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Abstract

In a related-key attack (RKA) an adversary attempts to break a cryptographic primitive by
invoking the primitive with several secret keys which satisfy some known relation. The task of
constructing provably RKA secure PRFs (for non-trivial relations) under a standard assumption
has turned to be challenging. Currently, the only known provably-secure construction is due to
Bellare and Cash [7]. This important feasibility result is restricted, however, to linear relations
over relatively complicated groups (e.g., Z∗

q where q is a large prime) that arise from the algebraic
structure of the underlying cryptographic assumption (DDH/DLIN). In contrast, applications
typically require RKA-security with respect to simple additive relations such as XOR or addition
modulo a power-of-two.

In this paper, we partially fill this gap by showing that it is possible to deal with simple
additive relations at the expense of restricting the model of the attack. We introduce several
natural relaxations of RKA-security, study the relations between these notions, and describe
efficient constructions either under lattice assumptions or under general assumptions. Our
results enrich the landscape of RKA security and suggest useful trade-offs between the attack
model and the family of possible relations.
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1 Introduction

In a related-key attack (RKA) an adversary attempts to break a cryptographic primitive by invoking
the primitive with several secret keys which satisfy some known relation. For example, the adversary
may query a pseudorandom function under a tuple of keys (k1, . . . , kt) whose differences ∆i =
ki− k1 (mod 2n) are known, or even chosen by the adversary during the attack. Apart from being
theoretically interesting, the study of RKAs is motivated by several scenarios.

• (Tampering attacks) In some cases, an adversary can mount a related-key attack by modifying
the bits of the secret key (e.g., by tampering the hardware) and observing the resulting
behavior. (See [21] and references therein.)

• (RKA as a working hypothesis) In practice, security against RKA has become a de-facto
standard for block-ciphers. (The design of Rijndael, for example, explicitly stated RKA-
security as a goal [16].) Correspondingly, systems are often designed while implicitly relying
on the RKA-security of the underlying block-cipher. (See [7] and references therein).

• (RKA-security as a resource) Security against RKA allows cheap and structured re-keying
mechanism — a feature which turns to be extremely useful for higher-level applications (cf. [34,
4, 3]).

RKAs were originally considered by Biham [11] and Knudsen [28] in the early 1990’s, and
since then have become commonly used in the cryptanalysis of symmetric cryptography [12, 13,
20, 27, 35]. Motivated by this state of affairs, Bellare and Kohno [9] initiated a theoretical study
of RKA security for block ciphers, theoretically modeled by pseudorandom functions (PRFs) and
pseudorandom permutations (PRPs) [23]. They defined RKA security with respect to a class of
related-key-deriving (RKD) functions Φ which specify the key-relations available to the adversary,
and considered an active (and adaptive) adversary who can choose the relation from Φ during the
attack. The notion of RKA security was further extended to many other cryptographic primitives,
and several constructions were introduced (cf. [22, 4, 24, 8, 10, 3]).

The task of constructing provably RKA secure PRFs (for non-trivial relations) under a standard
assumption has turned to be challenging. For a while, the only positive results were based on ideal
models or non-standard assumptions [9, 29, 22]. The situation has changed with the beautiful work
of Bellare and Cash [7] who showed that RKA secure block ciphers can be based on standard cryp-
tographic assumptions (e.g., the hardness of the DDH/DLIN problem). This important feasibility
result is restricted, however, to linear relations over relatively complicated groups (e.g., Z∗q where q
is a large prime) that arise from the algebraic structure of the underlying cryptographic assumption
(DDH/DLIN).

From an application point of view, such relations are somewhat unnatural. It is hard to imagine,
for example, a hardware-tampering attack which manipulates the key in a way that corresponds
to multiplication modulo a prime. Similarly, in practice, a cipher’s key is typically “tweaked” by
XOR-ing it with some public value or by treating it as a counter and increasing it by 1. Indeed,
Bellare and Kohno [9] suggested XOR and addition modulo 2n as the canonical examples of useful
relations. The existence of RKA secure PRFs under such simple relations has been left open
by [7] and its follow-ups [2, 1]. Interestingly, the situation is completely different for randomized
encryption, for which RKA-security under additive relations can be achieved in a relatively simple
way [4].
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1.1 Our Contribution

In this paper, we partially fill this gap by showing that it is possible to deal with simple additive
relations at the expense of relaxing the model of the attack. We introduce various relaxations
of RKA-security by putting different natural restrictions on the set of legal RKA queries (∆, x).
This include “passive” adversaries which are restricted to query Fk+∆(x) with respect to random
points x’s or random shifts ∆’s, non-adaptive adversaries which prepare their queries ahead of time
and “bounded” adversaries which can use only a bounded number of different keys. We study
the relations between these notions and present generic transformations between them. We also
describe efficient constructions either for modular addition (over any large modulus) or, in the case
of bounded adversaries, for any linear relation (including XOR). The security of these constructions
is based on lattice assumptions or on general one-wayness assumptions. (A detailed account of our
results appears below; see also Figure 1 for a summary.)

In a sense, our study takes the one-dimensional RKA-security game (which is solely parameter-
ized by the RKD family Φ) and turns it into a multidimensional game. This enriches the landscape
of RKA security, and provides a useful trade-off between the attack model and the family of possible
relations.

1.1.1 RKA Secure Weak PRF

A weak PRF (wPRF) [30] is a relaxation of standard PRF which remains indistinguishable from
a truly random function as long as it is being queried on random points. We construct a wPRF
which offers RKA security with respect to mod-p addition over any (sufficiently large) integer
modulus (including the case of p = 2n). Our construction relies on the Learning with Rounding
(LWR) assumption, introduced by Banerjee et al. [5], whose security can be based on the worst-case
hardness of lattice problems. The construction and its proof are quite simple and efficient.

In a high-level, the LWR-based wPRF Fs(x) computes the inner-product of the key s ∈ Znq
and the point x ∈ Znq and outputs the result rounded to some integer grid (i.e., q is divided to
r equal intervals and the output is rounded to the starting point of the corresponding interval).
This function has an almost linear form which provides an “approximate” key-homomorphism,
namely, Fs(x) +Fs′(x) is close to Fs+s′(x). This property, which was also used in [15], is extremely
useful for proving RKA-security. Indeed, if we had an exact homomorphism we could emulate the
value of Fs+∆(x) given Fs(x). A natural way to turn the approximate key-homomorphism into
an exact homomorphism is to further round the result according to a grid with larger intervals.
This gives an efficient mapping h from Fs(x) and ∆ to F ′s+∆(x) where F ′ is the LWR-based wPRF
parameterized with different “rounding resolution”. The mapping h is almost always correct with
respect to a random key and a random point. However, in our context the adversary can shift
the key arbitrarily, and when the modulus p is composite (e.g., p = 2k and rounding is applied
with respect to multiples of 2k

′
) there are shift vectors ∆ for which h fails miserably. Fortunately,

we note that such a rounding error happens only when the output of h is close to the end of an
interval, hence we can detect a potential failure. Using sufficiently large intervals we can make sure
that when h is applied to a truly random function the result is unlikely to fall next to an end of an
interval. Hence, the failure of h (which prevents us from emulating an RKA oracle) allows us to
directly distinguish the wPRF from a truly random function.

We further demonstrate the usefulness of our LWR-based RKA-wPRF by constructing a simple
and efficient message-authentication code (MAC). Our construction follows the outline suggested
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in [17] which relies on a key-homomorphic wPRF. While our wPRF does not support a full key-
homomorphism in the strict sense of [17], we show how to adopt the RKA-security proof to prove
the security of the resulting MAC. (This result appears in Section A.)

1.1.2 Passive-RKA secure PRF

Passive-RKA (pRKA) is a weak form of RKA which was previously considered in the cryptanalytic
literature (see discussion in [14]) and in the context of randomized encryption [4]. In such attacks
the key-relations are chosen randomly and are not controlled by the adversary. For example, in the
case of linear relations, an adversary who asks for an RKA query on a point x will get as a result
the value of (∆, Fk+∆(x)) where ∆ is a random group element and k is the target key. (This is
essentially dual to the case of RKA secure wPRF where the point x is chosen at random and the
shift ∆ is chosen by the adversary.) We formalize the notion of pRKA security for PRFs, and show
how to transform an RKA wPRF into a pRKA secure pseudorandom function or pseudorandom
permutations (PRP). Combining this with our LWR-based construction we derive a PRF which is
pRKA-secure under modular addition.

1.1.3 Non-Adaptive RKA secure PRF

A natural strengthening of a passive adversary is a non-adaptive adversary which prepares its
(arbitrary) queries ahead of time. The resulting notion of non-adaptive RKA security (na-RKA) is
therefore an intermediate notion between full-RKA security and pRKA security. It is not hard to
imagine scenarios where na-RKA security may suffice (e.g., when a PRF is employed as a building
block in a larger system whose design defines a set of RKA queries for which the underlying PRF
should be secure). One may further consider a weaker notion of security in which the non-adaptive
adversaries never queries the same point x under different keys. Observe that this notion of distinct
non-adaptive RKA security (dna-RKA) is still strictly stronger from pRKA security.

We show that, in some circumstances, one can upgrade an RKA-wPRF into distinct non-
adaptive RKA PRF (dna-RKA), which in turn can be upgraded to non-adaptive RKA security. In
more detail, our first transformation maps an RKA-wPRF and a standard PRF into a new PRF. We
prove that if the resulting PRF fails to achieve dna-RKA-security, then a public-key encryption can
be established (whose correctness holds for infinitely-many input lengths).1 Thus, in “Minicrypt”
— the hypothetical world in which private-key cryptography exists but public-key cryptography
does not exist — the existence of RKA-wPRF implies the existence of dna-RKA-PRFs. (This is
similar in spirit to the results of [31, 32, 6].) Our transformation is generic and works for any class
of RKD functions Φ.

Next, we show that if the key is a vector of field elements (as in the case of the XOR relation), it
is possible to transform a dna-RKA secure PRF into a na-RKA PRF. The transformation is highly
efficient and it incurs only a minor loss in the security. The question of upgrading non-adaptive
RKA security to standard PRF security (for linear relations) is left open for further research.

1.1.4 Bounded-RKA secure PRF

Finally, we consider the notion of bounded-RKA (bRKA) where there exists an a-priory bound t on
the number of different related keys that the adversary can generate. (Each related key ki can be

1In fact, we can even get an (infinitely often) Oblivious Transfer protocol. See Remark 5.3.

4



queried with respect to arbitrarily many different x’s.) We show that any PRF F can be immunized
against t-bRKA attack, where t(n) can be an arbitrary (a-priory fixed) polynomial. Furthermore,
this holds for an arbitrary linear relation over any group (including the case of XOR).

The idea is to use a long key s of length Ω(tn) and derive an n-bit key k for F via an appropriate
(public) key-derivation mechanism H. An adversary that uses the shifts ~∆ = (∆1, . . . ,∆t) gets
an access to F keyed by the keys k1 = H(s + ∆1), . . . , kt = H(s + ∆t), and, in addition, sees F
keyed under the master key k0 = H(s). We show that if H is chosen from a family of Ω(nt2)-wise
independent hash functions, then, for any choice of ~∆, the joint distribution of the keys (k0, . . . , kt)
is statistically indistinguishable from uniform. Hence, the bRKA security of the scheme reduces to
the security of F under t independent keys, which follows from standard PRF security.

Our usage of `-wise independent hash function is inspired by the work of Faust et al. [19],
who showed that such hash functions give rise to non-malleable key derivation. In this setting the
adversary is restricted to one-time tampering with respect to a large family of tempering functions
G. Namely, it is allowed to view the underlying primitive under the key h(g(s)) where g ∈ G. In
contrast, we allow the adversary to access many keys but restrict it to linear relations. As a result,
we have to overcome some non-trivial technicalities which do not appear in [19].

PRF

bounded-RKA
PRF

LWE

RKA
weak-PRF

passive-RKA
PRF

distinct-RKA
PRF

na-RKA
PRF

Sec. 7 Sec. 3

Sec. 4

Sec. 6

Sec. 5
minicrypt

Figure 1: Results and Organization.

2 Preliminaries

Standard definitions. We say that a function µ : N → [0, 1] is negligible if for every positive
polynomial p there exists n0 ∈ N such that for all n ≥ n0, µ(n) ≤ 1

p(n) . We let neg(n) denote

some unspecified negligible function. A function µ : N → [0, 1] is noticeable if for some positive
polynomial p there exists n0 ∈ N such that for all n ≥ n0, µ(n) ≥ 1

p(n) .
The statistical distance between two random variables X and Y over a domain Ω, denoted

∆(X;Y ), is defined by

∆(X;Y ) =
1

2
·
∑
u∈Ω

|Pr[X = u]− Pr[Y = u]| .

We will say that X and Y are ε-close if ∆(X;Y ) ≤ ε. Let X = {Xn}n∈N and Y = {Yn}n∈N be
sequences of probability distributions. Then X and Y are said to be statistically indistinguishable if
∆(Xn;Yn) = neg(n), and computationally indistinguishable if for every PPT distinguisher algorithm
D, the distinguishing advantage |Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1]| is negligible in n.
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Definition 2.1 (Public-Key Encryption). A public-key encryption scheme consists of three PPT
algorithms: A key-generation algorithm KG which, given a security parameter 1n outputs a public-
key/secret-key pair (pk, sk), an encryption algorithm E which maps a message m and a public-key
pk to a ciphertext c, and a decryption algorithm D which maps a ciphertext c and secret-key sk to a
plaintext m. We require standard semantic security and (potentially weak form of) correctness as
follows:

• ε-Correctness: For a random (single-bit) message b
R← {0, 1} and random public-key/secret-

key pair (pk, sk)
R← KG(1n)

Pr[Dsk(Esk(b)) = b] ≥ (1 + ε(n))/2,

for all n’s.

• Security: For every efficient adversary (eavesdropper) E and for all n∣∣∣∣∣ Pr
(pk,sk)

R←KG(1n)

[E(pk,Epk(0)) = 1]− Pr
(pk,sk)

R←KG(1n)

[E(pk,Epk(1)) = 1]

∣∣∣∣∣ < neg(n)

By default, we require that for every polynomial p(n), ε > 1− 1/p(n) for all sufficiently large n’s,
(this corresponds to the standard notion of correctness). If the above holds for infinitely many n’s,
then the protocol is called an an infinitely-often correct Public-Key Encryption (io-PKE, in short).

2.1 Pseudorandom Functions

Syntax. Let X = {Xn}n∈N, Y = {Yn}n∈N, and K = {Kn}n∈N be a sequence of finite sets. A
function ensemble F from X to Y , indexed by keys from K, is a sequence of collections of functions
{Fn} where for every n (security parameter) Fn = {Fs : Xn → Yn}s∈Kn . We always assume that
the ensemble is efficiently computable and efficiently samplable. Namely, there exists an efficient
sampler that given 1n outputs a uniformly chosen element from Kn, and there exists an evaluation
algorithm that given s ∈ Kn and x ∈ Xn outputs y = Fs(x) in time polynomial in n. In the special
case of permutation ensemble we assume that Fs forms a permutation over Xn and that there exists
an efficient inversion algorithm which computes F−1

s . Finally, we assume that the set of keys Kn

is an additive Abelian group, and denote its group operation by +. By default, addition over Kn

is assumed to be efficiently computable (in time poly(n)).
In the following, we define different security notions for PRFs. Since we mainly deal with linear

relations, we will define RKA security explicitly for such relations. (All the following definitions
can be extended to general related-key-deriving function families Φ as in [9].)

Weak PRF. An ensemble F is a weak PRF (wPRF) if for every PPT adversary A∣∣∣∣∣ Pr
s
R←Kn

[ASamFs(1n) = 1]− Pr[AR(Xn,Yn)(1n) = 1]

∣∣∣∣∣ < neg(n),

where the sampling oracle SamFs ignores its input and outputs a pair (x, y) where x
R← Xn and

y = Fs(x), and the random oracle R(Xn, Yn) ignores its input and outputs a random pair (x, y)
R←

(Xn × Yn).
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RKA secure Weak PRF. An ensemble F is an RKA weak PRF (RKA-wPRF) if for every
PPT adversary A ∣∣∣∣∣ Pr

s
R←Kn

[ASam+Fs(1n) = 1]− Pr[AR(Xn,Yn)(1n) = 1]

∣∣∣∣∣ < neg(n),

where the related-key oracle Sam+Fs takes ∆ ∈ Kn as an input, and outputs a pair (x, y) where

x
R← Xn and y = Fs+∆(x).

Strong (standard) PRFs. An ensemble F is a strong PRF (or simply PRF) if for every PPT
adversary A ∣∣∣∣∣ Pr

s
R←Kn

[AFs(1n) = 1]− Pr[AR(Xn→Yn)(1n) = 1]

∣∣∣∣∣ < neg(n),

where the (stateful) oracle R(Xn → Yn) initializes a random function ρ : Xn → Yn, and given a
query x ∈ Xn outputs the value ρ(x). Without loss of generality, we may restrict our attention
to adversaries A which do not repeat the same query twice, and in this case we may replace
R(Xn → Yn) with the oracle R(Yn) which ignores its query and outputs a random value in Yn.

RKA secure PRFs. An ensemble F is a RKA secure PRF (RKA-PRF) if for every PPT
adversary A ∣∣∣∣∣ Pr

s
R←Kn

[AF
+
s (1n) = 1]− Pr[AR+(Xn→Yn)(1n) = 1]

∣∣∣∣∣ < neg(n), (1)

where the oracles are defined as follows. The oracle F+
s takes x ∈ Xn and ∆ ∈ Kn as inputs, and

outputs the value y = Fs+∆(x). The stateful oracle R+(Xn → Yn) initializes for each s ∈ Kn a
random function ρs : Xn → Yn, and, given a query (x,∆) ∈ Xn ×Kn responds with y = ρs+∆(x).
Again, we may assume, without loss of generality, that a query (x,∆) is never repeated twice, and
in this case the oracle R+(Xn → Yn) can be replaced with the oracle R(Yn) which ignores its query
and outputs a random value in Yn.

Relaxations (bounded, passive, non-adaptive and distinct non-adaptive RKA). We
say that a PRF is t(n)-bounded-RKA secure (bRKA) if Eq. (1) holds for adversaries that use at
most t different shift vectors (but may apply the same shift vector more than once with different
inputs.) We say that a PRF is passive-RKA secure (pRKA) if (1) holds for adversaries that each
of their shift queries ∆i is either set to zero or is chosen uniformly at random from Kn as part of
the adversary’s public-coins. Equivalently, we may assume that the random shift values are given
to the adversary by the oracle. We say that a PRF is non-adaptively RKA secure (naRKA) if
Eq. (1) holds for adversaries that prepare their oracle queries in advance and without inspecting
the outcome of previous queries. The notion of distinct non-adaptively RKA security (dna-RKA)
corresponds to non-adaptive adversaries which never query the same point twice; Namely, there
are no two queries of the form (x,∆) and (x,∆′).
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Public parameters. In some cases, it is useful to consider collections whose index consists of
a public parameter p ∈ Pn in addition to a secret key s ∈ Kn. Namely, Fn = {Fs,p : Xn →
Yn}s∈Kn,p∈Pn where P = {Pn}n∈N is the domain of the public parameter. In this case, we assume

the existence of an efficient procedure which samples p
R← Pn in time poly(n). When defining

security, we always assume that the public parameter p is chosen once and for all, and is given to
the adversary as an additional input which is not subject to related-key attacks (i.e., the adversary
cannot shift p). In the case of non-adaptive RKAs, we assume that the queries are chosen before
p is chosen, and so they are independent of p. Public parameters can be used to set-up a number-
theoretic construction (e.g., for selecting some group parameters), and can be also used as “one-time
short salt” for system initialization. We mention that the RKA-PRFs of [7] also employed public
parameters both to set-up a DDH group and to choose a collision resistance hash function.

2.2 A weak-PRF based on Learning with Rounding

For any integer modulus q ≥ 2 we let Zq denote the quotient ring of integers modulo q. We let Uq
denote the uniform distribution of Zq and Unq denote the uniform distribution over Znq .

Learning with Errors and Learning with Rounding. For dimension n, modulus q = q(n)
and noise distribution χ = χ(n) over Zq, the (decisional) Learning With Errors LWEn,q,χ [33]
assumption asserts that the random oracle which outputs uniform samples from Znq ×Zq is compu-
tationally indistinguishable from the (stateful) LWE oracle Ts which is initialized with a random

s
R← Zq and outputs samples x

R← Znq , y
R← 〈s, x〉+ χ. Namely, for every PPT A,∣∣∣Pr

s
[ATs = 1]− Pr[AUn

q×Uq = 1]
∣∣∣ ≤ neg(n).

Following [5], we modify the LWE problem such that the noise distribution over Zq is replaced
with a deterministic rounding operation. The idea is to partition the elements 0, . . . , q − 1 to
p consecutive intervals, and map an element to the starting point of its interval. Formally, for
parameters q > p, we define the following mapping from x ∈ Zq to an element in Zp by

dxcq/p := bx̄ · p/qc mod p,

where x̄ ∈ Z is any integer congruent to x mod q. Our notation slightly deviates from [5] as we
would like to keep q explicit as part of the operation.

Definition 2.2 (The LWR Function). For integers q > p and n, and a key s ∈ Znq we let F q,ps :
Znq → Zp be the mapping

F q,ps : x 7→ d〈s, x〉cq/p,

where 〈x, s〉 denotes inner-product, i.e.,
∑

i xi · si mod q. For integer functions q(n) > p(n), we
define the function ensemble Fq,p over the domain/key-space Znq(n) and range set Zp(n), which for

every n, consists of the functions
{
F
q(n),p(n)
s : s ∈ Znq(n)

}
.

For ease of notation, we typically omit the dependency in the security parameter and write
F q,ps .

In [5] it is proven that under the LWE assumption, Fq,p is a weak PRF. In the following, we say
that a noise distribution χ = χn over Z is B(n)-bounded if Pr[|χn| > B(n)] < neg(n).
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Proposition 2.3 ([5]). Assume that LWEn,q,χ holds for some B-bounded noise distribution χ and
q(n) > p(n) ·B(n) · nω(1). Then the collection Fq,p is a weak-PRF.

The proposition does not impose any restriction regarding the structure of p and q (except for
their size) and, in particular, holds for the case where p and q are powers of two.

The following proposition shows that when a uniformly chosen element from Zq is projected
down to Zp, either by taking modulo or by the rounding operation, the resulting element is almost
uniformly distributed over Zp.

Proposition 2.4. Let p < q and let δ(p, q) be zero if p divides q, and p
2q otherwise. Then, the

random variable Uq mod p (resp., dUqcq/p) is δ(p, q)-close to the uniform distribution over Zp.

Proof. Observe that the modulo operation and the rounding operation are both “almost balanced”
in the sense that each element in Zp has either dq/pe preimages or bq/pc preimages. Assume that
we have r values of the first type and p− r values of the second type. Then, the statistical distance
between the two distributions is

1

2

∣∣∣∣r · dq/pe − q/pq
+ (p− r) · q/p− bq/pc

q

∣∣∣∣ ,
which is zero when p divides q, and is upper-bounded by p

2q , otherwise.

3 RKA secure Weak-PRF

In this section we show that if the collection Fq,r is a weak PRF then, for a proper choice of
parameters q > r > p, the collection Fq,p is a weak PRF which is secure under related-key attacks.
The key idea is to map a random input/output pair (x, y) of F q,rs and an RKA query ∆ into a
random input/output pair (x, y′) of F q,ps+∆. The transformation is based on the following mapping.

The mapping h. For integers q > r > p and n, we define the mapping h : Znq × Zr × Znq → Zp
as follows:

h : (x, y,∆) 7→ dy + F q,r∆ (x) (mod r)cr/p. (2)

Before we prove our main theorem, we collect several useful facts about the mapping h. We

begin by showing that when h is applied to a random pair (x, y)
R← Znq × Zr then, regardless of ∆,

the result is almost uniform over Zp and independent of x.

Claim 3.1. For (x, y)
R← Znq × Zr and every ∆ ∈ Znq the pair (x, h(x, y,∆)) is δ(p, r)-close to

Unq × Up, where δ(p, r) is zero if p divides r, and p
2r otherwise.

Proof. Since y is uniform and independent of x, the random variable y+F q,r∆ (x) is uniform (over Zr)
and independent of x and so, by Proposition 2.4, for every fixed x the random variable h(x, y,∆) =
dy + F q,r∆ (x) (mod r)cr/p is δ(p, r)-close to uniform over Zp. The claim follows.

Next we would like to show that when (x, y) is an input/output pair of F q,rs then, whp, the
output h(x, y,∆) equals to F q,ps+∆(x). Unfortunately, this claim does not hold for a non-prime
modulus q. (See the discussion in the introduction.) Instead, we define an (efficiently recognizable)
event that guarantees that h succeeds. Specifically, we will need the following claim.
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Claim 3.2. Let p < r < q. For every s,∆, x ∈ Znq , if the difference between (F q,rs (x) + F q,r∆ (x)) to
any multiple of r/p is at least 2, then h(x, F q,rs (x),∆) = F q,ps+∆(x).

Proof. First, we claim that the difference between F q,rs (x) + F q,r∆ (x) and F q,rs+∆(x) is at most 2.
Indeed,

F q,rs (x) + F q,r∆ (x) =

⌊
〈x, s〉 · r

q

⌋
+

⌊
〈x,∆〉 · r

q

⌋
= 〈x, s〉 · r

q
+ 〈x,∆〉 · r

q
+ e1 + e2

=

⌊
〈x, s+ ∆〉 · r

q

⌋
+ e1 + e2 + e3

= F q,rs+∆(x) + e

where the “error” terms e1, e2 ∈ [−1, 0] and e3 ∈ [0, 1] compensate the omission/addition of the
floor operation, and e = e1 + e2 + e3 ∈ [±2] denotes the accumulated error.

Since F q,rs (x) + F q,r∆ (x) is 2-close to F q,rs+∆(x), it follows, by our hypothesis, that both elements
reside in the same r/p-interval. We can therefore write:

h(x, F q,rs (x),∆) = dF q,rs (x) + F q,r∆ (x)cr/p = dF q,rs+∆(x)cr/p = F q,ps+∆(x)

and the claim follows.

We can now prove the main theorem of this section.

Theorem 3.3. Let p < r < q such that r/q < neg(n), p/r < neg(n) and 1/p < neg(n). Then if
the collection Fq,r is a weak PRF then the collection Fq,p is RKA secure weak PRF.

Proof. Fix some p, r, and q that satisfy the hypothesis. Assume, towards a contradiction, that A
is an adversary that breaks the security of function F q,ps as an RKA wPRF. Namely,

Pr
s

[ASam+F q,p
s (1n) = 1]− Pr

s
[AR(Zn

q ,Zp)(1n) = 1] > ε(n),

for some non-negligible ε. We derive a contradiction by constructing an adversary B which distin-
guishes the oracle SamF q,rs from the oracle R(Znq ,Zr) with advantage ε − neg(n). The algorithm

BO emulates A, if A makes a query ∆ to its oracle, the algorithm B asks for a sample (x, y)
R← O,

and continues as follows: If the difference between y+F q,r∆ (x) to some multiple of r/p is smaller or
equal to 2, then B quits with the output 1; Otherwise, B answers A with (x, h(x, y,∆)), where h is
the mapping defined in Eq. (2). At the end of the emulation, B halts with the same output as A.

Let us analyze the distinguishing advantage of B assuming that A makes t = poly(n) queries.
First, observe that when O is the uniform oracle R(Znq ,Zr), the probability that B quits is t ·
(4r/p)/r = neg(n). Also, by Claim 3.1, conditioned on not quitting, the view of A in the emulation
is within statistical distance of t · δ(p, r) = neg(n) from the view of A when the oracle is R(Znq ,Zp).
It, therefore, follows that

Pr[BR(Zn
q ,Zr)(1n) = 1] ≤ Pr[AR(Zn

q ,Zp)(1n) = 1] + neg(n).
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We move on to the case where the oracle O is SamF q,rs . By Claim 3.2, if BSamF q,r
s does not quit,

the emulation is perfect. Letting δ = Prs[B
SamF q,r

s (1n) quits], and recalling that when B quits it
always outputs 1, we can write

Pr
s

[BSamF q,r
s (1n) = 1] = δ + Pr

s
[BSamF q,r

s (1n) = 1| not quitting] · (1− δ) ≥ Pr
s

[ASam+F q,p
s (1n) = 1].

Overall, it follows that

Pr
s

[BSamF q,r
s (1n) = 1]− Pr

s
[BR(Zn

q ,Zr)(1n) = 1] > ε(n)− neg(n),

as required.

4 Passive-RKA secure PRF and PRP

In this section we show how to convert any RKA-wPRF F (such as the one constructed in Section 3)
into a strong PRF G with Passive-RKA security. The idea is similar to the one proposed in [22] (See
also [7, 8]). Essentially, F is used as a key derivation mechanism for a standard PRF PRF. That is,
our new PRF G will be keyed by pairs (k1, k2) and Gk1,k2(x) = PRFk(x) where the pseudorandom
key k is taken to be Fk1(k2). A passive-RKA adversary that applies random shifts (∆1,∆2) to
(k1, k2) will get an access to the function PRFk′ keyed under k′ = Fk1+∆1(k2 + ∆2). Due to
the RKA-security of F , the key k′ will still be pseudorandom, and so, intuitively, PRFk′ remains
secure. Furthermore, if PRF is a pseudorandom permutation (PRP), the resulting construction
yields a passive-RKA secure PRP. We move on to a formal definition of our construction.

Construction 4.1. Let PRF = {PRFk} be a function ensemble with key space K, domain X and
range Y , and let F = {Fk1} be a function ensemble with key space K1, domain K2, and range
K. We define a new function ensemble G with key space K1 ×K2 domain X and range Y via the
mapping:

G(k1,k2) : x 7→ PRFk(x), where k = Fk1(k2).

Theorem 4.2. If PRF is a PRF and F is an RKA secure wPRF, then G is a passive-RKA secure
PRF. Moreover, if PRF is a PRP then G is a passive-RKA secure PRP.

Proof. The proof relies on a hybrid argument. We define four sampling oracles which support
standard PRF queries and passive-RKA (pRKA) queries. Syntactically, a PRF query x ∈ X
should be answered with y ∈ Y , and pRKA query x ∈ X should be answered with (∆1,∆2, y) ∈
K1 ×K2 × Y . The oracles are defined as follows. (For simplicity we omit the dependencies on n.)

• O0
(k1,k2) is the passive-RKA oracle for the original G construction:

– pRKA query x ∈ X is answered with (∆1,∆2)
R← K1 × K2 and y = PRFk′(x) where

k′ = Fk1+∆1(k2 + ∆2).

– PRF query x ∈ X is answered with y = PRFk(x) where k = Fk1(k2).

• O1
k is a hybrid oracle:

– pRKA query x ∈ X is answered with (∆1,∆2)
R← K1 × K2 and y = PRFk′(x) where

k′
R← K is a fresh random key.
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– PRF query x ∈ X is answered with y = PRFk(x).

• O2
k is a hybrid oracle:

– pRKA query x ∈ X is answered with (∆1,∆2)
R← K1 ×K2 and y

R← Y .

– PRF query x ∈ X is answered with y = PRFk(x).

• O3 is the random sampling oracle:

– pRKA query x ∈ X is answered with (∆1,∆2)
R← K1 ×K2 and y

R← Y .

– New PRF query x ∈ X is answered with y
R← Y , old PRF query is answered consistently

with the previous answers.

Our goal is to show that the oracles O0 and O3 are indistinguishable. We begin by showing that
the oracle O0 is indistinguishable from the oracle O1.

Claim 4.3. For every PPT adversary A,∣∣∣∣ Pr
k1,k2

[A
O0

k1,k2 (1n) = 1]− Pr
k

[AO
1
k(1n) = 1]

∣∣∣∣ ≤ ε(n),

for some negligible function ε(n).

Proof. Assume, towards contradiction, that A has a non-negligible distinguishing advantage ε(n).
We construct an efficient PPT BO that breaks the RKA wPRF security of F . Namely, B distin-

guishes between the random oracle R(K2,K) to the RKA wPRF oracle Sam+Fk1 where k1
R← K1.

The idea is to emulate A as follow:

1. B initially queries O with ∆ = 0 and obtains a random input/output pair (k2, k) ∈ K2 ×K.

2. If A makes a PRF query x ∈ X, then B returns the value y = PRFk(x).

3. If A makes pRKA query x ∈ X, then B computes the answer (∆1,∆2, y) as follows. B chooses

a random shift ∆1
R← K1, uses the oracle to compute (k′2, k

′) = O(∆1) and sets ∆2 = k′2 − k2

and y = PRFk′(x).

4. At the end of the emulation B terminates with the same output as A.

It is not hard to verify that if O = R(K2,K) then B perfectly emulates the oracle O1
k. On the

other hand, when O is Sam+Fk1 we obtain a perfect emulation of O0
(k1,k2) for a randomly chosen

k2
R← K2. Indeed, since k = Fk1(k2), PRF queries are answered properly by PRFk(x). Similarly, the

answer (∆1,∆2, y) to a pRKA query x is computed properly, since the shifts (∆1,∆2) are uniform
over K1 ×K2 and y = PRFk′(x) for k′ = Fk1+∆1(k2 + ∆2), as required. It follows that B breaks
the RKA wPRF security of F in contraction to our assumption.

We proceed by showing that O1 is indistinguishable from the oracle O2.
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Claim 4.4. For every PPT adversary A,∣∣∣∣Pr
k

[AO
1
k(1n) = 1]− Pr

k
[AO

2
k(1n) = 1]

∣∣∣∣ ≤ ε(n),

for some negligible function ε(n).

Proof. The security is reduced to the security of the PRF via a standard hybrid argument. Assume,
towards contradiction, that A has a non-negligible distinguishing advantage ε(n). Let t(n) =
poly(n) denote an upper bound on the number of queries that A performs, and assume, wlog, that
A never repeats the same PRF query twice. Fix some n

We construct an efficient PPT BO(1n) that breaks the security of PRF, where its oracle O is
either PRFk1 or R(Yn).

1. B samples a random key k
R← Kn.

2. B chooses a random hybrid index i ∈ {1, . . . , t(n)}, and emulates A as follows.

(a) For the first i− 1 queries B ignores its oracle and answers as in O2
k:

• If x is a pRKA query then B outputs (∆1,∆2)
R← K1 ×K2 and y

R← Y .

• If x is a PRF query then B answers with PRFk(x).

(b) On the i-th query B answers as follows:

• If x is a pRKA query then B outputs (∆1,∆2)
R← K1 ×K2 and y = O(x).

• If x is a PRF query then B answers with PRFk(x).

(c) For the remaining queries B ignores its oracle and answers as in O1
k:

• If x is a pRKA query then B outputs (∆1,∆2)
R← K1×K2 and y = PRFk′(x) for a

randomly sampled k′
R← K.

• If x is a PRF query then B answers with PRFk(x).

3. When A terminates B outputs the same output of A.

For j ∈ {1, . . . , t}, let

αj(n) = Pr
k1

R←Kn

[BPRFk1 (1n) = 1|i = j] and βj(n) = Pr[BR(Yn)(1n) = 1|i = j].

It is not hard to verify that α1 = Prk[A
O1

k(1n) = 1] and that βt = Prk[A
O2

k(1n) = 1]. Also,
by definition, for every j, βj(n) = αj+1(n). Therefore, the distinguishing advantage of B (for a
randomly chosen i) is 1/t

∑
j αj(n) − βj(n) = (α1(n) − βt(n))/t and so B breaks the security of

PRF with noticeable advantage of ε(n)/t(n), and we derive a contradiction.

We proceed by showing that O2 is indistinguishable from the oracle O3.

Claim 4.5. For every PPT adversary A,∣∣∣∣Pr
k1

[A
O2

k1 (1n) = 1]− Pr[AO
3
(1n) = 1]

∣∣∣∣ ≤ ε(n),

for some negligible function ε(n).
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Proof. Assume, towards contradiction, that A has a non-negligible distinguishing advantage ε(n),
and assume without loss of generality that A does not repeat the same query twice. We construct
an efficient PPT BO which distinguishes with advantage ε, between the oracle R(Y ) to the oracle

PRFk for a randomly chosen k
R← K.

1. B emulates A and answers its queries as follows:

• If x is a pRKA query then B outputs (∆1,∆2)
R← K1 ×K2 and y

R← Y .

• If x is a PRF query then B answers with a sample from the oracle O(x).

2. When A terminates B outputs the same output of A.

It is not hard to verify that when O is PRFk we perfectly emulate O2
k and when O = R(Y ) we

perfectly emulate O3 and so the claim follows.

By combining the three claims we complete the proof of the theorem. The proof naturally
extends to the special case where PRF is a permutation since both claims still hold, and so, in this
case. a pRKA secure PRP is obtained.

5 Constructing dna-RKA secure PRFs in Minicrypt

In this section, we show that in Minicrypt one can transform an RKA secure wPRF F into a distinct
non-adaptive RKA secure PRF. That is, we transform RKA wPRF F (as provided in Section 3)
and a standard PRF PRF into a function ensemble H, and show that if H is not a dna-RKA-PRF,
then an (infinitely-often) public-key encryption (io-PKE) exists.

Construction 5.1. For function ensembles PRF : K × X → Y and F : S × Y → Z, define the
ensemble H with key-space S, domain X, range Y and public parameter space K via the mapping

Hs,k : x 7→ Fs(PRFk(x)), where s ∈ Sn, x ∈ Xn, and k ∈ Kn is a public parameter.

Theorem 5.2. Assume that F is an RKA wPRF and PRF is a (standard) PRF. Then, either H
is a dna-RKA-PRF or there exists an io-PKE.

Proof. Assume, towards a contradiction, that the construction H is not dna-RKA secure then there
exists a distinct non-adaptive adversary that breaks H with non-negligible advantage ε(n). Since
the adversary is non-adaptive we can describe it by a pair of adversaries: a query generator Q and
a distinguisher D. These adversaries share the same randomness r and operate as follows: At the
first stage of the attack Q(1n, r) generates x-distinct RKA queries (∆1, x1), ..., (∆t, xt) ∈ (Sn×Xn)

for some polynomial t = t(n); At the second phase, D uses r, the public parameter k
R← Kn to

ε-distinguish between a random tuple (ui)
t
i=1

R← R(Zn)t to an RKA tuple (Hk
s+∆i

(xi))
t
i=1 chosen

with respect to a random secret-key s
R← Sn. That is, by our assumption, we have

Pr
r,k

R←Kn,s
R←Sn

[D(1n, r, k, (z1, . . . , zt)) = 1]− Pr
k

R←Kn

[D(1n, r, k, (u1, . . . , ut)) = 1] ≥ ε(n),

where (∆i, xi)
t
i=1 = Q(1n, r) and for every i, zi = Hk

s+∆i
(xi) = Fs+∆i(PRFk(xi)) and ui

R← R(Zn).
We define a public-key encryption scheme as follows.
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• (Key Generation): Set the secret key to be sk = (r, k) where r is a fresh randomness for the

adversary and k
R← Kn. Generate the queries (∆i, xi)

t
i=1 = Q(1n, r) and set the public-key

pk to be (∆i, yi = PRFk(xi))
t
i=1.

• (Encryption) To encrypt the bit zero output t random values (u1, . . . , ut) sampled from Zn;
To encrypt one output the vector (Hk

s+∆i
(xi))

t
i=1 = (Fs+∆i(yi))

t
i=1.

• (Decryption) The ciphertext z = (z1, . . . , zt) is decrypted to the distinguisher’s bit a =
D(1n, r, k, z).

Correctness. It is not hard to see that on a random message b
R← {0, 1}, decryption succeeds

with probability 1
2 + ε/2. Indeed, letting a = Dsk(Epk(b)) denote the outcome of the decryption

algorithm (which is a random variable jointly distributed with b), we have

Pr[a = b] = Pr[b = 1] · Pr[a = 1|b = 1] + Pr[b = 0] · Pr[a = 0|b = 0]

=
1

2
· (Pr[a = 1|b = 1] + 1− Pr[a = 1|b = 0])

=
1

2
+

1

2
·

(
Pr
s,k,r

[D(1n, r, k, (Hk
s+∆i

(xi))
t
i=1) = 1]− Pr

k,r,(ui)ti=1

[D(1n, r, k, (ui)
t
i=1) = 1]

)
≥ 1 + ε

2
.

where the last equality follows by noting that when b = 1 the queries are answered according to
H+
s,k, and when b = 0 they are being answered according to R(Z).

Security. Next we show that our PKE is semantically secure. Intuitively, an external adversary
E who sees a public-key pk and a ciphertext c = Epk(b) just sees Fs evaluated on a pseudorandom
points yi (without knowing k), and therefore it should not be able to guess b due to the security of
Fs as an RKA wPRF. We formalize this intuition below. Assume that E is an efficient adversary
which distinguishes with advantage δ(n) between the distributions (pk,Epk(0)) and (pk,Epk(1))

where pk
R← KG(1n).

Consider a modified version of the key-generation KG′(1n) in which the public-key is pk′ =
(∆i, y

′
i)
t
i=1 where y′i are uniformly chosen from R(Y ) and the ∆i’s are chosen as in the original

scheme (∆i, xi)
t
i=1 = Q(1n, r). We claim that the modified public-key is indistinguishable from the

original public key. Indeed, one can implement the original key-generation algorithm given only an
oracle to PRFk, by switching this oracle to a random oracle R(X → Y ) we get an indistinguishable
key-generation algorithm. Since all the queries of Q are x-distinct we can further switch this oracle
to R(Y ). The resulting public-key distribution corresponds exactly to the one generated by KG′(1n).

Since, pk
R← KG′(1n) is indistinguishable from the modified key pk′

R← KG′(1n), it follows that
E distinguishes (pk′,Epk′(0)) from (pk′,Epk′(1)), i.e.,

Pr
pk′

R←KG′(1n)

[E(pk′,Epk′(1)) = 1]− Pr
pk′

R←KG′(1n)

[E(pk′,Epk′(0)) = 1] ≥ δ(n)− neg(n). (3)

We can now combine E and Q into an adversary A which violates the RKA security of F as a
wPRF. That is, we define an oracle-aided adversary AO which distinguishes the RKA wPRF oracle
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Sam+Fs from the random oracle R(Y,Z). The adversary A uses Q(1n, r) to generate the queries
(∆1, x1), . . . , (∆t, xt), then, for every i, the adversary A ignores the xi’s and calls its oracle with
∆i and obtains the value (yi, zi) = O(∆i). At the end of the emulation, apply E to the transcript
(∆i, yi, zi)

t
i=1 and output the result. It is not hard to verify that if O = Sam+Fs then E receives a

transcript which is distributed exactly as (pk′,Epk′(1)), and if O = R(Y,Z) then the transcript is
distributed exactly as (pk′,Epk′(0)). It follows, by Eq. (3), that E breaks the RKA security of F as
a wPRF, and we derive a contradiction.

Note that the above argument fails if Q is allowed to query the same point x twice, since in
this case we cannot replace the value y = PRFk(x) with a random point, and so we cannot switch
the PRF oracle PRFk with the oracle R(Y ).

We conclude that the PKE is secure and that the decryption succeeds with probability 1
2 +

1/poly(n) for infinitely many n’s. Such a PKE can be amplified into to standard (infinitely-often)
PKE with negligible error probability via the use of error-correcting codes, e.g., by repetition. (See
also [26] for a more general transformation).

Remark 5.3 (Oblivious Transfer). Our proof of security shows that one can can generate a “bad
public key” that looks indistinguishable from the valid public key, but does not allow the generating
party to distinguish between the encryption of 0 and the encryption of 1. It is shown in [18] that
such an encryption scheme can be used to construct an Oblivious-Transfer protocol. Hence, if H
fails to achieve dna-RKA-PRF security one can construct an (infinitely-often) Oblivious-Transfer
protocol.

6 From dna-RKA to na-RKA

In this section, we show how to transform a dna-RKA secure PRF F into a non-adaptive RKA
secure PRF. Let F be a dna-PRF where the keys, messages, and outputs are all n-long vectors over
a field F, e.g., the binary field F2.2 Let m = dδne for some small constant δ ∈ (0, 1). We define an
ensemble H over the key space Fn+m, message-space Fn−m, and range Fn. The ensemble will be

parameterized by a public (n + m)× (n + m) invertible matrix M
R← GL(n + m,F) which will be

parsed into a top n × (n + m) sub-matrix M1 ∈ Fn×(n+m) and a bottom m × (n + m) sub-matrix
M2 ∈ Fm×(n+m). The ensemble H is defined via the mapping

Hk,M : x 7→ FM1·k(x,M2 · k),

where k ∈ Fn+m, x ∈ Fm−n, and M ∈ GL(n+m,F) and M ·k denotes matrix-vector multiplication
over F, and “comma” denotes concatenation.

Theorem 6.1. Assume that F is dna-RKA PRF then H is na-RKA PRF.

Intuition. Note that the key k is mapped (via M) into two components: an “actual key” k1 =
M1 ·k ∈ Fn which will be used as the key for F , and a padding part k2 = M1 ·k ∈ Fm which will be
used to pad the input to F . Intuitively, the padding part should allow us to eliminate x-identical
RKA queries. To see this first note that an RKA query (∆, x) for Hk,M correspond to the value
Hk+∆(x) = Fk1+M1·∆(x, k2 + M2 ·∆). Hence, a pair of H-RKA queries (x,∆) and (x,∆′) will be

2The construction generalizes to the case where the lengths of the messages, keys and outputs are different.
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mapped to a pair of F -RKA queries on the points X = (x, k2 +M2 ·∆) and X ′ = (x, k2 +M2 ·∆′)
since the choice of ∆,∆′ is independent of M1 which is (almost) uniform matrix in F(n+m)×n, the
points X and X ′ are likely to differ on their suffix. Furthermore, since the mapping k 7→ (k1, k2)
is linear, we can translate linear related key queries against H into linear related-key queries for
F . Finally, the fact that the mapping is invertible allows us to map the oracle Fk1 into the oracle
Hk,M while preserving the uniform distribution of the keys. Indeed, this can be done by sampling
k2 and M and thinking of k as the (unique) preimage of (k1, k2) under the linear mapping induce
by M . We proceed with a formal proof.

Proof. Let A be a an adversary which breaks the non-adaptive RKA security of H with non-
negligible advantage ε. Since A is non-adaptive we can partition it to two adversaries (with
joint randomness r): a query generator Q(1n; r) which samples t = t(n) pairs (∆i, xi)i∈[t] and
a distinguisher D(1n,M, (∆i, xi, yi)i∈t; r) which outputs a verdict b. We are guaranteed that D
distinguishes with advantage ε(n) between the following distributions

(M, (∆i, xi, yi)i∈[t]; r) and M, (∆i, xi, zi)i∈[t]; r) (4)

where M
R← GL(n + m,F), (∆i, xi)i∈[t]

R← Q(1n; r), k
R← Fn+m, yi = Hk+∆i,M (xi), zi

R← Fn+m

and the coins r of the distinguisher are chosen uniformly at random. (Without loss of generality,
we assume that there are no fully identical queries (∆i, xi) = (∆j , xj) for some i 6= j.) We will
construct a non-adaptive distinct adversary B for Fk′ (k′ ∈ Fn) as follows:

• Given 1n sample (∆i, xi)i∈[t]
R← Q(1n; r).

• Sample a random vector k2
R← Fm and an invertible square matrix M ∈ GL(n + m,F) and

parse M as M1 ∈ Fn×2n and M2 ∈ Fm×2n as in the construction.

• Let ∆′i = M1∆i and x′i = (xi, k2 +M2 ·∆i).

• If there is a pair of identical inputs x′i = x′j , abort with failure.

• Call the oracle with (∆′i, x
′
i) and let wi be its answers.

• Output the value of the distinguisher D(M, (∆i, xi, yi)i∈[t]; r).

Note that B is a distinct non-adaptive RKA adversary for F . We will show that B breaks F with
advantage ε− neg(n) and derive a contradiction. The analysis relies on the following claims.

Claim 6.2. The algorithm aborts with probability of at most t2 ·(|F|−m+m|F|m−n) < poly(n)·2−δn.

Proof. Fix some ∆ 6= ∆′ we show that, with all but negligible probability (over the choice of M) it
holds that M2 ·∆ 6= M2∆′ the claim then follows by a union-bound over all the t2 = poly(n) pairs
of queries. We begin by proving the claim for the case that M2 is chosen uniformly from Fm×(n+m).
(We will later show that the actual distribution of M2 is statistically-close to uniform and so the
claim will follow.) Indeed, the bad event M2 ·∆ = M2∆′ happens only if M2(∆ −∆′) = 0 which
happens with probability |F|−m.

It is left to show that M2 is statistically-close to a uniform m × (n + m) matrix in F. Indeed,
consider the following procedure for sampling M : sample each row uniformly and independently
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from Fn+m and keep it if it is not in the row-span of all previous rows. Observe that in each of
the first m = δn steps the probability of rejecting a row is at most |F|m−n. Hence, the probability
of rejection in the first m steps is at most m · |F|m−n. It follows that M2 is statistically-close to
uniform.

Claim 6.3. Assume that B does not abort and that its RKA queries are answered by F ′k for a

random k′
R← Fn. Then, the resulting joint distribution (M, (∆i, xi, wi)i∈[t], r) is identical to the

input distribution (M, (∆i, xi, yi)i∈[t], r) of D when attacking H as defined in the left part of Eq. (4).

Proof. Conditioned on not aborting the joint distribution of M, (∆i, xi) is identical in both cases.

For k′ = k1
R← Fn and k2

R← Fm, let k = M−1(k1, k2). Then, k is uniformly distributed over Fn+m

and, by linear algebra, for every i ∈ [t]

wi = Fk′+∆′i
(x′i) = F(k+∆i)·M1

(xi,M2 · (k + ∆i)) = Fk+∆i
(xi) = yi,

as required.

The following claim follows immediately from the definition of B.

Claim 6.4. Assume that B does not abort and that its RKA queries are answered randomly by
R(Fn). Then, the resulting joint distribution (M, (∆i, xi, wi)i∈[t], r) is identical to the input distri-
bution (M, (∆i, xi, zi)i∈[t], r) of D when attacking H as defined in the right part of Eq. (4).

It follows the distinguishing advantage of B is the same (up to a negligible loss due to the
probability of aborting) as the distinguishing advantage of A, and the theorem follows.

7 Bounded-RKA secure PRF

In this section we show how to immunize any standard PRF (or PRP) PRF : K ×X → Y against
a bounded related-key attack which makes use of at most t related keys, where t(n) is an arbitrary
(a-priory fixed) polynomial in the security parameter. (This will hold for any arbitrary additive
relation, including XOR, and addition modulo 2n.) The idea is to use a long key s taken from a
large key-space S (larger than Kt) and use some public hash function h to derive a shorter key
h(s) ∈ K for PRF.

Let us say that h is t-good if for any t-tuple of distinct shifts (∆1, . . . ,∆t), the joint distribution
of all the keys

(h(s), h(s+ ∆1), . . . , h(s+ ∆t)), (5)

induced by a random choice of s
R← Sn, is ε-close in statistical distance to the uniform distribution

over Kt+1
n for some negligible function ε(n). It is not hard to verify that if h is t-good, then the

resulting PRF is t-bounded RKA secure. In fact, it will be useful to consider a collection of hash
function H = {Hz} such that, with all but negligible probability, a randomly selected hash function

Hz
R← H is t-good. We refer to such an ensemble as t-good.

Lemma 7.1. For a pseudorandom function PRF : K×X → Y and t-good ensemble H : Z×S → K,
define the ensemble G with key-space S, domain X, range Y and public parameter space Z via the
mapping

Gs,z : x 7→ PRFk(x), where k = Hz(s), s ∈ Sn, x ∈ Xn, and z ∈ Zn is a public parameter.
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Then, the PRF G is secure against t-bounded RKA.

Proof. Let A be a PPT RKA-adversary that uses at most t-distinct shifts and ε-breaks G, namely,

Pr
s
R←Kn,z

R←Zn

[AG
+
s,z(1n, z) = 1]− Pr

z
R←Zn

[AR+(Xn→Yn)(1n, z) = 1] > ε(n),

for some non-negligible function ε(n). For ~k = (k0, . . . , kt) ∈ Kt(n)+1
n , define the following (stateful)

oracle O~k. Given a standard (non-RKA) query x, the oracle O~k answers with PRFk0(x). To deal
with RKA queries the oracle keeps track of the t different shifts (∆1, . . . ,∆t) used by the adversary,
and answers an RKA query (∆i, x) with PRFki(x). (The oracle dynamically builds the list of seen
∆’s.) Since H is t-good, we have that

Pr
~k

R←Kt(n)+1
n

[AO~k(1n, z) = 1] > Pr
s
R←Kn,z

R←Zn

[AG
+
s (1n, z) = 1]− neg(n).

Assume (without loss of generality) that A does not repeat the same query (∆, x) twice. Then,
A distinguishes with non-negligible advantages between O~k, for a random key-vector ~k, to a random
oracle R(Yn). It is not hard to show (via a standard hybrid argument) that this violates the security
of the PRF PRF.

The following lemma shows that an Ω(t2 log(|K|))-wise independent hash function with a suf-
ficiently large domain is t-good.

Lemma 7.2. Let t = poly(n), and let H be an ensemble of `-wise independent hash function with
domain S = {Sn} and range K = {Kn} where ` ≥ n(2t+ 2)(t+ 1), |Kn| = 2n and |Sn| = 2(2t+6)n.
Then H is t-good. In particular, for all but a 2−n fraction of the functions in H, the distribution (5)
is 2−0.99n-close to uniform.

Proof. Fix a sequence of distinct non-zero shifts (∆1, . . . ,∆t). It will be convenient to let ∆0 = 0
and set ~∆ = (∆0,∆1, . . . ,∆t). To simplify notation, we use lower-case h to denote a function Hz

from the collection H. We say that h ∈ H is ε-good for ~∆ if for a random s, the distribution
(h(s+ ∆i))0≤i≤t is ε-close to the uniform distribution over Kt+1. In order to bound the statistical
distance, we prove the following claim.

Claim 7.3. For all but 2−n(t+1))-fraction of the h’s the following holds. For every vector of (not
necessarily distinct) keys ~k = (k0, . . . , k

t) ∈ Kt+1,

Pr
s

[
t∧
i=0

h(s+ ∆i) = ki

]
∈
(

1

|K|t+1
· (1± 2−0.99n)

)
.

Proof. Fix some vector of keys ~k ∈ Kt+1. For every s ∈ S define a random variable χs which takes

the value 1 if h(s+ ∆i) = ki for every 0 ≤ i ≤ t, where h
R← H. Observe that the random variable

(induced by a choice of h) Prs[
∧t
i=0 h(s + ∆i) = ki] can be written as χ̄ =

∑
s∈S χs/|S|. We will

show that

Pr
h

[
χ̄ /∈

(
1

|K|t+1
(1± 2−0.99n)

)]
≤ 2−n(2t+2). (6)

Note that Claim 7.3 follows from (6) by applying a union-bound over all 2(t+1)n possible ~k ∈ Kt+1.
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To prove (6) we make the following observations. First, since H is `-wise independent and
` > t+1, we have that E[χs] = 1/|K|t+1 for every s, and, so, by the linearity of expectation, E(χ̄) =
1/|K|t+1. We would like to show that the average of χs is concentrated around its expectation. Note
that the random variables χs’s are not even pair-wise independent. Indeed, consider s and s′ for
which s + ∆i = s′ + ∆j for some i 6= j. Then, the i-th coordinate of the random variable (h(s +
∆0), . . . , h(s+∆t)) equals to the j-th coordinate of the random variable (h(s′+∆0), . . . , h(s′+∆t))
and as a result χs is not statistically independent from χs′ . Fortunately, we can show that, apart
from these local dependencies, the χ’s are r-wise independent, for r = (`/(t + 1)) ≥ 2t + 2, which
still yield a strong concentration (cf. [25]). We proceed with a formal proof.

Define a simple graph G over s ∈ S by putting an edge between s and s′ if s+ ∆i = s′+ ∆j for
some i 6= j. Observe that the degree of each node in the graph is at most d = (t+1)2. We claim that
for every independent set I in the graph, the random variables {χs : s ∈ I} are r-wise independent.
In the terminology of [25], the random variables r-agree with G. Indeed, for any independent set I,
and for any r-subset (s1, . . . , sr) ⊆ I, the value of each of the random variables χs1 , . . . , χsr solely
depends on the value of h on a set of t + 1 distinct points {sj + ∆0, . . . , sj + ∆t+1}. These sets
of points are distinct (since I is an independent set) and so their images under h are statistically
independent since h is `-wise independent for ` = r · (t+ 1). It therefore, follows that χs1 , . . . , χsr
are statistically independent.

Having shown that the χs’s agree with G, we can apply Corollary 3.2 of [25] and conclude that

Pr
h

[χ̄ /∈ 1

|K|t+1
(1± δ)] ≤ 4

√
πr

(
|K|t+1

√
(d+ 1)r

δ
√
|S|

)r
.

For δ = 2−0.99n, |K| = 2n, |S| = 2(2t+6)n, and r, t ∈ poly(n), the RHS is upper-bounded by
2−nr ≤ 2−n(2t+2), for all sufficiently large n’s, and (6) follows.

We can now complete the proof of the lemma. First, observe that any h that satisfies the lemma
is 2−0.99n-good for ~∆. Indeed, for such an h, the probability distribution (h(s + ∆i))0≤i≤t assigns

to each outcome ~k a weight which corresponds to its weight under the uniform distribution up to a
multiplicative factor of 1±2−0.99n. It is not hard to show that in this case the statistical distance is
at most 2−0.99n. Therefore, all but 2−n(t+1))-fraction of the h’s are 2−0.99n-good for ~∆. By applying
a union bound over all possible 2nt shift vectors, we conclude that all but 2−n-fraction of the h’s
are 2−0.99n-good, and the lemma follows.

By combining Lemmas 7.1, 7.2 with any efficient construction of `-wise independent hash func-
tion (e.g., based on Reed-Solomon codes), we obtain the following theorem.

Theorem 7.4. Let K = {(Kn,+n)} be a sequence of efficiently computable additive groups, and
let t(n) be an arbitrary poynomial. Then, assuming the existence of a PRF PRF : K × X → Y ,
there exists a t-bounded-RKA secure PRF with respect to addition over K.

Specifically, assuming the existence of a one-way function, we can achieve bounded-RKA security
with respect to XOR or addition modolu 2n.

Acknowledgement. We thank Daniel Wichs for a detailed discussion about [19].

20



References

[1] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. An algebraic framework for
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A Simple Message Authentication Code

In [17] it is shown how to construct an efficient MAC based a key-homomorphic wPRF. While our
wPRF does not support a full key-homomorphism in the strict sense of [17], we show how to adopt
the RKA-security proof from Section 3 to prove the security of the resulting MAC. The result is a
very simple MAC based on the hardness of lattices.

A.1 Definitions

Syntax. A message authentication code MAC = (KG,TAG,VRFY) is a triple of algorithms asso-
ciated with key space K, message space M and tag space T :

• KG is a probabilistic algorithm which takes as input the security parameter 1n and outputs a
secret key k ∈ K.

• TAG : K ×M → T is a probabilistic authentication algorithm which takes as input a secret
key and a message and outputs a corresponding tagging. (Since the algorithm is probabilistic
the tag may not be unique.)

• VRFY : K×M×T → {accept, reject} is a deterministic verification algorithm which receives
a key, a message and an authentication tag triplet and returns accept or reject. We require
that for every k ∈ K,m ∈M

Pr[VRFYk(m,TAGk(m)) = accept] = 1.

Security. We consider two models of forgery attacks: universal forgery under chosen message
and verification attacks (ufcmva) and selective universal-forgeability under chosen message attacks
(sufcma). For an adversary A and message authentication code MAC = (KG,TAG,VRFY), we define
the following games.

• Game Gufcmva
MAC (1n, A):

1. Set k ← KG(1n).

2. Invoke ATAGk(·),VRFYk(·,·) and answer its TAG and VRFY queries.

3. Output 1 iff A queries (m∗, σ∗) such that VRFYk(m
∗, σ∗) = accept and A did not receive

TAGk(m
∗) as a query answer.

• Game Gsufcma
MAC (1n, A):

1. Set k ← KG(1n).

2. A announces a target message m∗ ∈M.

3. Invoke ATAGk(·) and answer only queries m 6= m∗.

4. At the end of the game A outputs σ∗, the value of the game is 1 iff VRFYk(m
∗, σ∗) =

accept.

Definition A.1 (ufcmva and sufcma security). We say that a MAC = (KG,TAG,VRFY) is ufcmva
secure (resp., sufcma secure) if for every PPT adversary A the winning probability Pr[Gufcmva

MAC (1n, A)
(resp., Pr[Gsufcma

MAC (1n, A) = 1]) is negligible in n.

24



It is not hard to see that ufcmva security implies sufcma security. In [17] it is shown that if a
sufcma secure MAC is also “message-hiding” (as our construction will be) then it can be efficiently
converted to a ufcmva secure MAC.

A.2 Construction

Let ` < p < q be integer-valued functions such that `(n)/p(n) < neg(n), and let F q,p be the
LWR-based weak-PRF function (See Definition 2.2).

Construction A.2 (MAC). Define MAC = (KG,TAG,VRFY) with key-space Znq ×Znq and message

space
{
− `−1

2 , . . . , `+1
2

}
⊆ Zq as follows.

• Key Generation: KG(1n) chooses k1, k2
R← Znq uniformly at random and outputs k = (k1, k2).

• Tagging: TAG(k1,k2)(m) chooses x
R← Znq uniformly at random and sets y = Fm·k1+k2(x) =

d〈m · k1 + k2, x〉cq/p. Output σ = (x, y).

• Verification: VRFY(k1,k2)(m,σ) parses σ = (x, y) and accepts iff Fm·k1+k2(x) = d〈m · k1 +
k2, x〉cq/p = y.

To prove the security of our construction we rely on the following mapping. For ` < p < r < q,
let

h : (∆, x, α, y) 7→ α · y + F q,r∆ (x) (mod r), (7)

where α ∈
{
− `−1

2 , . . . , `+1
2

}
,∆, x ∈ Znq and y ∈ Zr.

Claim A.3. For every s,∆, x ∈ Znq and every α ∈
{
− `−1

2 , . . . , `+1
2

}
, if the integer h(∆, x, α, F q,rs (x))

is at least `+3
2 -far from a multiple of r/p then

dh(∆, x, α, F q,rs (x))cr/p = F q,pα·s+∆(x).

Proof.

α · F q,rs (x) + F q,r∆ (x) = α ·
⌊
〈x, s〉 · r

q

⌋
+

⌊
〈x,∆〉 · r

q

⌋
= α · 〈x, s〉 · r

q
+ 〈x,∆〉 · r

q
+ α · e1 + e2

=

⌊
〈x, α · s+ ∆〉 · r

q

⌋
+ α · e1 + e2 + e3

= F q,rα·s+∆(x) + e

where the “error” terms e1, e2 ∈ [−1, 0] and e3 ∈ [0, 1] compensate the omission/addition of the
floor operation, and e = α · e1 + e2 + e3 ∈ [±(α− 1)] denotes the accumulated error.

Since |α− 1| ≤ `+3
2 , α · F q,rs (x) + F q,r∆ (x) is `+3

2 -close to F q,rs+∆(x), it follows, by our hypothesis,
that both elements reside in the same r/p-interval. We can therefore write:

dh(∆, x, α, F q,rs (x))cr/p = dα · F q,rs (x) + F q,r∆ (x)cr/p = dF q,rα·s+∆(x)cr/p = F q,pα·s+∆(x)

and the claim follows.
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In the following we let ϕ(p) denote Euler’s phi function that counts the totatives of p, i.e.,
ϕ(p) = |Z∗p|. Also, recall that δ(p, q) is zero if p divides q, and p

2q otherwise.

Theorem A.4. Let ` < p < r < q be integer valued functions such that r(n) is a prime and all the
following quantities are negligible in n:

`(n)p(n)/r(n), 1/p(n), and

(
1− ϕ(q(n))

q(n)

)n
.

Then, if F q,r is a weak PRF, then Construction A.2 is a sufcma-MAC.

For example, one can let ` = p = 2n, r be a prime of magnitude 23n, and q = 24n.

Proof. Fix some `, p, r, q that satisfy the hypothesis. Assume, towards a contradiction, that A
is an adversary that breaks the security of the construction above as sufcma-MAC. Namely, the
adversary A forges a successful tag on a predeclared message m∗ with a non negligible probability
ε. We construct an adversary B that distinguishes the oracle SamF q,rs from the oracle R(Znq ,Zr)
with advantage ε− neg(n). We begin with a high-level description.

Let us think ofB’s oracle as SamF q,rs . The key idea is to emulateA’s attack against MACk1=s,k2=∆−m∗·s

where ∆
R← Unq is chosen at random by B and m∗ is the forgery target message of A. To answer

A’s queries we use the (approximate) homomorphism h defined in (7). We will show that the em-
ulation is close to the real game, and so the adversary A forges a tag y∗ on m∗ with non-negligible
probability. Note that B can compute the forged tag by herself as it is equal to

σ = (x∗, y∗) = (x∗, F q,rm∗·s+∆−m∗·s(x
∗)) = (x∗, F q,r∆ (x∗)).

Therefore, B can identify a successful forgery. On the other hand, if the oracle O is a random
oracle, then A is supplied with random tags which are almost independent of the correct tag, and
so it cannot win the game with more than negligible probability. Therefore, B can distinguish the
wPRF from a random oracle by checking if A’s attack succeeds. In fact, the above description is not
fully accurate as the emulation itself may fail (since the homomorphism is not perfect), however,
we show that failure is unlikely to happen when O is a random oracle, and so failure allows to
break the wPRF as well.

We move on to a formal description of BO(1n).

1. B chooses at random ∆
R← Unq .

2. B emulates A, which announces m∗ ∈
{
− `−1

2 , . . . , `+1
2

}
as its forgery target message.

3. If A makes a query m ∈
{
− `−1

2 , . . . , `+1
2

}
to its tagging oracle, B asks for a sample (x, y)

R← O,
and continues as follows:

• If h(∆, x, α = (m−m∗), y) is `+3
2 -close to a multiple of r/p then B quits with the output

1.

• Otherwise, B computes y′ = dh(∆, x, α = (m−m∗), y)cr/p and returns the tag (x, y′).

• When reached the end of the emulation B intercepts the forged pair (x∗, y∗), B checks
and outputs 1 iff y∗ = F q,p∆ (x∗) = d〈x∗,∆〉cq/p.
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Let us analyze the distinguishing advantage of B assuming that A makes t = poly(n) queries.

Claim A.5. Pr[BR(Zn
q ,Zr)(1n) = 1] ≤ t(`+ 3)p/r + tδ(p, r) +

(
1− ϕ(q)

q

)n
+ 1/p+ δ(p, q) = neg(n).

Proof. For each query, y is uniform over Zr and since (m−m∗) is non-zero, the product (m−m∗) ·y
is also uniform over Zr (recall that r is a prime). It follows that the value h(∆, x, (m −m∗), y) =
(m−m∗)·y+F q,r∆ (x) is uniform over Zr. We therefore conclude that, for each query, the probability

that B halts is at most (`+3)p
r , and the overall halting probability is

Pr[BR(Zn
q ,Zr)(1n) halts] ≤ t(`+ 3)p

r
.

Conditioned on not halting, A is simulated with the tags (x, y′) where y′ = dh(∆, x, (m−m∗), y)cq/p.
Since h(∆, x, (m−m∗), y) is uniform over Zr, by Proposition 2.4, y′ is δ(p, r)-close to uniform over
Zp. Therefore, by Claim 3.1, we have that

Pr[BR(Zn
q ,Zr)(1n) = 1| not halting] ≤ Pr[B′(1n) = 1] + tδ(p, r),

where B′ is similar to B except that A’s queries are answered with random values R(Znq ,Zp).
Finally, we claim that

Pr[B′(1n) = 1] ≤
(

1− ϕ(q)

q

)n
+ 1/p+ δ(q, p).

Indeed, let us further condition on the event that ∆ ∈ Znq has at least one invertible element,

which happens with probability 1 − (1 − ϕ(q)
q )n. In this case, F q,p∆ (x∗) = d〈x∗,∆〉cq/p is δ(p, q)-

close to uniform (and independent of A’s view) and so the probability that A guesses F q,p∆ (x∗) is
at most (1/p + δ(p, q)). By applying a union bound over all the above terms, we conclude that
Pr[BR(Zn

q ,Zr)(1n) = 1] is upper-bounded by

t(`+3)p/r+tδ(p, r)+

(
1− ϕ(q)

q

)n
+1/p+δ(p, q) ≤ t(`+3)p/r+2tp/r+

(
1− ϕ(q)

q

)n
+1/p+2p/q,

which, by our choice of the parameters, is negligible in n.

We move on to the case where the oracle O is SamF q,rs .

Claim A.6. Pr[BSamF q,r
s (1n) = 1] ≥ ε.

Proof. Let δ = Prs[B
SamF q,r

s (1n) quits]. Since B outputs 1 when it quits we have that

Pr
s

[BSamF q,r
s (1n) = 1] = δ + Pr

s
[BSamF q,r

s (1n) = 1| not quitting] · (1− δ)

≥ Pr
s

[BSamF q,r
s (1n) = 1| not quitting].

Let us condition on the event that all the queries that A made were answered by B without
quitting. Then, A receives tags of the form (x, y′) where y′ = d(m−m∗) ·y+F q,r∆ (x)cq/p and where

(m −m∗) · y + F q,r∆ (x) is at least `+3
2 far from a multiple of r/p. By Claim A.3 it follows that B
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perfectly emulates the attack of A against MACk1,k2 where (k1 = s, k2 = ∆ −m∗ · s) is a random
pair. It therefore follows that

Pr
s

[BSamF q,r
s (1n) = 1| not quitting] = ε,

and the claim follows.

The theorem follows by combining Claim A.5 and A.6.
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