dive into the details of the attack on 25-round
TWINE-128 [4]. Finally, we revaluate the time complexity of the attack.

2.1 2D-MITM Technique

The main idea of the 2D-MITM attack is that the attacker splits the target cipher
into two sub-ciphers and performs MITM attack on each of the sub-cipher by
guessing an intermediate stage g, see Figure 2. Denote the common key bits of
subkey k1 and k2 as kc1 and the common key bits of subkey k3 and k4 as kc2 ,
the two dimensional MITM attack can be proceeded as follows.

E (k ,P)
f1

E (k ,g)
f2

E (k ,g)
b1

-1
E (k ,C)

b2

-1

P g
'v1 v1

'v2 v2 C

1 2 3 4

 (guessed value)

Fig. 2: overview of 2D-MITM attack

1. Compute v1 = Ef1(k1, P) for all values of k1, and put all values of k1 into a
table T1 indexed by v1||kc1 , each entry of which is a set of certain k1.

2. Compute v′2 = E−1b2
(k4, C) for all values of k4, and put all values of k4 into

a table T2 (similar as T1) indexed by v′2||kc2 .
3. For each possible guess of g:

(a) Compute v′1 = E−1b1
(k2, g) for all values of k2. Use v′1 and kc1 to find

matched entries of T1. Put all matched (k1, k2) into a table Q.
(b) Compute v2 = Ef2(k3, g) for all values of possible k3. Use v2 and kc2 to

find matched entries of T2. Check whether (k3, k4) are also matched
entries of Q. If so, do brute-force testing on the matched key tuple
(k1, k2, k3, k4) with other PC pairs. If the key tuple survives all test-
s, output the key tuple as the correct key and stop the attack.

2.2 Overview of the Attack on 25-Round TWINE-128 [4]

The 2D-MITM attack combined with Splice-and-Cut technique is applied on
25-round TWINE-128, and the attack framework is shown in Figure 3.

E (k ,Y)
f1

E (k ,g)
f 2

E (k ,g)
b1

-1
E (k ,C)

b2

-1

P g
'v1 v1

'v2 v2
C

1 2 3 4

 (guessed value)

E (k ,Y)
b3

-1

5

Y (Fixed value)

Fig. 3: overview of Boztaş et al.’s attack on 25-round TWINE-128

TWINE-128’s key schedule is taken into consideration to make the attack
work. RK1 is extracted directly from κ, then κ is updated to produce the next
subkey. If RKi is extracted from the i-th κ state (denoted as κi), then it is the
relation between subkey nibbles and κ8 that are taken into consideration in the
attack on 25-round TWINE-128.

The details of the attack on 25-round TWINE-128 are illustrated in Figure 3
and Figure 4. In both figures, we show different partial encryption (or decryption)
phase in different colors and the states nibbles and F -functions that are involved
in the partial encryption (or decryption) are shown in bold. Since κ18 and κ228 are
the two special key nibbles considered, if a F -function’s input subkey is related
to κ18 or κ228 , we put the number ‘1’ or ‘22’ beneath the F -function in both
figures.

To be more concrete, Y = X2,6,14
1 ||X0,2,6,7,8,10,12

2 ||X6,12,14
3 ||X2

4 ||X
6,13
5 , g =

X0,...,7
15 ||X2,6,9,10,11,13,14,15

16 . The first check point is v1 = v′1 = X4,5,6,9,10,11,13,14,15
13 .

The second check point is v2 = v′2 = X2,4,5,6,7,10,11,14
18 . If we denote the bit length

of a variable with | · |, then |v1| = |v′1| = 36 and |v2| = |v′2| = 32. k1 used in
Ef1 has nothing to do with κ18 and κ228 is not involved in E−1b2

and E−1b3
. Thus

|k1| = 124 and |k4| = 124. In E−1b1
and Ef2 , there are respective 15 and 16

F -functions involved, this makes |k2| = 60 and |k3| = 64. According to TWINE-
128’s key schedule, there are 48 common bits between k1 and k2 and 48 common
bits between k3 and k4, meaning that |kc1 | = |kc2 | = 48. The attack on 25-round
TWINE-128 is proceeded as follows.

1. For all k1, compute v1 = Ef1(k1, Y) and construct T1 containing all values
of k1 indexed by v1||kc1 .

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

0 1 2 3 4 5 6 7

2 6 9 10 11 13 14 15

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

14

15

13

12

11

10

9

7

8

6

16

5

4

3

2

1

'v1

v1

g

Y

P
2 6 14

0 2 6 7 8 10 12

6 12 14

2

6 13

10 11 13 14 1595 64

k
5

k
1

k
2

22

22

22

22

1

1

1

1

Fig. 4: round 1 to round 16 of Boztaş et al.’s attack on 25-round TWINE-128

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

2 4 5 6 7 10 11 14

F F F F F F F F

F F F F F F F F

0 1 2 3 4 5 6 7

2 6 9 10 11 13 14 15

18

19

20

21

22

23

24

25

17

15

16

'v2

v2

g

C
k

3
k

4

22

22

11

1

1 1

1 1

Fig. 5: round 15 to round 25 of Boztaş et al.’s attack on 25-round TWINE-128

2. Decrypt Y without guessing κ228 and get the plaintext value. Get the cor-
responding ciphertext value and continue to decrypt to get the value of v′2.
Construct T2 containing all values of k4 indexed by v2||kc2 .

3. Choose a fixed value of g
(a) Do a MITM attack between Y and g and write possible keys (k1, k2) to

a table Q.
(b) Do a MITM attack between g and C and check whether possible keys

(k3, k4) are also in Q. If true, then output (k1, k2, k3, k4) as a right key
candidate. Test these values with other PC pairs.

(c) If no right key found, change the value of g.

The dominant time complexity claimed in [4] lies in Step 3.(a) and Step 3.(b),
and both of them are computed as 264+60 · 2.5/25 ≈ 2121 25-round encryptions.

The time complexity of Step 3.(b) is about 2121 encryptions because X9
16 can

be fixed in Step 3.(b). Then, the total time complexity is about 2122 25-round
encryptions. After a closer look at Step 3.(a), we find that X0,5,7

15 can actually
be fixed in Step 3.(a). This observation will help to reduce the time complexity
of Step 3.(a).

3 Revisiting Time Complexity of 2D-MITM Attack on
25-Round TWINE-128

In this section, we rewrite 2D-MITM attack on 25-round TWINE-128 (with
improved Step 3 considering the above observation) in an algorithmic form (Al-
gorithm 1) and show that the actual time complexity of the attack exceeds the
exhaustive search. Algorithm 1 generally follows Boztaş et al.’s attack procedure
while we integrate the above observation into the procedure to help reduce the
time complexity of Step 3.(a) of their attack on 25-round TWINE-128. Some
comments are added to help understanding the attack procedure.

As wrote earlier, in [4] the authors claim that the dominant part of time
complexity of the attack on 25-round TWINE-128 lies in Step 3.(a) and Step
3.(b), which is about 2121 25-round encryptions for each step. However, Step
1 (line 1 to line 3) and Step 2 (line 4 to line 6) actually have comparable time
complexity. Ef1 contains about 7 rounds of encryptions and computing v′2 from Y
in Step 2 (line 4 to line 6) needs about 8 decryptions. Thus, the time complexity
of Step 1 and Step 2 is about 2124 · (7/25 + 8/25) ≈ 2123.3 25-round encryptions.
From line 8 to line 12 of Algorithm 1, we show that the time complexity of
Step 3.(a) can be reduced because v′1 has nothing to do with X0,5,7

15 . In the way
presented in Algorithm 1, the time complexity of Step 3.(a) is about 248 ·24 ·260 ·
2.5/25 ≈ 2108.7 25-round encryptions, which can be negligible compared with
Step 1 and Step 2. The side effect of the new way to proceed Step 3.(a) is that
after line 12, tableQ contains more (k1, k2) pairs. Since the memory requirements
are dominated by Step 1 and Step 2, this side effect is trivial. Step 3.(b) in
Algorithm 1 still have the time complexity of about 2121 25-round encryptions.
Thus, about 2123.3 + 2121 ≈ 2123.6 25-round encryptions are preformed and the
attack on 25-round TWINE-128 in [4] seems alright.

Yet, encryptions and decryptions are not the only operations that are per-
formed in the attack. There are a few operations that seem can be done in one
operation at the first glance requiring massive operations actually. Pay attention
to line 12 of Algorithm 1, as each entity in T1 contains 240 k1, adding (k1, k2)
to Q is actually adding 240 (k1, k2) values to Q. Can this operation be done in
one operation? We don’t know for sure. Next is about line 17 of Algorithm 1.
Each entity of T2 contains 244 k4, so check whether (k3, k4) ∈ Q need to be
repeated for all k4, namely 244 times. Thus this check operation is performed
about 248 · 212 · 264 · 244 = 2168 times. The situation becomes even worse, if we
consider that we are actually checking whether a value exists in a table of size
2104. Maybe Q could be constructed in a more smarter way and the attacker
could determine whether a value exists in Q instantly (although to the best

Algorithm 1: Boztaş et al.’s attack with improved Step 3

// Step 1 from line 1 to line 3

1 for all values of 124-bit k1 do
2 Compute v1 = Ef1(k1, Y)
3 Add k1 to T1[v1||kc1]

// T1 contains 2124 k1, each entity contains 240 k1
// Step 2 from line 4 to line 6

4 for all values of 124-bit k4 do
5 Compute v′2 from Y // P = E−1

b3
(k5, Y), ask for C, v′2 = E−1

b2
(k4, C)

6 Add k2 to T2[v′2||kc2]

// T2 contains 2124 k4, each entity contains 244 k4
// Step 3 from line 7 to line 21

7 for all values of 48-bit X1,2,3,4,6
15 ||X2,6,20,11,13,14,15

16 do
// Step 3.(a) from line 8 to line 12

8 for all values of 4-bit X9
16 do

9 for all values of 60-bit k2 do

10 Compute v′1 = E−1
b1

(k2, g) // no relation between v′1 and X0,5,7
15

11 Extract the entity with index v′1||kc1 from T1

12 Add (k1, k2), k1 ∈ T1[v′1||kc1] to a table Q // one operation?

// Q contains 24 · 260 · 240 = 2104 (k1, k2)
// Step 3.(b) from line 13 to line 21

13 for all values of 12-bit X0,5,7
15 do

14 for all values of 64-bit k3 do
15 Compute v2 = Ef2(k3, g)// no relation between v2 and X9

16

16 Extract the entity with index v2||kc2 from T2

17 Check whether (k3, k4), k4 ∈ T2[v2||kc2] is in Q // Caution!

18 if find one match of (k1, k2) and (k3, k4) then
19 Exhaustively test (k1, k2, k3, k4) with a few PC pairs
20 if key tuple (k1, k2, k3, k4) passes all tests then
21 return (k1, k2, k3, k4) as the right key

of our knowledge, there is no such way to achieve this goal). Nevertheless, the
checking operation in line 17 will always be performed far more than 2128 times
and the time complexity of line 17 actually exceeds the exhaustive search. Thus,
the whole 2D-MITM attack on 25-round TWINE-128 exceeds exhaustive search.

References

1. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339-354. Springer, Heidelberg (2013)

2. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

3. Zhu, B., Gong, G.: Multidimensional Meet-in-the-Middle Attack and Its Applica-
tions to KATAN32/48/64. IACR Cryptology ePrint Archive, 2011:619 (2011)

4. Boztaş, Ö., Karakoç, F., Çoban, M.: Multidimensional Meet-in-the-Middle Attacks
on Reduced-Round TWINE-128. In: Avoine, G., Kara, O. (eds.) LIGHTSEC 2013.
LNCS, vol. 8162, pp. 55–67. Springer, Heidelberg (2013)

