
Round-Efficient Black-Box Construction of Composable
Multi-Party Computation

Susumu Kiyoshima

NTT Secure Platform Laboratories, Japan.
kiyoshima.susumu@lab.ntt.co.jp

August 21, 2018

Abstract
We present a round-efficient black-box construction of a general multi-party computation

(MPC) protocol that satisfies composability in the plain model. The security of our protocol is
proven in the angel-based UC framework [Prabhakaran and Sahai, STOC’04] under the minimal
assumption of the existence of semi-honest oblivious transfer protocols. The round complexity
of our protocol is max(Õ(log2 n),O(ROT)) when the round complexity of the underlying oblivious
transfer protocol is ROT. Since constant-round semi-honest oblivious transfer protocols can be
constructed under standard assumptions (such as the existence of enhanced trapdoor permuta-
tions), our result gives a Õ(log2 n)-round protocol under these assumptions. Previously, only an
O(max(nϵ ,ROT))-round protocol was shown, where ϵ > 0 is an arbitrary constant.

We obtain our MPC protocol by constructing a Õ(log2 n)-round CCA-secure commitment
scheme in a black-box way under the assumption of the existence of one-way functions.
Keywords. multi-party computation, composability, angel-based UC security, black-box con-
struction, CCA-secure commitment

1 Introduction

Secure multi-party computation (MPC) protocols enable mutually distrustful parties to compute a
functionality without compromising the correctness of the outputs and the privacy of their inputs. In
the seminal work of Goldreich et al. [GMW87], it was shown that general MPC protocols—MPC
protocols that can be used to securely compute any functionality—can be constructed even in the
model with malicious adversaries and a dishonest majority.1

In this paper, we consider a black-box construction of a general MPC protocol that guarantees
composable security. Before stating our result, we explain black-box constructions and composable
security.

Black-Box Constructions.

A construction of a cryptographic protocol is black-box if it uses the underlying cryptographic prim-
itives only in a black-box way (i.e., only through their input/output interfaces). If a construction uses
the codes of the underlying primitives, it is non-black-box.

The original publication appears in Journal of Cryptology and is available at www.springerlink.com (DOI: https:
//doi.org/10.1007/s00145-018-9276-1). This article is based on an earlier article that was presented at CRYPTO
2014 (DOI: https://doi.org/10.1007/978-3-662-44381-1_20).

1In the following, we consider only such a model.

1

As argued by Ishai et al. [IKLP06], constructing black-box constructions is important for both
theoretical and practical reasons. Theoretically, it is important because understanding whether non-
black-box use of cryptographic primitives is necessary for a cryptographic task is of great inter-
est. Practically, it is important because black-box constructions are typically more efficient than
non-black-box ones in terms of both communication and computational complexity. (In fact, most
non-black-box constructions of general MPC protocols are highly inefficient and hard to implement
because they use general NP reductions when executing zero-knowledge proofs.)

Recently, a number of works have studied black-box constructions of general MPC protocols.
Ishai et al. [IKLP06] showed the first construction of a general MPC protocol that uses the underlying
low-level primitives (such as enhanced trapdoor permutations or homomorphic public-key encryption
schemes) in a black-box way. Combined with the subsequent work by Haitner [Hai08], who showed
a black-box construction of a (maliciously secure) oblivious transfer protocol based on a semi-honest
oblivious transfer protocol, their work gave a black-box construction of a general MPC protocol
based on a semi-honest oblivious transfer protocol [HIK+11]. Subsequently, Wee [Wee10] reduced
the round complexity to O(log∗ n), and Goyal [Goy11] further reduced the round complexity to O(1).

The security of these black-box protocols are proven in the stand-alone setting. Hence, these
protocols are secure when a single instance of the protocol is executed at a time.

Composable Security.

A setting that is more general and realistic than the stand-alone setting is the concurrent setting, in
which many instances of many different protocols are concurrently executed in an arbitrary schedule.
A notable difference from the stand-alone setting is that adversaries can now perform a coordinated
attack by choosing their messages in an instance based on the executions of the other instances.

As a strong and realistic security notion in the concurrent setting, Canetti [Can01] proposed uni-
versally composable (UC) security. The main advantage of UC security is composability, which
guarantees that UC-secure protocols can be composed in such a way that the security of the resultant
protocol can be deduced from the security of its components (in other words, UC security enables
modular constructions of secure protocols). Composability also guarantees that a protocol remains
secure even when it is concurrently executed with any other protocols in any schedule (that is, UC
security implies security in the concurrent setting). A UC-secure general MPC protocol was con-
structed by Canetti et al. [CLOS02] in the common reference string (CRS) model (i.e., in a model in
which all parties are given a common public string that is chosen by a trusted third party). A black-
box construction of a UC-secure general MPC protocol was constructed by Ishai et al. [IPS08] in the
FOT-hybrid model (i.e., in model with the ideal oblivious transfer functionality) and by Choi et al.
[CDMW09] in the FCOM-hybrid model (i.e., in the model with the ideal commitment functionality).

UC security, however, turned out to be too strong to achieve in the plain model. That is, it was
shown that even with non-black-box use of cryptographic primitives, we cannot construct UC-secure
general MPC protocols in the model with no trusted setup [CF01, CKL06].

To achieve composable security in the plain model, Prabhakaran and Sahai [PS04] proposed a
variant of UC security called angel-based UC security. Roughly speaking, angel-based UC security
is the same as UC security except that the adversary and the simulator have access to an additional
entity—an angel—that allows some judicious use of super-polynomial-time resources. Angel-based
UC security is weaker than UC security but guarantees meaningful security in many settings. (For
example, angel-based UC security implies super-polynomial-time simulation (SPS) security [Pas03,
Bar05, GGJS12, PLV12], in which the simulator is allowed to run in super-polynomial time. Hence,
angel-based UC security guarantees that whatever an adversary can do in the real world can also be
done in the ideal world in super-polynomial time.) Furthermore, it was proven that, like UC security,
angel-based UC security guarantees composability. (In contrast, SPS security does not guarantee

2

composability.) Prabhakaran and Sahai [PS04] presented a general MPC protocol that satisfies angel-
based UC security in the plain model under new assumptions. Subsequently, Malkin et al. [MMY06]
constructed another general MPC protocol that satisfies angel-based UC security in the plain model
under a new number-theoretic assumption.

Several works have constructed general MPC protocols with angel-based UC security under stan-
dard assumptions. Canetti et al. [CLP10, CLP16] constructed a polynomial-round general MPC pro-
tocol in angel-based UC security assuming the existence of enhanced trapdoor permutations. Sub-
sequently, Goyal et al. [GLP+15] reduced the round complexity to Õ(log n) under the same assump-
tion. They also showed that by using enhanced trapdoor permutations that are secure against quasi-
polynomial-time adversaries, the round complexity of their protocols can be reduced to O(1).

The constructions of these MPC protocols are non-black-box, so they use underlying primitives
in a non-black-box way.

Black-Box Constructions of Composable Protocols.

Recently, Lin and Pass [LP12] showed the first black-box construction of a general MPC protocol
that guarantees composable security in the plain model. The security of their protocol is proven
under angel-based UC security and based on the minimal assumption of the existence of semi-honest
oblivious transfer (OT) protocols. The round complexity of their protocol is O(max(nϵ ,ROT)), where
ϵ > 0 is an arbitrary constant and ROT is the round complexity of the underlying semi-honest OT
protocols. Thus, with enhanced trapdoor permutations (from which we can construct constant-round
semi-honest OT protocols), their result gives an O(nϵ)-round protocol. Subsequently, a constant-
round protocol was constructed by Kiyoshima et al. [KMO14] from constant-round semi-honest OT
protocols that are secure against quasi-polynomial-time adversaries and one-way functions that are
secure against subexponential-time adversaries.

Summarizing the state-of-the-art, for composable protocols in the plain model, we have

• Õ(log n)-round non-black-box constructions under a standard polynomial-time hardness as-
sumption [GLP+15],

• a O(nϵ)-round black-box construction under a standard polynomial-time hardness assumption
[LP12], and

• O(1)-round black-box or non-black-box constructions under standard super-polynomial-time
hardness assumptions [GLP+15, KMO14].

Thus, for composable protocols based on standard polynomial-time hardness assumptions, there ex-
ists a gap between the round complexity of the non-black-box protocols (Õ(log n) rounds [GLP+15])
and that of the black-box protocols (O(nϵ) rounds [LP12]). The following is therefore an interesting
open question.

Does there exist a round-efficient black-box construction of a general MPC protocol
that guarantees composability in the plain model under polynomial-time hardness as-
sumptions?

1.1 Our Result

In this paper, we narrow the gap between the round complexity of black-box composable general
MPC protocols and that of non-black-box ones.

3

Main Theorem. Assume the existence of ROT-round semi-honest oblivious transfer protocols. Then,
there exists a max(Õ(log2 n),O(ROT))-round black-box construction of a general MPC protocol that
satisfies angel-based UC security in the plain model.

Recall that, assuming the existence of enhanced trapdoor permutations, we have a constant-round
semi-honest OT protocol. Thus, under this assumption, our main theorem gives a Õ(log2 n)-round
protocol.

CCA-secure commitment scheme. To prove our main theorem, we construct a Õ(log2 n)-round
black-box construction of a CCA-secure commitment scheme [CLP10, CLP16, LP12, KMO14, GLP+15]
from one-way functions.

Theorem. Assume the existence of one-way functions. Then, there exists a Õ(log2 n)-round black-box
construction of a CCA-secure commitment scheme.

Roughly speaking, a CCA-secure commitment scheme is a tag-based commitment scheme (i.e., a
commitment scheme that takes an n-bit string, a tag, as an additional input) such that the hiding prop-
erty holds even against adversaries that interact with the committed-value oracle during the interaction
with the challenger. The committed-value oracle interacts with the adversary as an honest receiver in
many concurrent sessions of the commit phase. At the end of each session, if the commitment of this
session is invalid or has multiple committed values, the oracle returns ⊥ to the adversary. Otherwise,
the oracle returns the unique committed value to the adversary.

Lin and Pass [LP12] showed that in angel-based UC security, an O(max(RCCA,ROT))-round gen-
eral MPC protocol can be obtained in a black-box way from a RCCA-round CCA-secure commitment
scheme and a ROT-round semi-honest OT protocol. Thus, we can prove our main theorem by combin-
ing the above theorem with the result of Lin and Pass [LP12].

1.2 Outline

In Section 2, we give an overview of our CCA-secure commitment scheme. In Section 3, we give
definitions that are used throughout the paper. In Section 4, we show the building blocks that are
used in our CCA-secure commitment scheme. In Section 5, we show our CCA-secure commitment
scheme and prove its security. In Section 6, we show our main theorem.

2 Overview of Our CCA-Secure Commitment Scheme

In the previous work on CCA-secure commitment schemes [CLP10, CLP16, LP12, KMO14, GLP+15],
extractability and non-malleability play fundamental roles in the proof of CCA security. Roughly
speaking, the CCA security of the existing CCA-secure commitment schemes is proven by reducing
it to the hiding property [CLP10, CLP16, LP12] or by showing that the proof of the hiding prop-
erty goes though even in the presence of the committed-value oracle [KMO14, GLP+15]. During
the security proofs, extractability is used to show that the committed-value oracle can be emulated in
polynomial time by extracting the committed values from the adversary, and non-malleability is used
to show that the emulation of the oracle can be performed without “disturbing” the hiding property
[CLP10, CLP16, LP12] or each step of the proof of the hiding property [KMO14, GLP+15].

In this work, we use stronger notions of extractability and non-malleability called strong ex-
tractability and one-one CCA security. In the following, we explain how we construct commitment
schemes that satisfy these two notions and how we construct our CCA-secure commitment scheme
by using them as building blocks.

4

2.1 Building Block 1: Strongly Extractable Commitment Scheme

A commitment scheme is strongly extractable if a rewinding extractor can extract the committed
value of a commitment in such a way that the extractor outputs ⊥ when the commitment is invalid.2

Strong extractability differs from basic extractability in that it requires the extractor to output ⊥ when
the commitment is invalid; basic extractability, in contrast, allows the extractor to output an arbitrary
value when the commitment is invalid (this is called over-extraction). A constant-round extractable
commitment scheme ExtCom can be constructed in a black-box way from one-way functions [PW09];
however, no black-box construction of a strong extractable commitment scheme has been constructed.

To construct a strongly extractable commitment scheme, we start from the following scheme, in
which the cut-and-choose technique is used in the same way as in the previous work on black-box
protocols [CDMW08, CDMW17, CDMW09, Wee10, LP12, KMO14].

1. Let v be the value to be committed. Then, the committer computes an (n + 1)-out-of-10n
Shamir’s secret sharing s = (s1, . . . , s10n) of value v and commits to each s j in parallel by using
ExtCom.

2. The receiver sends a random subset Γ ⊂ [10n] of size n.

3. For every j ∈ Γ, the committer decommits the j-th ExtCom commitment to s j.

4. The receiver accepts the commitment if and only if the decommitments of ExtCom are valid
for every j ∈ Γ.

For j ∈ [10n], let us call the j-th ExtCom commitment the j-th column. In this scheme, the ExtCom
commitments are valid in most columns when the receiver accepts the commitment in Step 4; this is
because when the ExtCom commitments are invalid in, say, n columns, at least one of them is chosen
by Γ and the receiver rejects the commitment in Step 4 except with exponentially small probability.
Since the committed value of a ExtCom commitment can be extracted when it is valid, this implies
that the committed shares can be extracted in most columns when the receiver accepts the commitment
in Step 4; therefore, when the commitment is valid, the committed value v can be recovered by
extracting the committed shares from the ExtCom commitments and then using the error-correcting
property of Shamir’s secret sharing scheme.3 Furthermore, by carefully designing the decommit
phase as in [CDMW08, CDMW17, CDMW09, Wee10, LP12, KMO14], we can make sure that the
extractor outputs ⊥ when the commitment is invalid.

The problem of this scheme is that we do not know how to prove its hiding property. In particular,
since the receiver requests the committer to open adaptively chosen ExtCom commitments, it can
perform selective opening attacks [DNRS03], and therefore the hiding property of this scheme cannot
be reduced to the hiding property of ExtCom easily.

We therefore modify the scheme and let the receiver commit to Γ at the beginning by using a
statistically binding commitment scheme Com. Now, since the receiver no longer chooses the subset
Γ adaptively, we can prove the hiding property by using a standard technique. Furthermore, at first
sight, the hiding property of Com seems to guarantee that the scheme remains strongly extractable.

In the modified scheme, however, we cannot prove the strong extractability. This is because we
can no longer show that most of the ExtCom commitments are valid in an accepting commitment.
Consider, for example, that there exists a cheating committer C∗ such that after receiving a Com
commitment to Γ at the beginning, C∗ somehow generates an invalid ExtCom commitment in the j-th
column for every j < Γ and commits to 0n in the j-th column for every j ∈ Γ. Intuitively, it seems

2A commitment is valid if there exists a valid decommitment of this commitment; otherwise, it is invalid.
3Recall that Shamir’s secret sharing is also a codeword of Reed-Solomon code.

5

that C∗ breaks the hiding property of Com. However, we do not know how to use C∗ to break the
hiding property of Com. To see this, observe the following. Recall that since ExtCom is extractable
with over-extraction, the extractor of ExtCom may output an arbitrary value when the ExtCom com-
mitment is invalid. Hence, when we extract the committed values of the ExtCom commitments from
C∗, the extracted value may be 0n in every column. Therefore, although C∗ behaves differently in
ExtCom based on the value of Γ, we do not know how to detect it.

To overcome this problem, we use the commitment scheme wExtCom that was introduced by
Goyal et al. [GLOV12]. Roughly speaking, wExtCom is a scheme that is extractable only in a weak
sense—extractions may fail with probability at most 1/2—but is extractable without over-extraction.
That is, the extractor may output ⊥ with probability 1/2, but when the extractor outputs v , ⊥, the
commitment is valid and its committed value is v. Concretely, the commit phase of wExtCom consists
of three stages.

1. commit stage. The committer commits to random a0, a1 ∈ {0, 1}n such that a0 ⊕ a1 = v.

2. challenge stage. The receiver sends a random bit ch ∈ {0, 1}.

3. reply stage. The committer reveals ach and decommits the corresponding commitment.

It is easy to see that wExtCom satisfies the following property: For a fixed transcript of the commit
stage, if a cheating committer returns a valid reply with probability 1/poly(n) for both ch = 0 and
ch = 1, then the committed value can be extracted with probability 1 in expected polynomial time by
rewinding the cheating committer.

Using wExtCom, we modify our scheme as follows. After committing to s = (s1, . . . , s10n) with
ExtCom, the committer commits to (s j, d j) for each j ∈ [10n] in parallel by using wExtCom, where
(s j, d j) is a decommitment of the ExtCom commitment in the j-th column. We then show that most
columns are consistent in an accepted commitment except with negligible probability, meaning that
in most columns on an accepted commitment, the wExtCom commitment is valid and its committed
value is a valid decommitment of the corresponding ExtCom commitment except with negligible
probability. Toward this end, we observe the following.

• If a cheating committer generates an accepting commitment with non-negligible probability,
in wExtCom of more than 9n columns the cheating committer returns a valid reply with non-
negligible probability for both ch = 0 and ch = 1. This is because if the cheating committer
returns a valid reply with non-negligible probability for both ch = 0 and ch = 1 in wExtCom
of at most 9n columns, there are n columns in which the wExtCom commitment is accepted
with probability at most 1/2 + negl(n), so the probability that all wExtCom commitments are
accepted is negligible.4

• Then, from the property of wExtCom, we can extract the committed values of the wExtCom
commitments without over-extraction in more than 9n columns.

• Then, from the property of the cut-and-choose technique, we can show that in most columns
of an accepting commitment, the wExtCom commitment is valid and its committed value is a
valid decommitment of the corresponding ExtCom commitment. Note that since the committed
values of wExtCom commitments can be extracted without over-extraction, we can show that
the cheating committer cannot give invalid wExtCom commitments in many columns.

4The formal proof is more complicated because the wExtCom commitments are executed in parallel and thus the
columns are not independent of each other.

6

Then, since the ExtCom commitments are valid in consistent rows, we have that most of the ExtCom
commitments are valid whenever the commitment is accepted. We can thus extract the committed
value of the scheme without over-extraction as before, i.e., by extracting the committed values of
ExtCom commitments and then using the error-correcting property of Shamir’s secret sharing scheme.

2.2 Building Block 2: One-One CCA-Secure Commitment Scheme

A one-one CCA-secure commitment scheme, which is closely related to a non-malleable commitment
scheme, is one that is CCA secure w.r.t. a restricted class of adversaries that execute only a single
session with the committed-value oracle and obtain its committed value from the oracle at the end of
the session.5

We construct a black-box O(log n)-round one-one CCA-secure commitment scheme by simpli-
fying the CCA-secure commitment scheme of Lin and Pass [LP12] and then applying the “DDN
log n trick” [DDN00, LPV08] on it, where the DDN log n trick is a transformation by Dolev, Dwork,
and Naor (DDN) [DDN00] and has been used to transform a concurrent non-malleable commit-
ment scheme for tags of length O(log n) to a non-malleable commitment scheme for tags of length
O(n) without increasing the round complexity. Roughly speaking, the scheme of [LP12] consists of
polynomially-many rows—each row is a parallel execution of (a part of) the trapdoor commitment
scheme of [PW09]—and a cut-and-choose phase, which forces the committer to give valid and con-
sistent trapdoor commitments in every row. Our idea is to reduce the number of rows from poly(n) to
ℓ(n) in the scheme of [LP12], where ℓ(n) is the length of the tags. The resultant scheme is no longer
CCA secure, but can be shown to be parallel CCA secure, i.e., CCA secure w.r.t. a restricted class of
adversaries that give only a single parallel queries to the oracle. Then, we set ℓ(n) := O(log n) and
apply the DDN log n trick to the above parallel CCA-secure commitment scheme. It is not hard to
show that the resultant scheme is one-one CCA secure.

2.3 CCA-Secure Commitment Scheme from the Building Blocks

Now, we explain how we obtain our CCA-secure commitment scheme, CCACom, using a constant-
round strongly extractable commitment scheme sExtCom and a O(log n)-round one-one CCA-secure
commitment scheme CCACom1:1 as building blocks.

In addition to sExtCom and CCACom1:1, we use the concurrently extractable commitment scheme
of Micciancio et al. [MOSV06] in our CCA-secure commitment scheme. Roughly speaking, con-
current extractability guarantees that a rewinding extractor can extract committed values even from
polynomially many commitments that are concurrently generated by an adversarial committer. The
concurrently extractable commitment scheme of Micciancio et al. [MOSV06], which we denote by
CECom, is an abstraction of the preamble stage of the concurrent zero-knowledge protocol of Prab-
hakaran et al. [PRS02] and is constructed in a black-box way from one-way functions. CECom
satisfies even a stronger notion of concurrent extractability called robust concurrent extractabil-
ity [GLP+15], which roughly guarantees that the extractor works even against adversarial commit-
ters that additionally participate in an arbitrary external protocol, and furthermore, even though the
extractor rewinds the adversarial committers, the external protocol is not rewound during the extrac-
tion. CECom satisfies robust concurrent extractability for a k-round external protocol if a parameter
ℓ of CECom (often called “the number of slots” in CECom) satisfies ℓ = ω(k log n). The round
complexity of CECom is O(ℓ).

5In contrast, a non-malleable commitment scheme is one that is CCA secure w.r.t. a restricted class of adversaries that
execute a single session with the oracle and obtain its committed value after completing the session with the oracle and the
session with the challenger.

7

Using sExtCom, CCACom1:1, and CECom as building blocks, we construct CCACom roughly
as follows. Let v be the value to be committed to and tag be the tag.

1. The receiver commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1, where the
tag of CCACom1:1 is tag.

2. The committer computes an (n + 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of
value v and commits to each s j in parallel by using a two-round statistically binding commit-
ment scheme Com. Let ϕ1, . . . , ϕ10n be the commitments and d1, . . . , d10n be their decommit-
ments.

3. The committer commits to s j by using CECom for every j ∈ [10n] in parallel. Let ψ1, . . . , ψ10n

be the commitments and e1, . . . , e10n be their decommitments. The parameter ℓ of CECom is
set as ℓ := O(log2 n log log n) so that we have ℓ = ω(log2 n).

4. The committer commits to u j
def
= (s j, d j, e j) by using sExtCom for every j ∈ [10n] in parallel.

5. The receiver decommits the CCACom1:1 commitment in the first step to Γ.

6. For every j ∈ Γ, the committer decommits the j-th sExtCom commitment to u j = (s j, d j, e j).
The receiver verifies whether (s j, d j) and (s j, e j) are valid decommitments of ϕ j and ψη, j for
every j ∈ Γ.

The committed value of a CCACom commitment is defined by the shares that are committed to in
the Com commitments (i.e., the committed value is the value that can be reconstructed from these
shares).

We prove the CCA security using a hybrid argument. Recall that CCA security requires that the
hiding property holds even against adversaries that interact with the committed-value oracle. To-
ward proving the CCA security of CCACom, we design a series of hybrid experiments in which
the CCACom commitment that the adversary receives in the left session (the session between the
adversary and the challenger) is gradually changed as follows.

• In Hybrid H0, the CCA-security experiment is executed honestly.

• In Hybrid H1, the values that are committed to by sExtCom are switched from u j to 0|u j | for
every j < Γ, where Γ is the subset that is committed to by the adversary in the first step.

• In Hybrid H2, the values that are committed to by CECom are switched from s j to 0|s j | for
every j < Γ.

• In Hybrid H3, the values that are committed to by Com are switched from s j to 0|s j | for every
j < Γ.

From the security of Shamir’s secret sharing, the adversary receives no information about v in H3.
Hence, from a hybrid argument, we can prove CCA security by showing indistinguishability between
neighboring hybrid experiments.

Since neighboring hybrids differ only in the values that are committed to in the row of sExtCom,
CECom, or Com (i.e., the parallel commitments of sExtCom, CECom, or Com), our overall strategy
for proving the indistinguishability is to use the hiding property of sExtCom, CECom, and Com. A
problem is that the adversary interacts with the committed-value oracle, which extracts the committed
values of the right sessions (the sessions between the adversary and the committed-value oracle) in
super-polynomial time; because of the super-polynomial power of the oracle, the indistinguishability
does not follow directly from the hiding property of sExtCom, CECom, and Com. We overcome this

8

problem by showing that the committed-value oracle can be emulated in polynomial time. Specif-
ically, we show that the oracle can be emulated by extracting the committed shares from the rows
of CECom using its concurrent extractability and then computing the committed value of each right
session from the extracted shares. Roughly speaking, this emulation works because in an accepting
right session, the shares committed to in the row of CECom must be “close” to the shares that are
committed to in the row of Com (recall that the committed value of a CCACom commitment is de-
fined based on the shares that are committed to in the row of Com); in fact, if they disagree in many
locations, the session will be rejected in the last step of the scheme.

In more detail, we prove the indistinguishability between, say, the first and second hybrids in two
steps.

Step 1. Prove the indistinguishability assuming that the adversary does not “cheat” in each right
session, where, roughly speaking, we say that the adversary cheats in a right session if the
adversary commits to u j = (s j, d j, e j) in the row of sExtCom as specified by the scheme in at
most 9n locations in an accepting session.

Step 2. Prove that the adversary does not cheat in the right sessions except with negligible probability.

Each step is explained in more detail below.

Step 1. Proving the indistinguishability assuming that the adversary does not cheat. Recall that
H0 and H1 differ only in the values that are committed to in the row of sExtCom in the left session.
For proving indistinguishability between them, we consider new hybrid experiments, G0 and G1, such
that Gh (h ∈ {0, 1}) is the same as Hh except that the committed-value oracle computes the committed
value of each right session from the shares that are extracted from the row of CECom (rather than
from the row of Com), and those shares are extracted using the robust concurrent extractability of
CECom so that the row of sExtCom in the left session is not rewound during the extraction. We then
prove the indistinguishability between H0 and H1 in two steps.

1. First, we show the indistinguishability between Hh and Gh. Since we assume that the adversary
does not cheat in the right sessions, the shares that are committed to in the row of Com and those
that are committed to in the row of CECom are 0.9-close. Combined with an error-correcting
property of Shamir’s secret sharing, their closeness guarantees that the correct committed val-
ues of the right seasons are computable even from the shares that are committed to in the row
of CECom; hence, the committed-value oracle computes the same value in Hh and Gh, so these
two hybrids are indistinguishable.

2. Second, we show the indistinguishability between G0 and G1 by using the hiding property of
sExtCom. Since these two hybrids run in polynomial time while the adversary is receiving the
row of sExtCom in the left session, and the row of sExtCom in the left session is not rewound
thanks to the robust concurrent extractability of CECom, we can easily design a (non-uniform)
reduction from the indistinguishability between G0 and G1 to the hiding property of sExtCom.

Combining these two, we obtain the indistinguishability between H0 and H1 under the assumption
that the adversary does not cheat in the right sessions.

Step 2. Proving that the adversary cannot cheat. Intuitively, the adversary cannot cheat in a right
session because the subset that is committed to in the CCACom1:1 commitment of that right session
is hidden from the adversary. In fact, if the subsets are are hidden from the adversary, we can argue
that a right session will be rejected in the last step of the scheme when the adversary tries to cheat in
that session. However, to formalize this intuition, we need to overcome two obstacles.

9

Obstacle 1. The adversary interacts with the committed-value oracle, which runs in super-polynomial
time. We overcome this obstacle by, again, considering a hybrid in which the oracle is emulated
in polynomial time.

Obstacle 2. The challenger cheats in the left session in H1, H2, H3 (recall that in these hybrids, the
challenger commits to 0|u j | rather than u j for every j < Γ in the row of sExtCom), and thus,
the adversary may be able to cheat in a right session by using the messages in the left session.
We overcome this obstacle by using the simulation-soundness of the cut-and-choose phase.
Specifically, since the cheating challenger can be emulated in polynomial time by making a
single query to the committed-value oracle of CCACom1:1 (that is, the left session can be
emulated in polynomial time if the subset that is committed in to CCACom1:1 is given), the
one-one CCA security of CCACom1:1 guarantees that the subset in each right session is hidden
even though the challenger cheats in the left session.

More formally, the proof proceeds as follows. Assume for contradiction that the adversary cheats in
a right session with non-negligible probability in, say, H1. Then, there exists a right session such that
the adversary cheats with non-negligible probability in this right session but does not cheat except
with negligible probability in any right session that completed before this right session; we call this
right session the target right session. Then, we consider a hybrid experiment that is the same as H1
except for the following.

• The execution of H1 is terminated just before the committed-value oracle returns the committed
value in the target right session.

• The oracle computes the committed value of each right session from the shares that are ex-
tracted from the row of CECom, and those shares are extracted using the robust concurrent ex-
tractability of CECom so that the row of CCACom1:1 in the left session, the row of CCACom1:1

in the target right session, and the row of sExtCom in the target right session are not rewound
during the extraction. (Such robust concurrent extraction is possible since the total round com-
plexity of these rows is O(log n) and the parameter ℓ of CECom satisfies ℓ = ω(log2 n).)

Since the oracle returns the committed values only in the right session that terminates before the
target right session, and it is assumed that the adversary does not cheat in such right sessions, we
can show, as before, that the oracle is correctly emulated in this hybrid. Thus, the adversary cheats
in the target right session with non-negligible probability even in this hybrid. Now, since this hybrid
runs in polynomial time except when extracting the subset from the CCACom1:1 commitment in the
left session, we can break the one-one CCA security of CCACom1:1 in the target right session by
extracting the shares committed to in the row of sExtCom in the target right session and checking the
locations where the adversary does not commit to u j = (s j, d j, e j) in the row of sExtCom as specified
by the scheme, while simulating the left session using the committed-value oracle of CCACom1:1.
Hence, we conclude that the adversary does not cheat in the right sessions except with negligible
probability.

Remark 1. In the above explanation, we assume that sExtCom has a robust extractability property
such that the extraction from the row of sExtCom is possible even while the CCACom1:1 commitment
in the left session is forwarded to the committed-value oracle of CCACom1:1. In the actual proof,
we remove the necessity of robust extractability by increasing the number of rows of sExtCom to
RCCA1:1 + 1, where RCCA1:1 is the round complexity of CCACom1:1. With RCCA1:1 + 1 rows of sExtCom,
we can argue that one of the rows of sExtCom in the target right session does not “interleave” with
the CCACom1:1 commitment of the left session, so we extract the values that are committed to in this
row of sExtCom. ^

10

Remark 2. We note that in the above argument, CCACom1:1 need to be one-one CCA secure (rather
than just non-malleable) since we need to obtain the committed subset from the oracle immediately
after completing the query to the oracle (and possibly before completing the challenge commitment).
We also note that sExtCom must be strongly extractable since otherwise the adversary may give
invalid commitments in more than n locations without being detected in the cut-and-choose phase.
(As explained in Section 2.1, the existence of such an adversary does not contradict the one-one CCA
security of CCACom1:1 if over-extraction can occur.) ^

Combining Steps 1 and 2, we conclude that H0 and H1 are indistinguishable. The indistinguisha-
bility between other neighboring hybrids can be shown similarly.

3 Preliminaries

Throughout the paper, we use n to denote the security parameter, N to denote the set of all natural
numbers, and ppt as an abbreviation of “probabilistic polynomial time.” For any k ∈ N, we use [k]
to denote the set {1, 2, . . . , k}. For any two ensembles of random variables, {Xn}n∈N and {Yn}n∈N, we
use {Xn}n∈N

c≈ {Yn}n∈N to denote that {Xn}n∈N and {Yn}n∈N are computationally indistinguishable and
{Xn}n∈N

s≈ {Yn}n∈N to denote that {Xn}n∈N and {Yn}n∈N are statistically indistinguishable. We assume
familiarity with the notion of cryptographic protocols, which are formalized as interactions between
interactive Turing machines (ITMs). We remind the reader that the view of a party in the execution
of a cryptographic protocol consists of the input of the party, randomness of the party, and all the
messages received by the party.

3.1 Shamir’s Secret Sharing

We first recall Shamir’s secret sharing scheme. (In this paper, we use only the (n + 1)-out-of-10n
version of it.) To compute a (n+1)-out-of-10n secret sharing s = (s1, . . . , s10n) of a value v ∈ GF(2n),
we choose random a1, . . . , an ∈ GF(2n), let p(z) def

= v + a1z + · · · + anzn, and set si := p(i) for each
i ∈ [10n]. Given s, we can recover v by obtaining polynomial p(·) thorough interpolation and then
computing p(0). We use Decode(·) to denote a function that recovers v from s as above.

For any positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s′10n), we say
that s and s′ are x-close if |{i ∈ [10n] s.t. si = s′i}| ≥ x · 10n. If s and s′ are not x-close, we say
that they are (1 − x)-far. Since the shares generated by (n + 1)-out-of-10n Shamir’s secret sharing
scheme are actually a codeword of the Reed-Solomon code with minimum relative distance 0.9, if
a (possibly incorrectly generated) sharing s is 0.55-close to a valid codeword w, we can recover w
from s efficiently by using, for example, the Berlekamp-Welch algorithm.

The following technical lemma will be used in the analyses of our commitment schemes in Sec-
tions 4.1 and 5.

Lemma 1. Let x = (x1, . . . , x10n) and y = (y1, . . . , y10n) be any (possibly incorrectly generated)
shares of (n + 1)-out-of-10n Shamir’s secret sharing scheme, where some of these shares may be
equal to a special error symbol ⊥. For any set Γ ⊂ [10n] of size n, let ValueΓ(·) be the function that is
defined in Figure 1. Then, we have ValueΓ(x) = ValueΓ(y) if the following three conditions hold.

1. For every i ∈ [10n], if xi , ⊥, it holds xi = yi.

2. |{i ∈ [10n] s.t. xi = ⊥}| < n
∧ {i ∈ [10n] s.t. xi = ⊥} ∩ Γ = ∅.

3. x is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies wi = xi for every
i ∈ Γ or 0.2-far from any such valid codeword.

11

Reconstruction procedure ValueΓ(s). For s = (s1, . . . , s10n), the output of ValueΓ(s) is com-
puted as follows. If s is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies wi = si

for every i ∈ Γ, then Value(s) is the value that is decoded from w, i.e., ValueΓ(s) def
= Decode(w).

Otherwise, ValueΓ(s) def
= ⊥.

Figure 1: Function ValueΓ(·).

Proof . We consider two cases.

Case 1. x is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies wi = xi for every i ∈ Γ:
First, we observe that y is also 0.9-close to w. Since w is a valid codeword, we have wi , ⊥
for every i ∈ [10n]; thus, we have xi , ⊥ for every i such that xi = wi. Also, from the first
assumed condition, we have xi = yi for every i such that xi , ⊥. Therefore, we have yi = wi for
every i such that xi = wi. Then, since x is 0.9-close to w from the assumption of this case, we
have that y is 0.9-close to w.

Next, we observe that w satisfies wi = yi for every i ∈ Γ. From the second assumed condition,
we have xi , ⊥ for every i ∈ Γ. Also, from the first assumed condition, we have xi = yi for
every i such that xi , ⊥. Thus, we have xi = yi for every i ∈ Γ. Then, since we have wi = xi for
every i ∈ Γ from the assumption of this case, we have wi = yi for every i ∈ Γ.
Now, since y is 0.9-close to w, and w satisfies wi = yi for every i ∈ Γ, we have ValueΓ(x) =
ValueΓ(y) = Decode(w) from the definition of ValueΓ(·).

Case 2. x is 0.2-far from any valid codeword w = (w1, . . . ,w10n) that satisfies wi = xi for every i ∈ Γ:
For any valid codeword w′ = (w′1, . . . ,w

′
10n) that satisfies w′i = yi for every i ∈ Γ, we observe

that y is 0.1-far from w′. Since we have xi , ⊥ for every i ∈ Γ (the second assumed condition)
and xi = yi for every i such that xi , ⊥ (the first assumed condition), we have xi = yi for every
i ∈ Γ. Then, since we have w′i = yi for every i ∈ Γ, we have w′i = xi for every i ∈ Γ. Thus, x
is 0.2-far from w′ from the assumption of this case. Now, since x and y are 0.9-close from the
first and second assumed conditions, it follows that y is 0.1-far from w′.

Now, from the definition of ValueΓ(·), we conclude that ValueΓ(x) = ValueΓ(y) = ⊥.

Notice that from the third assumed condition, either Case 1 or 2 is true. This concludes the proof of
Lemma 1. □

3.2 Commitment Schemes

We next recall the definition of commitment schemes. Commitment schemes, often described as a
digital equivalent of sealed envelopes, are two-party protocols between a committer and a receiver.
Commitment schemes have two phases: the commit phase and the decommit phase. In the commit
phase, the committer commits to a secret input v ∈ {0, 1}n by interacting with the receiver; the tran-
script of the commit phase is called the commitment. In the decommit phase, the committer decommits
the commitment to v by sending the receiver a message called the decommitment; the receiver then
outputs either 1 (accept) or 0 (reject). It is required that the receiver accepts the decommitment with
probability 1 when both the committer and the receiver behave honestly. Additionally, it is required
that the committer cannot decommit a commitment to two different values and that the committed
value is hidden from the receiver in the commit phase; the former is called the binding property and
the latter is called the hiding property. Formal definitions of the (statistically) binding and (computa-
tionally) hiding properties are given below.

12

Definition 1 (Statistical binding property). For a commitment scheme ⟨C,R⟩ and any (not necessarily
ppt) adversarial committer C∗, consider the following probabilistic experiment Expbind(⟨C,R⟩,C∗, n, z)
for any n ∈ N and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary C∗ interacts with an honest receiver in
the commit phase of ⟨C,R⟩ and then outputs two decommitments, (v0, d0) and (v1, d1).
Then, C∗ is said to win the experiment if v0 , v1 but the receiver accepts both (v0, d0)
and (v1, d1) in the decommit phase.

Then, ⟨C,R⟩ is statistically binding if for any sequence of auxiliary inputs {zn}n∈N, the probability that
C∗ wins the experiment Expbind(⟨C,R⟩,C∗, n, zn) is negligible. ^

Definition 2 (Computational hiding property). For a commitment scheme ⟨C,R⟩ and any ppt ad-
versarial receiver R∗, consider the following probabilistic experiment Exphide

b (⟨C,R⟩,R∗, n, z) for any
b ∈ {0, 1}, n ∈ N, and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary R∗ chooses a pair of challenge values
v0, v1 ∈ {0, 1}n and then interacts with an honest committer in the commit phase of ⟨C,R⟩,
where the committer commits to vb. The output of the experiment is the view of R∗

Let Exphide
b (⟨C,R⟩,R∗, n, z) denote the output of experiment Exphide

b (⟨C,R⟩,R∗, n, z). Then, ⟨C,R⟩ is
computationally hiding if the following are computationally indistinguishable.

•
{
Exphide

0 (⟨C,R⟩,R∗, n, z)
}
n∈N,z∈{0,1}∗

•
{
Exphide

1 (⟨C,R⟩,R∗, n, z)
}
n∈N,z∈{0,1}∗

^

Unless stated otherwise, all the commitment schemes in this paper are statistically binding and com-
putationally hiding. We say that a commitment is accepting if the receiver does not abort in the
commit phase, and valid if there exists a value to which the commitment can be decommitted (i.e., if
there exists a decommitment that the verifier accepts in the decommit phase). The committed value of
a commitment is the value to which the commitment can be decommitted; we define the committed
value of an invalid commitment as ⊥.

There exists a two-round statistically binding commitment scheme Com based on one-way func-
tions [Nao91, HILL99], and it uses the underlying one-way function in a black-box way.

Strong Computational Binding Property. We say that a commitment scheme ⟨C,R⟩ satisfies
strong computational binding property if any ppt committer C∗ can generate a commitment that has
more than one committed value with at most negligible probability.6 A formal definition of the strong
computational binding property is given below.

Definition 3 (Strong computational binding property). For a commitment scheme ⟨C,R⟩ and any ppt
adversarial committer C∗, consider the following probabilistic experiment Expbind2(⟨C,R⟩,C∗, n, z)
for any n ∈ N and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary C∗ interacts with an honest receiver in
the commit phase of ⟨C,R⟩. Then, C∗ is said to win the experiment if there exists two
decommitments, (v0, d0) and (v1, d1), such that v0 , v1 but the receiver accepts both
(v0, d0) and (v1, d1) in the decommit phase.

6The standard computational binding property guarantees that for any ppt committer C∗, the commitment that C∗ gener-
ates cannot be decommitted to more than one value in polynomial time. Thus, the commitment that C∗ generates is allowed
to have more than one committed value.

13

Let Com be the two-round statistically binding commitment scheme that is mentioned in Sec-
tion 3.2.

Commit Phase

The committer C and the receiver R take common input 1n, and C additionally takes private input
v ∈ {0, 1}n. To commit to v, the committer C does the following with the receiver R.

commit stage. C chooses n independent random pairs {(ai
0, a

i
1)}i∈[n] such that ai

0 ⊕ ai
1 = v for

every i ∈ [n]. Then, C commits to ai
0 and ai

1 for every i ∈ [n] by using Com. For each
i ∈ [n] and b ∈ {0, 1}, let ci

b be the commitment to ai
b.

challenge stage. R sends uniformly random bits {ei}i∈[n] to C.

reply stage. C decommits ci
ei

to ai
ei

for every i ∈ [n].

Decommit Phase

C sends v to R and decommits ci
0 and ci

1 to ai
0 and ai

1 for every i ∈ [n]. Then, R checks whether
a0

0 ⊕ a0
1 = · · · = an

0 ⊕ an
1 = v.

Figure 2: Extractable commitment scheme ExtCom [PW09].

Then, ⟨C,R⟩ is strongly computationally binding if for any sequence of auxiliary inputs {zn}n∈N, the
probability that C∗ wins the experiment Expbind2(⟨C,R⟩,C∗, n, zn) is negligible. ^

3.3 Extractable Commitment Schemes

We next recall the definition of extractable commitment schemes from [PW09]. Roughly speaking, a
commitment scheme is extractable if there exists an expected polynomial-time oracle machine, called
extractor E, such that for any adversarial committer C∗ that gives a commitment to honest receiver,
EC∗ extracts the committed value of the commitment from C∗ as long as the commitment is valid.
We note that when the commitment is invalid, E can output an arbitrary garbage value; this is called
over-extraction.

Formally, extractable commitment schemes are defined as follows. A commitment scheme ⟨C,R⟩
is extractable if there exists an expected polynomial-time extractor E such that for any ppt committer
C∗, the extractor EC∗ outputs a pair (τ, σ) that satisfies the following properties.

• τ is identically distributed with the view of C∗ that interacts with an honest receiver R in the
commit phase of ⟨C,R⟩. Let cτ be the commitment that C∗ gives in τ.

• If cτ is accepting, then σ , ⊥ except with negligible probability.

• If σ , ⊥, then it is statistically impossible to decommit cτ to any value other than σ.

There exists a four-round extractable commitment scheme ExtCom based on one-way functions
[PW09], and it uses the underlying one-way function in a black-box way. Furthermore, ExtCom
satisfies extractability in a stronger sense: It is extractable even against adversarial committers that
give polynomially many ExtCom commitments in parallel. (The extractor outputs (τ, σ1, σ2, . . .) for
such committers.) ExtCom is shown in Figure 2.

14

Let Com be the two-round statistically binding commitment scheme that is mentioned in Sec-
tion 3.2.

Commit Phase

The committer C and the receiver R take common input 1n, and C additionally takes private input
v ∈ {0, 1}n. To commit to v, the committer C does the following with the receiver R.

commit stage. C chooses a pair of random n-bit strings (a0, a1) such that a0⊕a1 = v. Then, C
commits to a0 and a1 by using Com. For each b ∈ {0, 1}, let cb be the commitment to ab.

challenge stage. The receiver R sends a random bit e ∈ {0, 1} to C.

reply stage. C decommits ce to ae.

Decommit Phase

C sends v to R and decommits c0 and c1 to a0 and a1. Then, R checks whether a0 ⊕ a1 = v.

Figure 3: Weakly extractable commitment scheme wExtCom [GLOV12].

Strongly Extractable Commitment Schemes. We also use a stronger notion of extractability called
strong extractability. Roughly speaking, an extractable commitment scheme is strongly extractable if
no over-extraction occurs during the extraction. Formally, a statistically binding commitment scheme
⟨C,R⟩ is strongly extractable if there exists an expected polynomial-time extractor E such that for any
ppt committer C∗, the extractor EC∗ outputs a pair (τ, σ) that satisfies the following properties.

• τ is identically distributed with the view of C∗ that interacts with an honest receiver R in the
commit phase of ⟨C,R⟩. Let cτ be the commitment that C∗ gives in τ.

• If cτ is invalid, then σ = ⊥ except with negligible probability.

• If cτ is valid, then it is statistically impossible to decommit cτ to any value other that σ.

Weakly Extractable Commitment Schemes. We also use a weaker notion of extractability called
weak extractability. A commitment scheme ⟨C,R⟩ is weakly extractable if there exists an expected
polynomial-time extractor E such that for any ppt committer C∗, the extractor EC∗ outputs a pair (τ, σ)
that satisfies the following properties.

• τ is identically distributed with the view of C∗ that interacts with an honest receiver R in the
commit phase of ⟨C,R⟩. Let cτ be the commitment that C∗ gives in τ.

• The probability that cτ is accepting and σ = ⊥ is at most 1/2.

• If σ , ⊥, then cτ is valid and it is statistically impossible to decommit cτ to any value other
than σ.

There exists a four-round weakly extractable commitment scheme wExtCom based on one-way
functions [GLOV12], and it uses the underlying one-way function in a black-box way. wExtCom
is shown in Figure 3. We note that given two accepted transcripts of wExtCom such that commit
stage is identical but challenge stage is different, we can extract the committed value.

15

CECom is based on the extractable commitment scheme ExtCom in Figure 2, which consists of
three stages—commit, challenge, and reply.

Commit Phase

The committer C and the receiver R take common input 1n and parameter ℓ. (In [MOSV06],
ℓ = ω(log n).) To commit to v ∈ {0, 1}n, the committer C commits to v concurrently ℓ times by
using ExtCom as follows.

1. C and R execute commit stage of ExtCom ℓ times in parallel.

2. C and R do the following for each j ∈ [ℓ] in sequence.

(a) R sends the challenge message of ExtCom for the j-th session.

(b) C sends the reply message of ExtCom for the j-th session.

Decommit Phase

C sends v to R and decommits all the ExtCom commitments.

Figure 4: Concurrently extractable commitment CECom [MOSV06].

3.4 Concurrently Extractable Commitment Schemes

We next recall the notion of concurrently extractable commitment schemes. Roughly speaking, a
commitment scheme is concurrently extractable if there exists a polynomial-time extractor such that
for any adversarial committer that commits to polynomially many values concurrently, the extractor
can extract the committed values of all the valid commitments from the committer.

There exists a Õ(log n)-round concurrently extractable commitment CECom based on one-way
functions [MOSV06], and it uses the underlying one-way function in a black-box way. CECom is
an abstraction of the preamble stage of the concurrent zero-knowledge protocol of Prabhakaran et al.
[PRS02], and the extractor of CECom performs the extraction by rewinding the adversarial committer
according to the carefully designed rewinding strategy of [PRS02, PTV14]. CECom is described in
Figure 4. We remark that CECom has a parameter ℓ, which is the number of ExtCom commitments
that are generated in a CECom commitment. (In [MOSV06], ℓ = ω(log n).)

3.4.1 Robust Concurrent Extraction Lemma [GLP+15]

On the concurrently extractable commitment scheme CECom of Micciancio et al. [MOSV06], we
will use the robust concurrent extraction lemma, which is a useful lemma shown by Goyal et al.
[GLP+15]. Roughly speaking, the robust concurrent extraction lemma states that when the adversar-
ial committer additionally participates in an external protocol, the values that are committed to by
the adversarial committer can be extracted without rewinding the external protocol. More precisely,
consider any ppt adversarial committer A that commits to multiple values in concurrent sessions of
CECom—these sessions are denoted as the right sessions—and simultaneously participates in an ex-
ecution of an arbitrary protocol Π := ⟨B, A⟩ with an honest B—this session is denoted as the left
session. The robust concurrent extraction lemma states that for every A, there exists an extractor E
that extracts the committed values from A in every valid right session without rewinding the exter-
nal party B in the left session. The extractor E fails with probability that is exponentially small in
ℓ−O(k log n), where ℓ is the parameter of CECom and k is the round complexity of Π. Hence, E fails

16

only with negligible probability if we set ℓ := ω(k log n).
A formal description of the robust concurrent extraction lemma is given below. (Large parts of

the text below are taken from [GLP+15].)

The external protocol Π. Let Π := ⟨B, A⟩ be an arbitrary two-party protocol. Let domB(n) denote
the domain of the input for B and k := k(n) denote the round complexity of Π.

The robust-concurrent attack. Let x ∈ domB(n). In the robust-concurrent attack, the adversaryA
interacts with a special (possibly super-polynomial-time) party E called the online extractor. The on-
line extractor E simultaneously participates in one execution of Π and several executions of CECom,
where E interacts withA as an honest B(1n, x) in the execution of Π and interacts withA as an honest
receiver in each execution of CECom. The scheduling of all messages in all sessions—Π as well as
CECom—is controlled by A. When A successfully completes a CECom commitment s, the online
extractor E sends a value αs toA.

For n ∈ N, x ∈ domB(n), z ∈ {0, 1}∗, let RealAE,Π(n, x, z) denote the following probabilistic exper-
iment: On inputs 1n, x, z, the experiment starts an execution of A(1n, z), which launches the robust-
concurrent attack by interacting with E(1n, x, z); the output of the experiment is the view ofA and the
output of B (who was emulated by E). Let RealAE,Π(n, x, z) denote the output of RealAE,Π(n, x, z).

The robust concurrent extraction lemma. Roughly speaking, the lemma states that there exists
an interactive Turing machine, called the robust simulator, that statistically simulates RealAE,Π(n, x, z)
even if the value that the online extractor E returns to A at the end of each successful CECom
commitment is the committed value of this commitment. Furthermore, the robust simulator does
not “rewind” B and runs in time polynomial in the number of the sessions opened by A. A formal
statement of the lemma is given below.

Lemma 2 (Robust Concurrent Extraction Lemma [GLP+15]). There exists an interactive Turing ma-
chine S called a robust simulator such that for every adversary A and every two-party protocol
Π := ⟨B, A⟩, there exists a party E called an online extractor such that for every n ∈ N, x ∈ domB(n),
and z ∈ {0, 1}∗, the following conditions hold:

1. Validity constraint. For every view ρ ofA in RealAE,Π(n, x, z) and for every CECom commitment
s appearing in ρ, if there exists a unique value v ∈ {0, 1}n to which the commitment s can be
decommitted, then

αs = v,

where αs is the value that E sends toA at the end of s.

2. Statistical simulation. Let k = k(n) be the round complexity of Π. Then the statistical distance
between RealAE,Π(n, x, z) and outputB,S

[
B(1n, x)↔ SA(1n, z)

]
is given by

∆(n) ≤ 2−Ω(ℓ−k·log T (n)),

where outputB,S
[
B(1n, x)↔ SA(1n, z)

]
denotes the joint outputs of B(1n, x) and S(1n, z) after

an interaction between them, ℓ := ℓ(n) is the parameter of CECom, and T (n) is the number of
the CECom commitments between A and E. Furthermore, the running time of S is poly(n) ·
T (n)2.

17

Commit Phase

To commit to σ ∈ {0, 1} on common input 1n, the committer C does the following with the
receiver R:

Step 1. R chooses a random n-bit string e = (e1, . . . , en) and commits to e by using Com.

Step 2. For each i ∈ [n], the committer C chooses a random ηi ∈ {0, 1} and then sets

vi :=
(
v00

i v01
i

v10
i v11

i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
.

Then, for each i ∈ [n], α ∈ {0, 1}, and β ∈ {0, 1} in parallel, C commits to vαβi by using
ExtCom; let (vαβi , dαβi) be the corresponding decommitment.

Step 3. R decommits the commitment in Step 1 to e.

Step 4. For each i ∈ [n], C sends (vei0
i , dei0

i) and (vei1
i , dei1

i) to R. Then, R checks whether these
are valid decommitments and whether vei0

i = vei1
i .

Decommit Phase

C sends σ and random γ ∈ {0, 1} to R. In addition, for every i ∈ [n], C sends (v0γ
i , d

0γ
i) and

(v1γ
i , d

1γ
i) to R. Then, R checks whether (v0γ

i , d
0γ
i) and (v1γ

i , d
1γ
i) are valid decommitments and

whether v0γ
0 ⊕ v1γ

0 = · · · = v0γ
n ⊕ v1γ

n = σ.

Figure 5: Black-box trapdoor bit commitment scheme TrapCom.

3.5 Trapdoor Commitment Schemes

We next recall trapdoor commitment schemes [PW09]. Roughly speaking, trapdoor commitment
schemes are commitment schemes such that there exists a simulator that can generate a simulated
commitment and can later decommit it to any value. Pass and Wee [PW09] showed that the black-
box scheme TrapCom in Figure 5 is a trapdoor bit commitment. TrapCom is not statistically binding,
but it satisfies the strong computational binding property. (The strong computational binding property
holds since if an adversarial committer C∗ generates a TrapCom commitment that can be decommitted
to both 0 and 1, we can break the hiding property of Com using C∗ by extracting the committed values
of the ExtCom commitments from C∗ and then computing the committed value e of Com from them.)
Pass and Wee also showed that by running TrapCom in parallel, we can obtain a black-box trapdoor
commitment scheme PTrapCom for multiple bits. PTrapCom also satisfies the strong computational
binding property.

3.6 CCA-Secure Commitment Schemes

We next recall the definitions of CCA-secure commitment schemes and their κ-robustness. [CLP10,
CLP16, LP12].

18

CCA Security (w.r.t. the Committed-Value Oracle)

Roughly speaking, a tag-based commitment scheme (i.e., a commitment scheme that takes an n-bit
string, a tag, as an additional input) ⟨C,R⟩ is CCA-secure if its hiding property holds even against any
adversaryA that interacts with the committed-value oracle during the interaction with the committer.
The committed-value oracle O interacts with A as an honest receiver in many concurrent sessions
of the commit phase of ⟨C,R⟩ using tags chosen adaptively by A. At the end of each session, if the
commitment of this session is invalid or has multiple committed values, O returns ⊥ toA. Otherwise,
O returns the unique committed value toA.

More precisely, let us consider the following probabilistic experiment INDb(⟨C,R⟩,A, n, z) for
each b ∈ {0, 1}. On input 1n and auxiliary input z, the adversary AO adaptively chooses a pair of
challenge values v0, v1 ∈ {0, 1}n and an n-bit tag tag ∈ {0, 1}n. Then,AO receives a commitment to vb

with tag tag from the challenger. Let y be the output ofA. The output of the experiment is ⊥ if during
the experiment, A sends O any commitment using tag tag. Otherwise, the output of the experiment
is y. Let INDb(⟨C,R⟩,A, n, z) denote the output of experiment INDb(⟨C,R⟩,A, n, z).

Definition 4. Let ⟨C,R⟩ be a tag-based commitment scheme and O be the committed-value oracle of
⟨C,R⟩. Then, ⟨C,R⟩ is CCA-secure (w.r.t the committed-value oracle) if for any ppt adversaryA, the
following are computationally indistinguishable:

• {IND0(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗
The left session is the session between the challenger and A, and right sessions are the sessions
betweenA and O. ^

We say a commitment scheme is one-one CCA-secure if it is CCA secure w.r.t. a restricted class
of adversaries that start only a single right session.

κ-Robustness (w.r.t. the Committed-Value Oracle)

Roughly speaking, a tag-based commitment scheme is κ-robust if for any adversary A and any ITM
B, a ppt simulator can simulate the joint output of a κ-round interaction betweenAO and B. Thus, the
κ-robustness guarantees that the committed-value oracle is useless for attacking any κ-round protocol.

Definition 5. Let ⟨C,R⟩ be a tag-based commitment scheme and O be the committed-value oracle of
⟨C,R⟩. For any constant κ ∈ N, we say that ⟨C,R⟩ is κ-robust (w.r.t. the committed value oracle) if
for any ppt adversary A, there exists a ppt machine S called a simulator such that for any κ-round
ppt ITM B, the following are computationally indistinguishable:

•
{
outputB,AO

[
B(1n, y)↔ AO(1n, z)

]}
n∈N,y,z∈{0,1}n

•
{
outputB,S

[
B(1n, y)↔ S(1n, z)

]}
n∈N,y,z∈{0,1}n

Here, for any ITMs A and B, we use outputA,B
[
A(1n, y)↔ B(1n, z)

]
to denote the joint output of A

and B in an interaction between them on inputs (1n, y) to A and (1n, z) to B, respectively. If ⟨C,R⟩ is
κ-robust for any constant κ, we say that ⟨C,R⟩ is robust. ^

4 Building Blocks

In this section, we construct a constant-round strongly extractable commitment scheme and a O(log n)-
round one-one CCA-secure commitment scheme. Both schemes are used in our Õ(log2 n)-round
CCA-secure commitment scheme in Section 5.

19

4.1 Strongly Extractable Commitment Scheme

Using one-way functions in a black-box way, we construct a constant-round strongly extractable com-
mitment scheme sExtCom. Recall that a commitment scheme is strongly extractable if a rewinding
extractor outputs a correct committed value when the commitment is valid and outputs ⊥ when the
commitment is invalid.

Lemma 3. Assume the existence of one-way functions. Then, there exists a constant-round strongly
extractable commitment scheme sExtCom that uses the underlying one-way function only in a black-
box way.

Proof . The scheme sExtCom is shown in Figure 6, in which we use the following tools (all of which
can be constructed from one-way functions in a black-box way).

• A two-round statistically binding commitment scheme Com. (See Section 3.2.)

• A constant-round extractable commitment scheme ExtCom. (See Section 3.3.)

• The constant-round weakly extractable commitment scheme wExtCom of Goyal et al. [GLOV12].
(See Section 3.3.)

We prove the binding property and the hiding property in Section 4.1.1 and the strong extractability
in Section 4.1.2.

4.1.1 Proofs of Binding and Hiding

First, we show that sExtCom is statistically binding and computationally hiding. The binding prop-
erty follows directly from that of ExtCom. To show the hiding property, we consider the following
hybrid experiments for any ppt cheating receiver R∗ and each b ∈ {0, 1}.

Hybrid Hb
0(n, z) is an experiment in which R∗ takes input 1n and auxiliary input z and receives a

sExtCom commitment to σb from an honest committer, where (σ0, σ1) is the challenge values
that R∗ chooses at the beginning. The output of Hb

0(n, z) is that of R∗.

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except that the sExtCom commitment from the committer is
modified as follows.

• In Step 1, the committed value Γ is extracted by brute force.

• In Step 2, the committer commits to 0|s j | instead of s j for every j < Γ.

• In Step 3, the committer commits to (0|s j |, 0|d j |) instead of (s j, d j) for every j < Γ.

Let Hb
i (n, z) be the random variable representing the output of Hb

i (n, z) for i ∈ {0, 1} and b ∈ {0, 1}.
From the construction, R∗ receives no information about b in Hb

1(n, z) for each b ∈ {0, 1}, so the
distributions of H0

1(n, z) and H1
1(n, z) are identical. Hence, from a hybrid argument, we can show the

hiding property by showing that Hb
0(n, z) and Hb

1(n, z) are indistinguishable for each b ∈ {0, 1}. Assume
for contradiction that there exists b ∈ {0, 1} such that for infinitely many n, there exists z ∈ {0, 1}∗
such that Hb

0(n, z) and Hb
1(n, z) are distinguishable with advantage 1/poly(n). Fix any such b, n, and z.

From an average argument, there exists a transcript ρ of Step 1 such that under the condition that the
transcript of Step 1 is ρ, Hb

0(n, z) and Hb
1(n, z) are distinguishable with advantage 1/poly(n). Let Γ be

the subset that is committed to in ρ. Since we can execute Hb
1(n, z) from ρ in polynomial time given ρ

and Γ, by using a standard technique we can break the hiding property of either ExtCom or wExtCom
by using ρ and Γ as auxiliary input. Thus, we reach a contradiction.

20

Commit Phase

The committer C and the receiver R take common input 1n, and C additionally takes private input
σ ∈ {0, 1}n. To commit to σ, the committer C does the following with the receiver R.

Step 1. R commits to a random subset Γ ⊂ [10n] of size n by using Com.

Step 2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value σ.
Then, for each j ∈ [10n] in parallel, C commits to s j by using ExtCom. Let ϕ1, . . . , ϕ10n

be the commitments and d1, . . . , d10n be the decommitments.

Step 3. For each j ∈ [10n] in parallel, C commits to (s j, d j) by using wExtCom. Let ψ0, . . . , ψ10n

be the commitments.

Step 4. R decommits the commitment in Step 1 to Γ.

Step 5. C decommits the j-th wExtCom commitment ψ j in Step 3 to (s j, d j) for each j ∈ Γ. R
checks whether (s j, d j) is a valid decommitment of the j-th ExtCom commitment ϕ j in
Step 2 for every j ∈ Γ.

Decommit Phase

• C sends σ and decommits the ExtCom commitments ϕ1, . . . ϕ10n in Step 2 to s1, . . . , s10n.

• R accepts if and only if the following holds w.r.t. s = (s1, . . . , s10n), where s j is defined to
be ⊥ if the decommitment of ϕ j is invalid.

– s is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j for every
j ∈ Γ, and w is a codeword of σ.

Figure 6: Strongly extractable commitment scheme sExtCom.

21

4.1.2 Proof of Strong Extractability.

Next, we show that sExtCom is strongly extractable. That is, we show that an extractor extracts
a correct committed value from a valid sExtCom commitment and extracts ⊥ from an invalid one
except with negligible probability.

We first remark that from the construction of the decommit phase of sExtCom, the committed
value of sExtCom is defined as follows.

Definition 6 (Committed value of sExtCom). If the shares s = (s1, . . . , s10n) that are committed to
in Step 2 are 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j for every j ∈ Γ,
the committed value of a sExtCom commitment is Decode(w). Otherwise, the committed value is ⊥
(i.e., the commitment is invalid). ^

We notice that the function ValueΓ(·) in Figure 1 (Section 3.1) computes the committed value of a
sExtCom commitment as above on input the shares s that are committed to in Step 2.

Our extractor E extracts the committed value of a sExtCom commitment by extracting the com-
mitted values of the ExtCom commitments in Step 2. Formally, for any ppt cheating committer C∗,
the extractor E does the following.

• E internally invokes C∗ and interacts with C∗ as a receiver honestly except that E extracts the
committed values of the the ExtCom commitments in Step 2 by using their extractability. Let
τ be the view of internal C∗. If the sExtCom commitment in τ is rejecting or E fails to extract
the committed values of the ExtCom commitments in Step 2, E sets σ̃ := ⊥. Otherwise, E sets
σ̃ := ValueΓ(s̃), where s̃ is the shares that are extracted from the ExtCom commitments and Γ
is the subset that is committed to in Step 1. E then outputs (τ, σ̃).

From the extractability of ExtCom, the simulated view τ is identically distributed with the real view.
Hence, it remains to show that σ̃ is a committed value of τ except with negligible probability.

Fix any ppt cheating committer C∗. Without loss of generality, we assume that C∗ is deterministic.
First, we show that the extracted value σ̃ is indeed equal to a committed value of the simulated

view τ as long as the ExtCom commitments in Step 2 in τ are “good.”

Definition 7 (Good ExtCom commitments in Step 2). In a sExtCom commitment, we say that the
ExtCom commitments in Step 2 are good if all of the following conditions hold.

• Their committed values s = (s1, . . . , s10n) are uniquely determined.
(That is, none of them has more than one committed value.)

•
∣∣∣∣{ j ∈ [10n] s.t. s j = ⊥

}∣∣∣∣ < 0.5n.
(That is, less than 0.5n of them are invalid.)

• s is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j for every
j ∈ Γ or 0.2-far from any such valid codeword.

^

Claim 1. Assume that in the interaction between C∗ and an honest receiver, the probability that the
sExtCom commitment from C∗ is accepting but the ExtCom commitments in Step 2 are not good is
negligible. Then, in the execution of E, the extracted value σ̃ is a correct committed value of the
sExtCom commitment in τ except with negligible probability.

22

Proof . When the sExtCom commitment in τ is rejecting, E sets σ̃ := ⊥, which is a correct committed
value of this sExtCom commitment. Hence, it remains to show that the probability that the sExtCom
commitment in τ is accepting but σ̃ is not its committed value is negligible.

Let BAD be the event that in the execution of E, the sExtCom commitment in the simulated view τ

is accepting but the extracted value σ̃ = ValueΓ(s̃) is not a committed value of it. Our goal is to show
that BAD occurs only with negligible probability. Since the simulated view τ is identically distributed
with the real view of C∗, from our assumption the probability that the sExtCom commitment in
τ is accepting but the ExtCom commitments in Step 2 of it are not good is negligible. Hence, it
suffices to show that under the condition that those ExtCom commitments are good, BAD occurs
only with negligible probability. Furthermore, since the extraction from ExtCom succeeds except
with negligible probability, and the values extracted from valid ExtCom commitments are the correct
committed values except with negligible probability, it suffices to show that under the conditions that
in the sExtCom commitment in τ,

• the ExtCom commitments in Step 2 are good, and

• the (unique) committed value of each valid ExtCom commitment is correctly extracted,

BAD occurs only with negligible probability. Then, we notice that under the above conditions, we have
the following when the sExtCom commitment in τ is accepting.

1. For every j ∈ [10n], if s j , ⊥, it holds s j = s̃ j.

(This is because of the assumption that the correct committed value is extracted from every
valid ExtCom commitment.)

2.
∣∣∣∣{ j s.t. s j = ⊥

}∣∣∣∣ < 0.5n
∧{

j s.t. s j = ⊥
}
∩ Γ = ∅.

(This is because the sExtCom commitment would be rejected in Step 5 if { j s.t. s j = ⊥} ∩ Γ ,
∅.)

3. s is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j for every
j ∈ Γ or 0.2-far from any such valid codeword.

Hence, using Lemma 1 in Section 3.1, we conclude that under the above conditions, we have ValueΓ(s̃) =
ValueΓ(s) (i.e., ValueΓ(s̃) is equal to the committed value) when the sExtCom commitment in τ is ac-
cepting. Thus, BAD never occurs under the above conditions. This completes the proof of Claim 1. □

It remains to show that in the interaction between C∗ and an honest receiver, the probability
that the sExtCom commitment from C∗ is accepting but the ExtCom commitments in Step 2 are
not good is negligible. Recall that the ExtCom commitments are good if their committed values
s = (s1, . . . , s10n) are uniquely determined, at least 9.5n of them are valid, and s is either 0.9-close to
a valid codeword w that satisfies w j = s j for every j ∈ Γ or 0.2-far from any such codewords. We
show the following two claims.

Claim 2. In the interaction between C∗ and an honest receiver, the probability that the sExtCom
commitment from C∗ is accepting but at least 0.5n ExtCom commitments in Step 2 are invalid is
negligible.

Claim 3. In the interaction with C∗ and an honest receiver, the probability that the sExtCom com-
mitment from C∗ is accepting but either of the following conditions does not hold is negligible.

• The committed values s = (s1, . . . , s10n) of the ExtCom commitments are uniquely determined.

• s is either 0.9-close to a valid codeword w that satisfies w j = s j holds for every j ∈ Γ or 0.2-far
from any such codewords.

23

Proof of Claim 2.

In this proof, we use the following notations. For j ∈ [10n], the j-th column is the pair of the j-th
ExtCom commitment in Step 2 and the j-th wExtCom commitment in Step 3. A column is consis-
tent if the committed value of the wExtCom commitment is a valid decommitment of the ExtCom
commitment in that column; otherwise, the column is inconsistent. C∗ cheats if all of the following
conditions hold: every wExtCom commitment is accepting, the j-th column is consistent for every
j ∈ Γ, and at least 0.5n columns are inconsistent.

In the following, we show that C∗ cheats only with negligible probability. This suffices to prove
the claim because from the definition of the cheating, C∗ cheats whenever the sExtCom commitment
from C∗ is accepting but at least 0.5n ExtCom commitments in Step 2 are invalid.

Assume for contradiction that there exists a constant c such that C∗ cheats with probability at least
1/nc for infinitely many n. Fix any such c and n.

We derive a contradiction by constructing an adversary B that breaks the hiding property of Com.
For random subsets Γ0, Γ1 ⊂ [10n] of size n, B tries to distinguish a Com commitment to Γ0 from
a Com commitment to Γ1 as follows. B internally invokes C∗ and interacts with it as a receiver of
sExtCom honestly except for the following.

• In Step 1, B receives a Com commitment from the external committer (who commits to either
Γ0 or Γ1) and forwards the commitment to C∗ as the commitment in Step 1.

• If Step 3 is accepting (i.e., all of the wExtCom commitments are accepting), B does the fol-
lowing repeatedly: B rewinds C∗ to the point just before B sends the challenge bits of the
wExtCom commitments to C∗; then, B sends new random challenge bits to C∗ and receives the
replies from C∗. B repeats this rewinding until it obtains other nc+3 accepted transcripts of Step
3. If the number of the rewinding exceeds n3c+4, B terminates and outputs fail. Otherwise, B
outputs 1 if and only if all of the following conditions hold.

1. From the nc+3 + 1 accepted transcripts of Step 3 (the first one and the subsequent nc+3

ones), B can extract the committed values of the wExtCom commitments in at least 9.9n
columns.

2. In at least 0.4n columns of these 9.9n columns, the extracted values are not valid decom-
mitments of the ExtCom commitments.

3. For every j ∈ Γ1, either the extraction from the j-th column fails or the value extracted
from the j-th column is a valid decommitment of the ExtCom commitment of the j-th
column.

In the following, the first transcript that B generates in Step 3 is called the main thread and the
other nc+3 accepted transcripts are called the look-ahead threads.

First, we analyze the adversaryB′ that is the same asB except thatB′ does not terminate even after
rewinding C∗ more than n3c+4 times. When B′ receives a commitment to Γ0, the internal C∗ receives
no information about Γ1, so the probability that the extracted values are not valid decommitments of
the ExtCom commitments in at least 0.4n columns but are valid decommitments in all the columns
selected by Γ1 is exponentially small. Hence, when B′ receives a commitment to Γ0, B′ outputs
1 only with exponentially small probability. In the following, we show that when B′ receives a
commitment to Γ1, B′ outputs 1 with probability 1/poly(n). Let CHEAT be the event that C∗ cheats
on the main thread, and EXTRACT be the event that B′ succeeds in extracting the committed values
of the wExtCom commitments from at least 9.9n columns. Since over-extraction never occurs in the

24

extraction from wExtCom, B′ outputs 1 whenever CHEAT and EXTRACT occur. Hence, to show that B′
outputs 1 with probability at least 1/poly(n), it suffices to show that we have

Pr [CHEAT ∧ EXTRACT] ≥ 1
poly(n)

. (1)

For any prefix ρ of the transcript between C∗ and an honest receiver up until the challenge bits of
wExtCom (exclusive), let PREFIXρ be the event that ρ is a prefix of the main thread. Since C∗ cheats
with probability at least 1/nc, from an average argument we have Pr

[
CHEAT | PREFIXρ

]
≥ 1/2nc with

probability at least 1/2nc over the choice of ρ (i.e., over the distribution of ρ in the interaction between
C∗ and an honest receiver). Let ∆ be the set of prefixes with which Pr

[
CHEAT | PREFIXρ

]
≥ 1/2nc

holds. As noted above, we have
∑
ρ∈∆ Pr

[
PREFIXρ

]
≥ 1/2nc. Hence, we have

Pr [CHEAT ∧ EXTRACT] ≥
∑
ρ∈∆

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ

]
· Pr

[
PREFIXρ

]
≥ min

ρ∈∆

(
Pr

[
CHEAT ∧ EXTRACT | PREFIXρ

])
·
∑
ρ∈∆

Pr
[
PREFIXρ

]
≥ 1

2nc min
ρ∈∆

(
Pr

[
CHEAT ∧ EXTRACT | PREFIXρ

])
. (2)

Thus, to show Equation (1), it suffices to show that for any ρ ∈ ∆, we have

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ

]
≥ 1

poly(n)
. (3)

Fix any ρ∗ ∈ ∆. From the definition of ∆, we have

Pr
[
CHEAT | PREFIXρ∗

]
≥ 1

2nc . (4)

Thus, we have

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ∗

]
= Pr

[
CHEAT | PREFIXρ∗

]
· Pr

[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
≥ 1

2nc Pr
[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
(5)

Thus, to show Equation (3), it suffices to show that

Pr
[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
≥ 1

poly(n)
. (6)

Recall that EXTRACT is the event that B′ succeeds in extracting the committed values of the wExtCom
commitments from at least 9.9n columns. From the construction of wExtCom, EXTRACT occurs if
in at least 9.9n columns, the challenge bit of the wExtCom commitment on a look-ahead thread is
different from the challenge bit on the main thread. Hence, to show Equation (6), it suffices to show
that in at least 9.9n columns, the probability that the challenge bit of wExtCom is b is “high” for both
b = 0 and b = 1 on each look-ahead thread. Furthermore, since each look-ahead thread is generated
by repeatedly executing the main thread from ρ∗ until a new accepting transcript of Step 3 is obtained,
it suffices to show that under the condition that PREFIXρ∗ occurs and Step 3 is accepted, the probability
that the challenge bit of the wExtCom commitment is b is “high” for both b = 0 and b = 1 in at least
9.9n columns. Based on these observations, we show the following subclaim.

25

Subclaim 1. Let ch j be the random variable representing the challenge bit of wExtCom in the j-th
column on the main thread, and let ACCEPT be the event that every wExtCom commitment is accepting
on the main thread. Then, there exists a subset Jgood ⊂ [10n] such that:

• |Jgood| ≥ 9.9n

• For every j ∈ Jgood and b ∈ {0, 1},

Pr
[
ch j = b | PREFIXρ∗ ∧ ACCEPT

]
≥ 1

40nc+1 .

Proof . For any j ∈ [10n] and b ∈ {0, 1}, we have

Pr
[
ch j = b | PREFIXρ∗ ∧ ACCEPT

]
=

Pr
[
ACCEPT ∧ ch j = b

∣∣∣ PREFIXρ∗
]

Pr
[
ACCEPT

∣∣∣ PREFIXρ∗
]

≥ Pr
[
ACCEPT ∧ ch j = b

∣∣∣ PREFIXρ∗
]
. (7)

Hence, we show that in at least 9.9n columns, for any b ∈ {0, 1} we have

Pr
[
ACCEPT ∧ ch j = b

∣∣∣ PREFIXρ∗
]
≥ 1

40nc+1 . (8)

Let

Jbad
def
=

{
j ∈ [10n]

∣∣∣∣ ∃b∗j ∈ {0, 1} s.t. Pr
[
ACCEPT ∧ ch j = b∗j

∣∣∣ PREFIXρ∗
]
<

1
40nc+1

}
.

We have

Pr
[
ACCEPT

∣∣∣∣ PREFIXρ∗
]
≤ Pr

 ∧
j∈Jbad

ch j = 1 − b∗j

 + Pr

ACCEPT
∧ ∨

j∈Jbad

ch j = b∗j

∣∣∣∣∣∣ PREFIXρ∗

≤ 2−|Jbad | +

∑
j∈Jbad

Pr
[
ACCEPT ∧ ch j = b∗j | PREFIXρ∗

]
< 2−|Jbad | + 10n · 1

40nc+1

= 2−|Jbad | +
1

4nc . (9)

On the other hand, since ACCEPT occurs whenever CHEAT occurs, from Equation (4) we have

Pr
[
ACCEPT

∣∣∣∣ PREFIXρ∗
]
≥ Pr

[
CHEAT

∣∣∣∣ PREFIXρ∗
]
≥ 1

2nc . (10)

From Equations (9) and (10), we have |Jbad| = O(log n) and therefore |Jbad| < 0.1n. Thus, in at least
9.9n columns, we have Equation (8) for any b ∈ {0, 1}.

Define Jgood
def
= [10n] \ Jbad. Since |Jbad| < 0.1n, we have |Jgood| ≥ 9.9n. Furthermore, from

Equations (7) and (8), for any j ∈ Jgood and b ∈ {0, 1} we have

Pr
[
ch j = b | PREFIXρ∗ ∧ ACCEPT

]
≥ 1

40nc+1 .

This concludes the proof of Subclaim 1. □

26

As mentioned above, we can obtain Equation (1) by using Subclaim 1. First, since the distribution
of each look-ahead thread is the same as that of the main thread, Subclaim 1 implies that under the
condition that PREFIXρ∗ and CHEAT occur, B′ requires 40nc+1 accepted transcripts of Step 3 on average
to extract the committed value of wExtCom in the j-th columns for any j ∈ Jgood. Since B′ collects
nc+3 accepted transcripts, it follows from Markov’s inequality that for any j ∈ Jgood, B′ extracts the
committed value of wExtCom in the j-th column except with probability 40nc+1/nc+3 = 40/n2 under
the condition that PREFIXρ∗ and CHEAT occur. Thus, from the union bound, B′ extracts the committed
value of wExtCom in the j-th column for every j ∈ Jgood except with probability 9.9n·40/n2 = 396/n.
We therefore have

Pr
[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
≥ 1 − 396

n
. (11)

Then, from Equations (5) and (11), we have

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ∗

]
≥ 1

2nc ·
(
1 − 396

n

)
≥ 1

4nc . (12)

Since ρ∗ is any prefix in ∆, from Equations (2) and (12) we have

Pr [CHEAT ∧ EXTRACT] ≥ 1
2nc ·

1
4nc =

1
8n2c .

Thus, we have Equation (1). We therefore conclude that B′ outputs 1 with probability at least 1/8n2c

when B′ receives a commitment to Γ1. Hence, B′ distinguishes a commitment to Γ1 from a commit-
ment to Γ0 with advantage 1/8n2c − negl(n).

Now, we are ready to show that B breaks the hiding property of Com. The running time of B is
clearly at most poly(n). Hence, to show that B distinguishes a Com commitment, it suffices to show
that the output of B is the same as that of B′ except with probability 1/n2c+1. (This is because B′
distinguishes a Com commitment with advantage 1/8n2c−negl(n).) Recall that the output ofB differs
from that of B′ if and only if B′ rewinds C∗ more than n3c+4 times. Let T (n) be a random variable for
the number of rewinding in B′. For any prefix ρ of the transcript between C∗ and an honest receiver
up until the challenge bits of wExtCom (exclusive), we have

E
[
T (n) | PREFIXρ

]
≤ Pr

[
ACCEPT | PREFIXρ

]
· nc+3

Pr
[
ACCEPT | PREFIXρ

] = nc+3 .

Thus, we have

E [T (n)] =
∑
ρ

Pr
[
PREFIXρ

]
E

[
T (n) | PREFIXρ

]
≤ nc+3

∑
ρ

Pr
[
PREFIXρ

]
≤ nc+3 .

From Markov’s inequality,B′ rewinds C∗ more than n3c+4 times with probability at most nc+3/n3c+4 =

1/n2c+1. Thus, the output of B is the same as that of B′ except with probability 1/n2c+1, and therefore
B distinguishes a commitment to Γ1 from a commitment to Γ0 with advantage at least 1/8n2c −
negl(n) − 1/n2c+1 ≥ 1/16n2c. □

Proof of Claim 3.

From the binding property of ExtCom, the committed values s = (s1, . . . , s10n) of the ExtCom com-
mitments in Step 2 are uniquely determined except with negligible probability. Hence, to prove the
claim, it suffices to show that the following holds in an accepting sExtCom commitment only with
negligible probability.

27

• The committed values s = (s1, . . . , s10n) of the ExtCom commitments are uniquely determined,
but

• s is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies s j = w j for every j ∈ Γ, but
s is 0.1-far from w.

Assume for contradiction that for infinitely many n, the above hold in an accepting sExtCom com-
mitment with probability at least 1/p(n) for a polynomial p(·). Then, from Claim 2, the following
holds in an accepting sExtCom commitment with probability at least 1/2p(n) for infinitely many n.

• At least 9.5n of the ExtCom commitments are valid, and

• the committed values s = (s1, . . . , s10n) of the ExtCom commitments are uniquely determined,
but

• s is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies s j = w j for every j ∈ Γ, but
s is 0.1-far from w.

Fix any such n. We derive a contradiction by constructing an adversary B that breaks the hiding prop-
erty of Com. For random subsets Γ0,Γ1 ⊂ [10n] of size n, B tries to distinguish a Com commitment
to Γ0 from a Com commitment to Γ1 as follows. B internally invokes C∗ and interacts with it as a
receiver of sExtCom honestly except for the following.

• In Step 1, B receives a Com commitment from the external committer (who commits to either
Γ0 or Γ1) and forwards the commitment to C∗ as the commitment in Step 1.

• In Step 2, the committed values are extracted by using the extractor of ExtCom. If the ex-
tractor runs more than 6p(n) · T (n) steps, B terminates immediately with output fail, where
T (n) = poly(n) is an expected running time of the extractor of ExtCom. Otherwise, let
s̃ = (s̃1, . . . , s̃10n) be the extracted values.

• After Step 2 ends, B outputs 1 if there exists a valid codeword w = (w1, . . . ,w10n) such that
s̃ is 0.8-close to but 0.05-far from w and that s̃ j = w j holds for every j ∈ Γ1. Otherwise, B
outputs 0.

First, we analyze an adversary B′ that is the same as B except that B′ does not terminate even
after the extractor of ExtCom runs more than 6p(n) · T (n) steps. When B′ receives a commitment to
Γ0, the internal C∗ receives no information about Γ1, so the probability that s̃ is 0.05-far from w but
s̃ j = w j holds for every j ∈ Γ1 is exponentially small; thus, B′ outputs 1 with exponentially small
probability. We next compute the probability that B′ outputs 1 when it receives a commitment to Γ1.
From our assumption, with probability 1/2p(n) it holds that 9.5n of the ExtCom commitments are
valid and the unique committed values s = (s1, . . . , s10n) of the ExtCom commitments are 0.8-close
to but 0.1-far from a valid codeword w that satisfies s j = w j for every j ∈ Γ1. Since the extractability
of ExtCom guarantees that s̃ j = s j holds except with negligible probability when the j-th ExtCom
commitment is valid (and in particular when s j = w j , ⊥), with probability at least 1/3p(n), s̃ is
0.8-close to but 0.05-far from a valid codeword w that satisfies s̃ j = w j for every j ∈ Γ1. Hence,
when B′ receives a commitment to Γ1, B′ outputs 1 with probability at least 1/3p(n). Therefore, B′
distinguishes a Com commitment with advantage 1/3p(n) − negl(n).

Now, we are ready to argue thatB breaks the hiding property of Com. The output ofB differs from
that ofB′ if and only if the extraction from ExtCom takes more than 6p(n)·T (n) steps. From Markov’s
inequality, the extraction from ExtCom takes more than 6p(n) · T (n) steps only with probability
1/6p(n). Hence, B distinguishes a Com commitment with advantage 1/3p(n) − negl(n) − 1/6p(n) ≥
1/6p(n). Since the running time of B can be bounded by poly(n), B breaks the hiding property of
Com. □

28

Conclusion of Proof of Lemma 3.

From Claims 2 and 3, the probability that the ExtCom commitments are not good in an accepting
sExtCom commitment is negligible. Hence, from Claim 1, the extractor E outputs a correct commit-
ted value except with negligible probability. This completes the proof of Lemma 3. □

4.2 One-One CCA-Secure Commitment Scheme

Using one-way functions in a black-box way, we construct a O(log n)-round one-one CCA-secure
commitment scheme CCACom1:1. Recall that a commitment scheme is one-one CCA secure if it is
CCA secure w.r.t. a restricted class of adversaries that start only a single right session. Our scheme
does not satisfy the statistically binding property but does satisfy the strong computational binding
property.

Lemma 4. Assume the existence of one-way functions. Then, there exists a O(log n)-round one-
one CCA-secure commitment scheme CCACom1:1 that satisfies the strong computational binding
property and the computational hiding property. Furthermore, CCACom1:1 uses the underlying one-
way function only in a black-box way.

Proof . We construct CCACom1:1 by slightly modifying the black-box O(nϵ)-round CCA-secure
commitment scheme of Lin and Pass [LP12] and then applying the “DDN log n trick” [DDN00,
LPV08] on it, where the DDN log n trick is a transformation by Dolev, Dwork, and Naor (DDN) [DDN00]
and has been used to transform concurrent non-malleable commitment schemes for tags of length
O(log n) to non-malleable commitment schemes for tags of length O(n) without increasing round
complexity.

First, we recall the CCA-secure commitment scheme of [LP12] (see Figure 7). Roughly speaking,
the commitment scheme of [LP12] consists of 4ℓ(n)η(n) rows—each row is a parallel execution of
a part of the trapdoor commitment scheme PTrapCom of [PW09] (see Section 3.5)—followed by a
cut-and-choose phase, where ℓ(n) is the length of the tag and η(n) def

= nϵ for ϵ > 0. In the analysis
of [LP12], which is based on that of [CLP10, CLP16], it is shown that in any transcript of one left
session and many right sessions of the scheme, each right session has Ω(η(n)) safe-points, from
which we can rewind the right session and extract its committed value without breaking the hiding
property of the left session. Then, since each right session has Ω(η(n)) safe-points, we can extract the
committed value of each right session even in the concurrent setting by using the rewinding strategy of
Richardson and Kilian [RK99] to deal with the problem of recursive rewinding. Thus, by extracting
the committed-value of a row in each right session, we can emulate the committed-value oracle in
polynomial time without breaking the hiding property of the left session. Thus, the CCA security
follows from the hiding property of the left session.

Next, we observe that by setting η(n) := 1 in the scheme of [LP12], we obtain a black-box
O(ℓ(n))-round parallel CCA-secure commitment scheme for tags of length ℓ(n), where a commitment
scheme is parallel CCA secure if it is CCA secure w.r.t. a restricted class of adversaries that start only
a single parallel right session. This is because when an adversary starts only a single parallel right
session, the problem of recursive rewinding does not occur, so each right session need to have only
a single safe-point as in the concurrent non-malleable commitment scheme of [LPV08] (on which
the CCA-secure commitment schemes of [CLP10, CLP16, LP12] are based). Therefore, by setting
η(n) := 1 and ℓ(n) := O(log n), we obtain a black-box O(log n)-round commitment scheme that is
parallel CCA secure for tags of length O(log n).

We then observe that the DDN log n trick [DDN00, LPV08] transforms any black-box parallel
CCA-secure commitment scheme for tags of length O(log n) to a black-box one-one CCA-secure
commitment scheme for tags of length O(n). This can be proven in essentially the same way as the

29

Commit Phase

Let ℓ, η be two polynomials such that ℓ(n) = nν and η(n) = nϵ for ν, ϵ > 0, and L be a polynomial
such that L(n) = 4ℓ(n)η(n). To commit to a value v, the committer C and the receiver R, on
common input 1n and tag ∈ {0, 1}ℓ(n), do the following.

Stage 1: R sends the Step 1 message of a commitment of PTrapCom. That is, a commitment of
Com to a randomly chosen string challenge e = (e1, . . . , en).

Stage 2: C computes an (n+1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v,
and commits to these shares using Step 2 of PTrapCom in parallel for L(n) times; we call
the i-th parallel commitment the i-th row, and all the commitments to s j the j-th column.
Messages in the 4ℓ(n)η(n) rows are scheduled based on tag and the schedules design0 and
design1 depicted in Figure 8. More precisely, Stage 2 consists of ℓ(n) phases. In phase i, C
provides η(n) sequential designtagi

pairs of rows, followed by η(n) sequential design1−tagi
pairs of rows.

Stage 3: R decommits the commitment in Stage 1 to e. C completes the 10nL(n) executions of
PTrapCom w.r.t. challenge e in parallel.

Stage 4: R sends a randomly chosen subset Γ ⊂ [10n] of size n. For every j ∈ Γ, C decommits
all the commitments in the j-th column of Stage 3. R checks whether all the decommit-
ments are valid and reveal the same committed values s j.

Figure 7: Black-box CCA-secure commitment scheme of [LP12]

Figure 8: Description of the schedules used in Stage 2 of the protocol of [LP12]. (α1, β1, γ1) and
(α2, β2, γ2) are the transcripts of a pair of rows in Stage 2.

30

proof of the fact that the DDN log n trick transforms a concurrent non-malleable commitment scheme
for tags of length O(log n) to a non-malleable commitment scheme for tags of length O(n). For details,
see Appendix A.

Combining the above, we obtain a black-box O(log n)-round one-one CCA-secure commitment
scheme CCACom1:1. CCACom1:1 satisfies the strong computational binding property and the com-
putational hiding property because the CCA-secure commitment scheme of [LP12] satisfies both
properties and the DDN log n trick preserves both properties. (The strong computational binding
property of [LP12] follows from that of the trapdoor commitment scheme of [PW09].) □

5 CCA-Secure Commitment Scheme

In this section, we construct a Õ(log2 n)-round robust CCA-secure commitment scheme by using
one-way functions in a black-box way.

Theorem 1. Assume the existence of one-way functions. Then, there exists a Õ(log2 n)-round robust
CCA-secure commitment scheme CCACom. Furthermore, CCACom uses the underlying one-way
function only in a black-box way.

Proof . CCACom is shown in Figure 9, in which we use the following tools (all of which can be
constructed from one-way functions in a black-box way).

• A two-round statistically binding commitment scheme Com. (See Section 3.2.)

• The concurrently extractable commitment scheme CECom of Micciancio et al. [MOSV06].
(See Section 3.4.) The parameter ℓ in CECom is set as ℓ := O(log2 n log log n) so that ℓ =
ω(log2 n).

• A constant-round strongly extractable commitment scheme sExtCom. (See Lemma 3 in Sec-
tion 4.1.)

• A O(log n)-round one-one CCA-secure commitment scheme CCACom1:1 that satisfies strong
computational binding property. (See Lemma 4 in Section 4.2.)

The round complexity of CCACom is clearly Õ(log2 n). The statistical binding property of CCACom
follows directly from that of Com. Hence, it remains to show that CCACom is robust CCA secure.
(The hiding property follows from CCA security.) In what follows, we prove CCA security in Section
5.1 and robustness in Section 5.2.

5.1 Proof of CCA Security

Lemma 5. CCACom is CCA secure.

Proof . We first remark that from the construction of the decommit phase of CCACom, the committed
value of a CCACom commitment is defined as follows.

Definition 8 (Committed value of CCACom). If the shares s = (s1, . . . , s10n) that are committed to
in Stage 2 are 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j for every j ∈ Γ,
the committed value of a CCACom commitment is Decode(w). Otherwise, the committed value is ⊥
(i.e., the commitment is invalid). ^

31

Commit Phase

The committer C and the receiver R take common inputs 1n and tag ∈ {0, 1}n, and C additionally
takes private input v ∈ {0, 1}n. To commit to v, the committer C does the following with the
receiver R.

Stage 1. R commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1 with tag tag.

Stage 2. C computes an (n+ 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v.
Next, for each j ∈ [10n] in parallel, C commits to s j by using Com. Let ϕ1, . . . , ϕ10n

denote the commitments and d1, . . . , d10n denote the decommitments.

Stage 3. For each j ∈ [10n] in parallel, C commits to s j by using CECom, where the parameter
ℓ in CECom is set as ℓ := Õ(log2 n). Let ψ1, . . . , ψ10n denote the commitments and
e1, . . . , e10n denote the decommitments.

We call these parallel CECom commitments the row of CECom, and the commitment
ψ j in the row the j-th column (of CECom).

Stage 4. Let RCCA1:1 := RCCA1:1(n) be the round complexity of CCACom1:1. Let η′ := RCCA1:1 + 1.
Then, for each i ∈ [η′] in sequence, C does the following.

• For each j ∈ [10n] in parallel, C commits to (s j, d j, e j) by using sExtCom. Let
θi,1, . . . , θi,10n denote the commitments.

We call the i-th parallel commitments the i-th row (of sExtCom), and call all the com-
mitments to (s j, d j) the j-th column (of sExtCom).

Stage 5. R decommits the commitment in Stage 1 to Γ.

Stage 6. For each j ∈ Γ, C decommits θi, j to (s j, d j, e j) for each i ∈ [η′]. Then, for every
j ∈ Γ, R checks whether (s j, d j) is a valid decommitment of ϕ j and (s j, e j) is a valid
decommitment of ψ j.

Decommit Phase

• C sends v and decommits the Com commitments ϕ1, . . . ϕ10n in Stage 2 to s1, . . . , s10n.

• R accepts if and only if the following holds w.r.t. s = (s1, . . . , s10n), where s j is defined to
be ⊥ if the decommitment of ϕ j is invalid.

– s is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j for every
j ∈ Γ, and w is a codeword of v.

Figure 9: CCA commitment scheme CCACom.

32

We notice that the function ValueΓ(·) in Figure 1 (Section 3.1) computes the committed value of a
CCACom commitment as above on input the shares s that are committed to in Stage 2.

To prove the CCA security of CCACom, we show the following indistinguishability for any ppt
adversaryAcca (see Definition 4).

{IND0(CCACom,Acca, n, z)}n∈N,z∈{0,1}∗
c≈ {IND1(CCACom,Acca, n, z)}n∈N,z∈{0,1}∗ . (13)

Fix any ppt adversary Acca. We prove Indistinguishability (13) by a hybrid argument. Since the
experiments IND0(CCACom,Acca, n, z) and IND1(CCACom,Acca, n, z) differ only in the value that
is committed to in the left session, we consider a series of hybrid experiments in which the left session
is gradually modified so that in the last hybrid the adversary receives no information about the value
that is committed to in the left session. Formally, for each b ∈ {0, 1}, we consider the following hybrid
experiments.

Hybrid Hb
0(n, z): Hybrid Hb

0(n, z) is the same as INDb(CCACom,Acca, n, z).

Hybrid Hb
1(n, z) to Hybrid Hb

η′(n, z): For k ∈ [η′], Hybrid Hb
k (n, z) is the same as Hb

0(n, z) except for
the following.

• In Stage 1 of the left session, the committed value Γ is extracted by brute force from the
CCACom1:1 commitment. If the commitment is invalid, Γ is set to be a random subset. If
the commitment has more than one committed value, Hb

k (n, z) outputs fail and terminates.

• In Stage 4 of the left session, the left committer commits to 0|u j | instead of u j for every
j < Γ in the i-th row for i ∈ [k].

Hybrid Hb
η′+1(n, z): Hybrid Hb

η′+1(n, z) is the same as Hb
η′(n, z) except that in Stage 3 of the left ses-

sion, the left committer commits to 0|s j | instead of s j for every j < Γ.

Hybrid Hb
η′+2(n, z): Hybrid Hb

η′+2(n, z) is the same as Hb
η′+1(n, z) except that in Stage 2 of the left

session, the left committer commits to 0|s j | instead of s j for every j < Γ.

For k ∈ {0, . . . , η′ + 2}, let Hb
k(n, z) be the random variable for the output of Hb

k (n, z). Since Acca
receives no information about b in Hb

η′+2(n, z), we have{
H0
η′+2(n, z)

}
n∈N,z∈{0,1}∗ =

{
H1
η′+2(n, z)

}
n∈N,z∈{0,1}∗ . (14)

Hence, from a hybrid argument, we can show Indistinguishability (13) by showing the following three
claims.

Claim 4. For every b ∈ {0, 1} and k ∈ [η′], we have the following indistinguishability.{
Hb

k−1(n, z)
}
n∈N,z∈{0,1}∗

c≈
{
Hb

k(n, z)
}
n∈N,z∈{0,1}∗ .

Claim 5. For every b ∈ {0, 1}, we have the following indistinguishability.{
Hb
η′(n, z)

}
n∈N,z∈{0,1}∗

c≈
{
Hb
η′+1(n, z)

}
n∈N,z∈{0,1}∗ .

Claim 6. For every b ∈ {0, 1}, we have the following indistinguishability.{
Hb
η′+1(n, z)

}
n∈N,z∈{0,1}∗

c≈
{
Hb
η′+2(n, z)

}
n∈N,z∈{0,1}∗ .

We prove Claim 4 in Section 5.1.1 and prove Claims 5 and 6 in Section 5.1.4.

33

5.1.1 Proof of Claim 4

Below, we prove Claim 4 using the following subclaim.

Subclaim 2. For every b ∈ {0, 1} and k ∈ {0, . . . , η′ + 2}, Hb
k (n, z) outputs fail with at most negligible

probability.

The proof of Subclaim 2 is given in Section 5.1.3.

Proof of Claim 4. Since Hb
k−1(n, z) and Hb

k (n, z) differ only in the values that are committed to in
a row of sExtCom in the left session, we use the hiding property of sExtCom to prove the indis-
tinguishability. A problem is that Acca interacts with the committed-value oracle O, which runs in
super-polynomial time; because of the super-polynomial-time power of O, the indistinguishability be-
tween the two hybrids does not follow directly from the computational hiding property of sExtCom.
To overcome this problem, we show that the oracle O can be emulated in polynomial time. Specifi-
cally, we show that the oracle O can be emulated by extracting the shares that are committed to in the
rows of CECom and then computing the committed values of the right sessions from the extracted
shares. When extracting the committed shares from the row of CECom, we use the robust concurrent
extraction lemma (Lemma 2) so that we can use the hiding property of the k-th row of sExtCom
even in the presence of the extraction from CECom. Formally, we consider the following hybrids
Gb

h:1(n, z), . . . ,Gb
h:3(n, z) for each h ∈ {k − 1, k}.

Hybrid Gb
h:1(n, z): Hybrid Gb

h:1(n, z) is the same as Hb
h(n, z) except that at the end of each right ses-

sion, the oracle O returns ValueΓ(sCEC) to Acca rather than ValueΓ(s) as the committed value
of this session, where s = (s1, . . . , s10n) is the shares that are committed to in the row of Com
in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row of CECom in

Stage 3, and Γ is the subset that is committed to in the CCACom1:1 commitment in Stage 1.

Hybrid Gb
h:2(n, z): Hybrid Gb

h:2(n, z) is the same as Gb
h:1(n, z) except for syntactical differences: Roughly

speaking, Gb
h:2(n, z) is an experiment in which Gb

h:1(n, z) is executed in such a way that we can
use the robust concurrent extraction lemma later. Formally, Gb

h:2(n, z) is defined as follows.
Recall that in the setting of the robust concurrent extraction lemma (Lemma 2), an adversary,
Arobust, launches the robust-concurrent attack by interacting with the online extractor E; specif-
ically Arobust interacts with E as a party A of an arbitrary two-party protocol Π = ⟨B, A⟩ while
interacting with E as the committers of CECom concurrently and obtaining a value from E at
the end of each session of CECom (where the values that are returned from E are supposed to
be the committed values of the CECom sessions). Then, consider the following Π and Arobust
(see also Figure 10).

Π = ⟨B, A⟩: First, party A gives a CCACom1:1 commitment to party B, where the tag in the
CCACom1:1 commitment is chosen by A. Then, B extracts the committed value Γ of
this CCACom1:1 commitment by brute force and sends it back to A. (If the CCACom1:1

commitment is invalid, Γ is set to be a random subset, and if the CCACom1:1 commitment
has more than one committed value, B outputs fail and terminates.)
Next, A sends a sequence of strings (m1, . . . ,m9n) to B. Then, when h = k − 1, B commits
to each m j (j ∈ [9n]) in parallel using sExtCom, and when h = k, B commits to each 0|m j |

(j ∈ [9n]) in parallel using sExtCom.

Arobust: Arobust takes non-uniform advice z and internally executes Gb
h:1(n, z) with the following

changes. (Recall that the execution of Gb
h:1(n, z) involves an interaction with the CCA-

security adversaryAcca.)

34

• In Stage 1 of the left session, Arobust forwards the CCACom1:1 commitment from
Acca to the online extractor E (who internally emulates party B of Π). Then, instead
of extracting the committed subset Γ from this CCACom1:1 commitment by brute
force,Arobust obtains Γ from E.

• In the k-th row of sExtCom of the left session,Arobust sends {u j} j<Γ to E (who inter-
nally emulates party B of Π), receives sExtCom commitments from E, and forwards
them to Acca. (At the same time, Arobust correctly commits to {u j} j∈Γ for Acca by
using sExtCom.)

• In Stage 3 of each right session, Arobust receives a row of CECom commitments
from Acca and forwards it to E (who internally emulates the receivers of CECom).
Let α = (α1, . . . , α10n) denote the responses from E at the end of the row of the
CECom commitments.

• At the end of each right session, Arobust sends ValueΓ(α) to Acca as the committed
value of this right session.

The output ofArobust is that of the internally executed Gb
h:1(n, z).

From the robust concurrent extraction lemma, there exists a robust simulator S such that for
the aboveArobust, there exists an online extractor E that satisfies the following.

• For any row of CECom thatArobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n) be the shares that
are committed to in this row of CECom and α = (α1, . . . , α10n) be the responses from E
at the end of this row. Then, for every j ∈ [10n], if the j-th CECom commitment in this
row is valid and its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .

• S can simulate the robust-concurrent attack betweenArobust and E.

Hybrid Gb
h:2(n, z) is the experiment RealArobust

E,Π (n,⊥, z) of the robust concurrent extraction lemma.

The output of Gb
h:2(n, z) is that ofArobust in RealArobust

E,Π (n,⊥, z).

Hybrid Gb
h:3(n, z): Hybrid Gb

h:3(n, z) differs from Gb
h:2(n, z) in that the execution of RealArobust

E,Π (n,⊥, z)
(i.e., the robust-concurrent attack between Arobust and E) is replaced with an interaction be-
tween party B of Π and the robust simulator S of the robust concurrent extraction lemma (see
Figure 11). The output of Gb

h:3(n, z) is that ofArobust that is simulated by S.

For ℓ ∈ {1, 2, 3}, let Gb
h:ℓ(n, z) be the random variable for the output of Gb

h:ℓ(n, z). We now prove the
following four claims.

Claim 7. For every b ∈ {0, 1} and h ∈ {k − 1, k}, we have the following indistinguishability.{
Hb

h(n, z)
}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:1(n, z)
}
n∈N,z∈{0,1}∗ .

Claim 8. For every b ∈ {0, 1} and h ∈ {k − 1, k}, we have the following indistinguishability.{
Gb

h:1(n, z)
}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:2(n, z)
}
n∈N,z∈{0,1}∗ .

Claim 9. For every b ∈ {0, 1} and h ∈ {k − 1, k}, we have the following indistinguishability.{
Gb

h:2(n, z)
}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:3(n, z)
}
n∈N,z∈{0,1}∗ .

Claim 10. For every b ∈ {0, 1}, we have the following indistinguishability.{
Gb

k−1:3(n, z)
}
n∈N,z∈{0,1}∗

c≈
{
Gb

k:3(n, z)
}
n∈N,z∈{0,1}∗ .

35

CECom
 sessions

Interaction
with B

Figure 10: Adversary Arobust in Hybrid Gb
h:2(n, z). For simplicity, the right sessions are illustrated as

if they are executed sequentially.

Figure 11: Simulator S in Hybrid Gb
h:3(n, z).

36

Claim 4 follows from these four claims.

Proof of Claim 7. Recall that Gb
h:1(n, z) differs from Hb

h(n, z) in that the committed value of a right
session is computed by ValueΓ(sCEC) rather than by ValueΓ(s), where s = (s1, . . . , s10n) is the shares
that are committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are com-

mitted to in the row of CECom in Stage 3, and Γ is the subset that is committed to in the CCACom1:1

commitment in Stage 1. Roughly speaking, we prove this claim in two steps.

Step 1. Showing that ValueΓ(sCEC) = ValueΓ(s) holds in any right session ifAcca does not “cheat” in
that right session.

Step 2. Showing thatAcca “cheats” in a right session with at most negligible probability.

Here, we say that Acca cheats in a right session if, roughly speaking, in every row of sExtCom in
that sessionAcca does not commit to u j = (s j, d j, e j) correctly in many columns. Hence, ifAcca does
not cheat, there exists a row of sExtCom in which Acca commits to u j = (s j, d j, e j) as specified by
the protocol in most columns, which guarantees that in most columns the share that is committed
to by CECom is equal to the share that is committed to by Com, which in turn guarantees that the
committed value of the session can be recovered from the shares that are committed to in the row of
CECom instead of from those that are committed to in the row of Com. Details are given below.

First, we define the cheating behavior ofAcca.

Definition 9 (Cheating by Acca). In each right session, let us say that a row of sExtCom in Stage 4
is bad if the values {u′j = (s′j, d

′
j, e
′
j)} j∈[10n] that are committed to in it satisfy the following condition.

Badness Condition: Let ssExt = (ssExt
1 , . . . , ssExt

10n) be the shares that are defined as follows. Let ssExt
j

def
=

s′j if (s′j, d
′
j) is a valid decommitment of the j-th Com commitment in Stage 2 and (s′j, e

′
j) is a

valid decommitment of the j-th CECom commitment in Stage 3. Let ssExt
j

def
= ⊥ otherwise. Then,

the badness condition is defined as follows.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n

∧{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ = ∅, or

2. ssExt is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = ssExt
j for every

j ∈ Γ, but ssExt is 0.1-far from w.

Let us say that a row of sExtCom is good if it is not bad. Then, we say that Acca cheats in a right
session if every row of sExtCom in that right session is bad. ^

We then prove the following two subclaims.

Subclaim 3. If the probability that Acca cheats in a right session in Hb
h(n, z) is negligible, we have

the following indistinguishability.{
Hb

h(n, z)
}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:1(n, z)
}
n∈N,z∈{0,1}∗ .

Subclaim 4. The probability thatAcca cheats in a right session in Hb
h(n, z) is negligible.

The proof of Subclaim 3 is given below. The proof of Subclaim 4 is given in Section 5.1.2.

Proof of Subclaim 3. We first show that ValueΓ(s) = ValueΓ(sCEC) holds in an accepting right ses-
sion if Acca does not cheat in that right session, where, as defined in the description of Hybrid
Gb

h:1(n, z), s = (s1, . . . , s10n) is the shares that are committed to in the row of Com in Stage 2,
sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row of CECom in Stage 3, and Γ

37

is the subset that is committed to in the CCACom1:1 commitment in Stage 1. Fix any right session,
and assume that that right session is accepting and A does not cheat in it. Then, from the definition
of cheating (Definition 9), that right session has a good row of sExtCom. Let {u′j = (s′j, d

′
j, e
′
j)} j∈[10n]

be the values that are committed to in that good row of sExtCom. Let ssExt = (ssExt
1 , . . . , ssExt

10n) be
the shares that are derived from u′ = (u′1, . . . , u

′
10n) as in the definition of cheating. Then, from the

definitions of cheating and ssExt, we have the following.

1. For every j ∈ [10n], if ssExt
j , ⊥, it holds ssExt

j = s j = sCEC
j .

(This follows from the definition of ssExt.)

2.
∣∣∣∣{ j s.t. ssExt

j = ⊥
}∣∣∣∣ < n

∧{
j s.t. ssExt

j = ⊥
}
∩ Γ = ∅.

(This is because the session would be rejected in Stage 6 if { j s.t. ssExt
j = ⊥} ∩ Γ , ∅.)

3. ssExt is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = ssExt
j for every

j ∈ Γ or 0.2-far from any such valid codeword.

Hence, from Lemma 1 in Section 3.1, we have ValueΓ(s) = ValueΓ(sCEC) = ValueΓ(ssExt) in that
session. Therefore, for any accepting right session, we have ValueΓ(s) = ValueΓ(sCEC) if Acca does
not cheat in that session.

Since Gb
h:1(n, z) differs from Hb

h(n, z) only in that O returns ValueΓ(sCEC) to Acca rather than
ValueΓ(s) in each right session, we conclude that Hb

h(n, z) and Gb
h:1(n, z) are statistically indistin-

guishable ifAcca cheats in a right session with at most negligible probability. □

Now, Claim 7 follows immediately from Subclaims 3 and 4. This concludes the proof of Claim 7. □

Proof of Claim 8. From the construction of Gb
h:2(n, z), the execution of Gb

h:1(n, z) is perfectly emulated
in Gh:2(n, z) as long as we have ValueΓ(α) = ValueΓ(sCEC) in each accepting right session.

First, we observe that if Acca does not cheat in an accepting right session, we have ValueΓ(α) =
ValueΓ(sCEC) in that right session except with negligible probability. Fix any right session, and assume
that that right session is accepting and A does not cheat in it. Then, from the definition of cheating,
that right session has a good row of sExtCom. Let {u′j = (s′j, d

′
j, e
′
j)} j∈[10n] be the values that are

committed to in that good row of sExtCom. Let ssExt = (ssExt
1 , . . . , ssExt

10n) be the shares that are derived
from u′ = (u′1, . . . , u

′
10n) as in the definition of the cheating. From the definition of cheating and

the robust concurrent extraction lemma, we have the following in that session except with negligible
probability.

1. For every j ∈ [10n], if ssExt
j , ⊥, it holds ssExt

j = sCEC
j = α j.

(When ssExt
j , ⊥, the j-th CECom commitment in the row of CECom is valid and has a unique

committed value except with negligible probability; therefore, from the robust concurrent ex-
traction lemma, α j = sCEC

j holds except with negligible probability.)

2.
∣∣∣∣{ j s.t. ssExt

j = ⊥
}∣∣∣∣ < n

∧{
j s.t. ssExt

j = ⊥
}
∩ Γ = ∅.

3. ssExt is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = ssExt
j for every

j ∈ Γ or 0.2-far from any such valid codeword.

Hence, from Lemma 1 in Section 3.1, we have ValueΓ(sCEC) = ValueΓ(α) = ValueΓ(ssExt) except
with negligible probability. Therefore, if Acca does not cheat in an accepting right session, we have
ValueΓ(α) = ValueΓ(sCEC) in that right session except with negligible probability.

38

Next, we observe that in Gb
h:1(n, z), Acca cheats in a right session with at most negligible prob-

ability. This follows immediately from Subclaim 4 (which says that Acca cheats in a right session
with negligible probability in Hb

h(n, z)) and Claim 7 (which says that the view of Acca in Gb
h:1(n, z) is

statistically indistinguishable from that in Hb
h(n, z)).

From what are observed in the above two paragraphs, it follows that we have ValueΓ(α) =
ValueΓ(sCEC) in each accepting right session except with negligible probability. □

Proof of Claim 9. Recall that Gb
h:3(n, z) differs from Gb

h:2(n, z) in that the execution of RealArobust
E,Π (n,⊥, z)

(i.e., the robust-concurrent attack between Arobust and E) is replaced with an interaction between
party B of Π and the robust simulator S of the robust concurrent extraction lemma. Hence, this
claim follows immediately from the robust concurrent extraction lemma. (Notice that the round com-
plexity of Π, denoted by RΠ, is O(RCCA1:1) = O(log n) and thus the parameter ℓ of CECom satisfies
ℓ = ω(RΠ log n).) □

Proof of Claim 10. We prove this claim by using the hiding property of sExtCom. Roughly speaking,
since Gb

k−1:3(n, z) and Gb
k:3(n, z) differ only in the shares that are committed to in the row of sExtCom

that S receives in Π, and Gb
k−1:3(n, z) and Gb

k:3(n, z) run in polynomial time while S is receiving the
row of sExtCom, the indistinguishability follows directly from the hiding property of sExtCom.

Formally, assume for contradiction that for infinitely many n, there exists z ∈ {0, 1}∗ such that
Gb

k−1:3(n, z) and Gb
k:3(n, z) are distinguishable with advantage 1/poly(n). Since Gb

k−1:3(n, z) and Gb
k:3(n, z)

proceed identically until B starts sending the row of sExtCom to S, there exists a prefix ρ of a tran-
script of Gb

k−1:3(n, z) up until the row of sExtCom (exclusive) such that under the condition that ρ
is a prefix of the transcript, Gb

k−1:3(n, z) and Gb
k:3(n, z) are distinguishable with advantage 1/poly(n).

Note that ρ contains the entire transcript of the CCACom1:1 commitment that S sends to B, and thus
ρ uniquely determines the committed value Γ of this CCACom1:1 commitment. We then consider the
following ppt adversary B against the hiding property of sExtCom.

• Taking ρ and Γ as auxiliary inputs, B internally invokes S and emulates Gb
k−1:3(n, z) from ρ by

receiving either commitments to {u j} j<Γ or commitments to {0|u j |} j<Γ from the external commit-
ter and then forwarding them to S. Finally, B outputs whatever S outputs.

Since B perfectly emulates either Gb
k−1:3(n, z) or Gb

k:3(n, z) depending on the commitments it receives,
our assumption implies that B distinguishes commitments to {u j} j<Γ and commitments to {0|u j |} j<Γ
with advantage 1/poly(n). Thus, we reach a contradiction. □

As noted before, Claim 4 follows immediately from Claims 7 – 10. This concludes the proof of
Claim 4. □

5.1.2 Proof of Subclaim 4

We now prove Subclaim 4, which says that Acca cheats in a right session in Hb
h(n, z) with at most

negligible probability.

Proof of Subclaim 4. First, we introduce notations. For any q ∈ N, we say that a right session has
end-index q if this session is the q-th right session that Acca completes. Similarly, we say that a
right session has start-index q if this session is the q-th right session that Acca starts. Note that the
end-index of a session is undefined until the session completes, whereas the start-index is defined
when the session starts. Jumping ahead, in the proof, we assume for contradiction that there exists
an end-index qend such that Acca cheats in the session having end-index qend. Then, since we do not
know which session has the end-index qend until the session completes, we guess a start-index qstart
such that the session having the start-index qstart has the end-index qend.

39

We argue thatAcca cannot cheat in any right session because of the hiding property of CCACom1:1.
However, there are two problems.

• SinceAcca interacts with the committed-value oracle O, which runs in super-polynomial-time,
we cannot directly use the computational hiding property of CCACom1:1. We overcome this
problem by considering a hybrid experiment in which O is emulated in polynomial time.

• Acca may cheat in a right session by using the messages that it receives in the left session, in
which the left committer cheats. We overcome this problem by using one-one CCA-security of
CCACom1:1 instead of its hiding property. Since the left session can be emulated in polynomial
time given the committed value Γ of the CCACom1:1 commitment in the left session, one-
one CCA-security of CCACom1:1 guarantees that the CCACom1:1 commitment in each right
session is hiding even when the left committer cheats.

When simulating O in polynomial time, we use the concurrent extractability of CECom for obtaining
the shares that are committed to in the row of CECom. Since we want to use the one-one CCA security
of CCACom1:1, we use the robust concurrent extraction lemma so that we can use the one-one CCA
security of CCACom1:1 even in the presence of the concurrent extraction from CECom.

Formally, assume for contradiction that there exists a right session in which Acca cheats with
non-negligible probability. Then, there exists an end-index qend such that (i)Acca cheats with at most
negligible probability in any right session having an end-index less than qend, but (ii)Acca cheats with
non-negligible probability in the session having end-index qend.

To reach a contradiction, we consider the following hybrid experiments Fb
h:1(n, z), . . . , Fb

h:4(n, z).

• Hybrid Fb
h:1(n, z) is the same as Hb

h(n, z) except that Fb
h:1(n, z) halts immediately after Acca

completes the session having end-index qend (and immediately before O returns the committed
value of this session to Acca). Note that in Fb

h:1(n, z), O returns the committed values to Acca
only in the right sessions having the end-index less than qend, andAcca cheats in those sessions
only with negligible probability.

• Hybrid Fb
h:2(n, z) is the same as Fb

h:1(n, z) except that at the end of each right session, the oracle
O returns ValueΓ(sCEC) to Acca rather than ValueΓ(s) as the committed value of this session,
where s = (s1, . . . , s10n) is the shares that are committed to in the row of Com in Stage 2,
sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row of CECom in Stage 3, and

Γ is the subset that is committed to in the CCACom1:1 commitment in Stage 1.

• Hybrid Fb
h:3(n, z) is the same as Fb

h:2(n, z) except for syntactical differences: Roughly speak-
ing, Fb

h:3(n, z) is an experiment in which Fb
h:2(n, z) is executed in such a way that we can use

the robust concurrent extraction lemma later. Formally, Fb
h:3(n, z) is defined as follows. Recall

that in the setting of the robust concurrent extraction lemma (Lemma 2), an adversary, Arobust,
launches the robust-concurrent attack by interacting with the online extractor E; specifically,
Arobust interacts with E as a party A of an arbitrary two-party protocol Π = ⟨B, A⟩ while inter-
acting with E as the committers of CECom concurrently and obtaining a value from E at the
end of each session of CECom (where the values that are returned from E are supposed to be
the committed values of the CECom sessions). Then, consider the following Π andArobust (see
also Figure 12).

Π = ⟨B, A⟩: Parties A and B do the following two interactions concurrently. (The schedule is
controlled by A.)
Interaction 1. A gives a CCACom1:1 commitment to B, where the tag is chosen by A.
Then, B extracts the committed value of this CCACom1:1 commitment, denoted by Γleft,

40

by brute force and sends it back to A. (If the CCACom1:1 commitment is invalid, Γleft is set
to be a random subset, and if the CCACom1:1 commitment has more than one committed
value, B outputs fail and terminates.)
Interaction 2. First, B commits to a random subset Γright ⊂ [10n] of size n using
CCACom1:1, where the tag is chosen by A. Next, A sends a transcript T of Stages 2
and 3 of CCACom (i.e., a row of Com followed by a row of CECom), and then gives η′

rows of sExtCom to B, where each row consists of 10n parallel sExtCom commitments.
(Recall that η′ is the number of the rows of sExtCom in CCACom.) Finally, B decommits
the CCACom1:1 commitment to Γright.

Arobust: Arobust takes non-uniform advice z and internally executes Fb
h:2(n, z) as follows. (Re-

call that the execution of Fb
h:2(n, z) involves an interaction with the CCA-security adver-

saryAcca.)

– A start-index qstart is chosen at random at the beginning.
– In the left session, Arobust receives a CCACom1:1 commitment from Acca in Stage

1 and forwards it to the online extractor E (who internally emulates party B of Π).
Then, instead of extracting the committed subset Γleft from this CCACom1:1 commit-
ment by brute force, Arobust obtains Γleft from E. Subsequently, Arobust emulates the
left session forAcca honesty by using Γleft.

– In the right session having start-index qstart, Arobust receives a CCACom1:1 commit-
ment from E (who internally emulates party B of Π) and forwards it toAcca in Stage
1. Then,Arobust emulates Stages 2 and 3 forAcca honestly and sends the transcript T
of these stages to E. Then,Arobust receives η′ rows of sExtCom fromAcca in Stage 4
and forwards them to E. Then,Arobust receives a decommitment for the CCACom1:1

commitment from E and forwards it toAcca in Stage 5. Then,Arobust emulates Stage
6 forAcca honestly.

– In every other right session, Arobust emulates Stages 1 – 6 honestly except for for-
warding the row of CECom in Stage 3 to E (who internally emulates the receivers of
CECom). Let α = (α1, . . . , α10n) denote the responses from E at the end of the row
of CECom. Then, at the end of the right session,Arobust sends ValueΓ(α) toAcca as
the committed value of this right session.

The output ofArobust is that of the internally executed Fb
h:2(n, z).

From the robust concurrent extraction lemma, there exists a robust simulator S such that for
the aboveArobust, there exists an online extractor E that satisfies the following.

– For any row of CECom thatArobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n) be the shares that
are committed to in this row of CECom and α = (α1, . . . , α10n) be the responses from E
at the end of this row. Then, for every j ∈ [10n], if the j-th CECom commitment in this
row is valid and its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .

– S can simulate the robust-concurrent attack betweenArobust and E.

Hybrid Fb
h:3(n, z) is the experiment RealArobust

E,Π (n,⊥, z) of the robust concurrent extraction lemma.

The output of Fb
h:3(n, z) is that ofArobust in RealArobust

E,Π (n,⊥, z).

In what follows, we say that Arobust cheats in Fb
h:3(n) if in the execution of Fb

h:2(n, z) that is
emulated by Arobust in Fb

h:3(n), Acca cheats in the right session having start-index qstart. We
remark that, since Arobust sends the transcript T of Stages 2 and 3 to E in Π, we can see

41

q-1

CECom
 sessions

Interaction 2
with B

1

q

left

Interaction1
with B

Figure 12: Adversary Arobust in Hybrid Fb
h:3(n, z). For simplicity, the right sessions are illustrated as

if they are executed sequentially.

whether Arobust cheats in Fb
h:3(n) or not by examining the transcript of Π between Arobust and

E (specifically, by extracting the committed values from each row of sExtCom by brute force
and then checking whether those committed values satisfy the badness condition in Definition 9
w.r.t. Stages 2 and 3 of CCACom that appear in T).

• Hybrid Fb
h:4(n, z) differs from Fb

h:3(n, z) in that the execution of RealArobust
E,Π (n,⊥, z) (i.e., the

robust-concurrent attack between Arobust and E) is replaced with an interaction between party
B of Π and the robust simulator S of the robust concurrent extraction lemma (see Figure 13).
The output of Fb

h:4(n, z) is that ofArobust that is simulated by S.

In what follows, we say that S cheats in Fb
h:4(n, z) ifArobust cheats in the view that is simulated

by S.

First, we notice that in Fb
h:1(n, z), Acca cheats with at most negligible probability in any right

session having an end-index less than qend, and Acca cheats with non-negligible probability in the
session having end-index qend. This is because Fb

h:1(n, z) proceeds identically with Hb
h(n, z) until the

end of the right session having end-index qend.

42

Interaction 2
with B

Interaction1
with B

Figure 13: Simulator S in Hybrid Fb
h:4(n, z).

Next, we observe that in Fb
h:2(n, z), Acca cheats with non-negligible probability in the session

having end-index qend. Recall that Fb
h:2(n, z) differs from Fb

h:1(n, z) in that at the end of each right
session having an end-index less than qend, the oracle O computes the committed value of the ses-
sion by ValueΓ(sCEC) rather than by ValueΓ(s). Then, since in Fb

h:1(n, z) Acca cheats with at most
negligible probability in any right session having an end-index less than qend, we can show that
ValueΓ(sCEC) = ValueΓ(s) holds in any such right session except with negligible probability by using
the same argument as in the proof of Subclaim 3. Hence, the view ofAcca in Fb

h:2(n, z) is statistically
indistinguishable from that in Fb

h:1(n, z), soAcca cheats with non-negligible probability in the session
having end-index qend in Fb

h:2(n, z).
Next, we observe that Arobust cheats in Fb

h:3(n, z) with non-negligible probability. From the con-
struction of Fb

h:3(n, z), an execution of Fb
h:2(n, z) is perfectly emulated in Fb

h:3(n, z) as long as we have
ValueΓ(α) = ValueΓ(sCEC) in each accepting right session that has an end-index less than qend. Then,
since in Fb

h:2(n, z) Acca cheats with at most negligible probability in any right session having an end-
index less than qend, we can show that ValueΓ(α) = ValueΓ(sCEC) holds in any such right session
except with negligible probability by using the same argument as in the proof of Claim 8. Hence, in
the execution of Fb

h:2(n, z) that is emulated in Fb
h:3(n, z), Acca cheats with non-negligible probability

in the session having end-index qend. Now, since the number of the right sessions is polynomially
bounded, we conclude that in the execution of Fb

h:2(n, z) that is emulated in Fb
h:3(n, z), Acca cheats

with non-negligible probability in the session having start-index qstart.
Next, we observe that S cheats in Fb

h:4(n, z) with non-negligible probability. This follows from the
robust concurrent extraction lemma, which guarantees that Arobust’s view is statistically simulated in
Fb

h:4(n, z). (Notice that the round complexity RΠ of Π is O(RCCA1:1) = O(log n) and thus the parameter
ℓ of CECom satisfies ℓ = ω(RΠ log n).)

We then derive a contradiction by showing that we can break the one-one CCA security of
CCACom1:1 using Fb

h:4(n, z).
For a warm up, we first consider the following super-polynomial-time adversaryM′ against the

one-one CCA security of CCACom1:1 (see also Figure 14).

• Externally,M′ sends random subsets Γ0,Γ1 ⊂ [10n] to a committer of CCACom1:1 and receives
a CCACom1:1 commitment from it (the committed value is either Γ0 or Γ1). Concurrently,M′
also interacts with the committed-value oracle of CCACom1:1 in a single session.

Internally,M′ invokes S and emulates Fb
h:4(n, z) for S honestly except for the following.

– When sending a CCACom1:1 commitment to S as the commitment from B in Π, M′
obtains a CCACom1:1 commitment from the external committer and forwards it to S.

– When S starts sending a CCACom1:1 commitment to B in Π,M′ forwards it to external
O, and then, instead of extracting its committed value Γleft by brute force,M′ obtains Γleft
from O.

43

Interaction
with oracle

Challenge from
Challenger

Figure 14: AdversaryM′ against the one-one CCA security of CCACom1:1.

– When S starts sending η′ rows of sExtCom to B in Π,M′ extracts the committed values
of an arbitrarily chosen row by brute force. M′ then stops emulating Fb

h:4(n, z).

Let {u j = (s j, d j, e j)} j∈[10n] be the values that are extracted from the arbitrarily chosen row of
sExtCom, and T be the message that S sends to B in Π as the transcript of Stages 2 and 3 of
CCACom. Let ssExt = (ssExt

1 , . . . , ssExt
10n) be the shares that are derived from u = (u1, . . . , u10n) and

T as in the definition of the cheating (Definition 9). Then,M′ outputs 1 if and only if either of
the following holds.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n

∧{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ1 = ∅.

2. ssExt is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies ssExt
j = w j for every

j ∈ Γ1, but ssExt is 0.1-far from w.

WhenM′ receives a commitment to Γ0,M′ outputs 1 only with negligible probability; this is because
whenM′ receives a commitment to Γ0, the internal S receives no information about Γ1, and thus, the
probability that either of the following holds is negligible.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n but

{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ1 = ∅.

2. ssExt is 0.1-far from a valid codeword w = (w1, . . . ,w10n) but we have ssExt
j = w j for every

j ∈ Γ1.

On the other hand, when M′ receives a commitment to Γ1, the internal S cheats in the emulated
execution of Fb

h:4(n, z) with non-negligible probability, so all the rows of sExtCom from S are bad
(w.r.t. Stages 2 and 3 of CCACom that appear in T) with non-negligible probability; hence, from
the definition of cheating (Definition 9), M′ outputs 1 with non-negligible probability. Thus, M′
distinguishes a commitment to Γ0 and a commitment to Γ1 with non-negligible advantage.

We then consider an adversary M that emulates M′ in polynomial time by extracting the com-
mitted values of a row of sExtCom by using the extractability of sExtCom. To formally defineM,
we first define the following machine M̂.

• Externally, M̂ sends random subsets Γ0,Γ1 ⊂ [10n] to an external party, receives a CCACom1:1

commitment from a committer of CCACom1:1 (the committed value is either Γ0 or Γ1), sends
a transcript T of Stages 2 and 3 of CCACom to an external party, and then gives a row of
sExtCom to a receiver of sExtCom. Concurrently, M̂ also interacts with the committed-value
oracle of CCACom1:1 in a single session.

Internally, M̂ invokes S and emulates Fb
h:4(n, z) for S honestly except for the following.

44

– When sending a CCACom1:1 commitment to S as the commitment from B in Π, M̂
obtains a CCACom1:1 commitment from the external committer and forwards it to S.

– When S starts sending a CCACom1:1 commitment to B in Π, M̂ forwards it to external
O, and then, instead of extracting its committed value Γleft by brute force, M̂ obtains Γleft
from O.

– After receiving a transcript T of Stages 2 and 3 of CCACom from S, M̂ forwards it to
the external party.

– When S starts sending η′ rows of sExtCom to B inΠ, M̂ forwards a randomly chosen row
among them to the external receiver of sExtCom. If the randomly chosen row of sExtCom
“interleaves” with any messages of the CCACom1:1 commitment that are being forwarded
to O (namely, if S tries to send/receive a message of that CCACom1:1 commitment while
sending that row of sExtCom), M̂ stops emulating Fb

h:4(n, z) immediately and terminates.
In other cases, M̂ stops emulating Fb

h:4(n, z) and terminates when the randomly chosen
row of sExtCom completes.

We remark that once M̂ starts sending a sExtCom commitment to the external receiver of
sExtCom, M̂ no longer interacts with the oracle O. (Once M̂ starts sending a sExtCom
commitment, either M̂ terminates in the middle of sExtCom (because the internal S tries to
send/receive a message of CCACom1:1) or M̂ completes the sExtCom commitment.) Further-
more, since η′ = RCCA1:1+1 (and thus the number of rows of sExtCom is bigger than the number
of rounds in CCACom1:1), a randomly chosen row of sExtCom does not interleave with any
messages of CCACom1:1 with non-negligible probability; thus, M̂ completes the sExtCom
commitment with non-negligible probability.

Using M̂, we defineM as follows.

• Externally,M sends random subsets Γ0, Γ1 ⊂ [10n] to a committer of CCACom1:1 and receives
a CCACom1:1 commitment from it (the committed value is either Γ0 or Γ1). Concurrently,M
also interacts with the committed-value oracle of CCACom1:1 in a single session.

Internally, M invokes M̂ and lets it interact with the external committer of CCACom1:1 and
the oracle O. When M̂ starts sending a row of sExtCom,M invokes the extractor of sExtCom
against M̂ and obtains (τ, σ), where τ is the view of M̂ as a committer of sExtCom and σ is a
possible value that M̂ committed to in τ.

If the sExtCom commitment that M̂ gives in τ is not accepting or the extractor of sExtCom
fails (i.e., the commitment in τ is accepting but σ = ⊥ holds),M outputs 0. Otherwise, parse σ
as {u j = (s j, d j, e j)} j∈[10n], and let T be the transcript thatM obtained from M̂ before the row
of sExtCom. Let ssExt = (ssExt

1 , . . . , ssExt
10n) be the shares that are derived from u = (u1, . . . , u10n)

and T as in the definition of the cheating (Definition 9). Then,M outputs 1 if and only if either
of the following holds.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n

∧{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ1 = ∅.

2. ssExt is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies ssExt
j = w j for every

j ∈ Γ1, but ssExt is 0.1-far from w.

Recall that, as observed above, M̂ gives an accepting sExtCom commitment with non-negligible
probability. Furthermore, the extractor of sExtCom fails only with negligible probability, and no
over-extraction occur during the extraction. Hence, from exactly the same argument as in the analysis
of M′ above, M distinguishes a commitment to Γ0 and a commitment to Γ1 with non-negligible
advantage. SinceM runs in polynomial time, this is a contradiction. □

45

5.1.3 Proof of Subclaim 2

We now prove Subclaim 2, which says that Hb
k (n, z) outputs fail with at most negligible probability.

Recall that Hb
k (n, z) outputs fail when the CCACom1:1 commitment in Stage 1 of the left session has

more than one committed value.

Proof of Subclaim 2. Since Hb
k (n, z) outputs fail only if the commitment in Stage 1 has more than one

committed value in the left session, we prove this claim by using the binding property of CCACom1:1.
A problem is thatAcca interacts with the committed-value oracle O, which runs in super-polynomial
time; because of the super-polynomial-time power of O, the claim does not follow directly from
the strong computational binding property of CCACom1:1. We overcome this problem by, again,
emulating O in polynomial time using the robust concurrent extraction lemma on CECom. The proof
is similar to that of Claim 4.

Formally, assume for contradiction that Hb
k (n, z) outputs fail with non-negligible probability. Then,

the CCACom1:1 commitment in Stage 1 of the left session has more than one committed value with
non-negligible probability.

We consider the following hybrid experiments.

Hybrid Eb
k:1(n, z): Hybrid Eb

k:1(n, z) is the same as Hb
k (n, z) except for the following.

• At the end of each right session, the oracle O returns ValueΓ(sCEC) to Acca rather than
ValueΓ(s) as the committed value of this session, where s = (s1, . . . , s10n) is the shares
that are committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that

are committed to in the row of CECom in Stage 3, and Γ is the subset that is committed
to in the CCACom1:1 commitment in Stage 1.

• The experiment is terminated at the end of Stage 1 of the left session.

Hybrid Eb
k:2(n, z): Hybrid Eb

k:2(n, z) is the same as Eb
k:1(n, z) except for syntactical differences: Roughly

speaking, Eb
k:2(n, z) is an experiment in which Eb

k:1(n, z) is executed in such a way that we can
use the robust concurrent extraction lemma later. Formally, Eb

k:2(n, z) is defined as follows.
Recall that in the setting of the robust concurrent extraction lemma (Lemma 2), an adversary,
Arobust, launches the robust-concurrent attack by interacting with the online extractor E; specif-
ically,Arobust interacts with E as a party A of an arbitrary two-party protocol Π = ⟨B, A⟩ while
interacting with E as the committers of CECom concurrently and obtaining a value from E at
the end of each session of CECom (where the values that are returned from E are supposed to
be the committed values of the CECom sessions). Then, consider the following Π andArobust.

Π = ⟨B, A⟩: Party A gives a CCACom1:1 commitment to party B, where the tag in the CCACom1:1

commitment is chosen by A.

Arobust: Arobust takes non-uniform advice z and internally executes Eb
k:1(n, z) with the following

changes. (Recall that the execution of Eb
k:1(n, z) involves an interaction with the CCA-

security adversaryAcca.)

• In Stage 1 of the left session, Arobust forwards the CCACom1:1 commitment from
Acca to the online extractor E (who internally emulates party B of Π).

• In Stage 3 of each right session, Arobust receives a row of CECom commitments
from Acca and forwards it to E (who internally emulates the receivers of CECom).
Let α = (α1, . . . , α10n) denote the responses from E at the end of the row of the
CECom commitments.

• At the end of each right session, Arobust sends ValueΓ(α) to Acca as the committed
value of this right session.

46

From the robust concurrent extraction lemma, there exists a robust simulator S such that for
the aboveArobust, there exists an online extractor E that satisfies the following.

• For any row of CECom thatArobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n) be the shares that
are committed to in this row of CECom and α = (α1, . . . , α10n) be the responses from E
at the end of this row. Then, for every j ∈ [10n], if the j-th CECom commitment in this
row is valid and its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .

• S can simulate the robust-concurrent attack betweenArobust and E.

Hybrid Eb
k:2(n, z) is the experiment RealArobust

E,Π (n,⊥, z) of the robust concurrent extraction lemma.

Hybrid Eb
k:3(n, z): Hybrid Eb

k:3(n, z) differs from Eb
k:2(n, z) in that the execution of RealArobust

E,Π (n,⊥, z)
(i.e., the robust-concurrent attack byArobust against E) is replaced with an interaction between
party B of Π and the robust simulator S of the robust concurrent extraction lemma.

First, we notice that in Eb
k:1(n, z), the CCACom1:1 commitment in Stage 1 of the left session

has more than one committed value with non-negligible probability. This is because from the same
argument as in the proof of Claim 7, we can show that the view of Acca in Eb

k:1(n, z) is statistically
close to that in Hb

k (n, z).
Next, we notice that in Eb

k:2(n, z), the CCACom1:1 commitment from Arobust to E has more than
one committed value with non-negligible probability. This is because from the same argument as in
the proof of Claim 8, we can show that an execution of Eb

k:1(n, z) is statistically simulated in Eb
k:2(n, z).

Next, we notice that in Eb
k:3(n, z), the CCACom1:1 commitment from S to B has more than one

committed value with non-negligible probability. This is because from the robust concurrent ex-
traction lemma, we can show that the CCACom1:1 commitment between S and B in Eb

k:3(n, z) is
statistically close to that betweenArobust and E in Eb

k:2(n, z).
Now, since Eb

k:3(n, z) runs in polynomial time andS interacts with an honest receiver of CCACom1:1

in it, we reach a contradiction to the strong computational binding property of CCACom1:1. This con-
cludes the proof of Subclaim 2. □

5.1.4 Proofs of Claims 5 and 6

Claims 5 and 6 can be proven very similarly to Claim 4. For example, consider the case of Claim 5,
which says that the output of Hb

η′(n, z) and that of Hb
η′+1(n, z) are computationally indistinguishable.

Since Hb
η′(n, z) and Hb

η′+1(n, z) differ only in the committed values of a row of CECom, we can prove
Claim 5 by modifying the proof of Claim 4 accordingly. (Recall that in the proof of Claim 4, our goal
is to show the indistinguishability between the outputs of two hybrids that differ only in the values
committed to in a row of sExtCom.) The only problem is that the round complexity of CECom is
O(ℓ) = Õ(log2 n) (whereas the round complexity of sExtCom is O(1)), and thus we cannot use the
robust concurrent extraction lemma in the same way as in the proof of Claim 4. However, since
a CECom commitment can be decomposed into n ExtCom commitments, we can easily solve this
problem by designing a sequence of sub-hybrids such that each neighboring sub-hybrids differ in the
values that are committed to in a row of ExtCom, which has only O(1) rounds.

Below, we give more details about the proofs of Claims 5 and 6, which can be skipped with little
loss of understanding.

Proof sketch of Claim 5. We consider the following sub-hybrids Hb
η′:0(n, z), . . . ,Hb

η′:k(n, z). Recall
that a CECom commitment consists of n ExtCom commitments (see Figure 4).

47

Sub-hybrid Hb
η′:0(n, z): Sub-hybrid Hb

η′:0(n, z) is the same as Hb
η′(n, z).

Sub-hybrid Hb
η′:1(n, z) to Sub-hybrid Hb

η′:n(n, z): For k ∈ [n], Sub-hybrid Hb
η′:k(n, z) is the same as

Hb
η′:0(n, z) except that in Stage 3 of the left session, for every j < Γ the j-th commitment in

the row of CECom is computed as follows. Recall that a CECom commitment consist of n
ExtCom commitments. Then, the left committer commits to 0|s j | instead of s j in the first k
ExtCom commitments and commits to s j in the other (n − k) ExtCom commitments.

Notice that Hb
η′:k(n, z) is identical with Hb

η′+1(n, z).
We can prove Claim 5 by showing that the output of Hb

η′:k−1(n, z) and that of Hb
η′:k(n, z) are com-

putationally indistinguishable for each k ∈ [n], and we can prove this indistinguishability similarly to
Claim 4. In more detail, we can prove this indistinguishability as follows.

1. Design hybrid experiments G′bh:1(n, z), . . . ,G′bh:3(n, z) for h ∈ {k−1, k} in the same way as we de-
sign Gb

h:1(n, z), . . . ,Gb
h:3(n, z) in the proof of Claim 4, where the differences from Gb

h:1(n, z), . . . ,Gb
h:3(n, z)

are the following.

• G′bh:1(n, z), . . . ,G′bh:3(n, z) are defined by modifying Hb
η′:h(n, z) rather than Hb

h(n, z).

• In the definition of G′bh:2(n, z), party B in the two-party protocol Π sends party A a row of
ExtCom commitments rather than a row of sExtCom, and Arobust forwards the ExtCom
commitments from E to the internally emulated Acca as the k-th ExtCom commitment
of each CECom commitment in Stage 3 of the left session (rather than forwarding the
sExtCom commitments in a row of sExtCom in the left session).

2. Prove, as in the proofs of Claims 7 – 10, that the outputs of Hb
η′:h(n, z),G′bh:1(n, z), . . . ,G′bh:3(n, z)

are computationally indistinguishable for each h ∈ {k−1, k} and that the outputs of G′bk−1:3(n, z)
and G′bk:3(n, z) are computationally indistinguishable. The only difference from the proofs of
Claims 7 – 10 is that we use the hiding property of ExtCom (rather than that of sExtCom) when
proving the indistinguishability between the outputs of G′bk−1:3(n, z) and G′bk:3(n, z).

(When proving these indistinguishabilities, it is required to prove that Acca does not cheat in
Hb
η′:h(n, z), and this can be proven in the same way as in the proof of Subclaim 4.)

3. Use a hybrid argument to conclude that the output of Hb
η′:k−1(n, z) and that of Hb

η′:k(n, z) are
computationally indistinguishable.

□

Proof sketch of Claim 6. We can prove the indistinguishability between the outputs of Hb
η′+1(n, z) and

Hb
η′+2(n, z) similarly to Claim 4. In more detail, we can prove this indistinguishability as follows.

1. Design hybrid experiments G′′bh:1(n, z), . . . ,G′′bh:3(n, z) for h ∈ {η′ + 1, η′ + 2} in the same
way as we design Gb

h:1(n, z), . . . ,Gb
h:3(n, z) in the proof of Claim 4, where the difference from

Gb
h:1(n, z), . . . ,Gb

h:3(n, z) is the following.

• In the definition of G′′bh:2(n, z), party B in the two-party protocol Π sends party A a row
of Com commitments rather than a row of sExtCom, andArobust forwards the Com com-
mitments from E to the internally emulatedAcca as the row of Com in Stage 2 of the left
session (rather than forwarding the sExtCom commitments in a row of sExtCom in the
left session).

48

2. Prove, as in the proofs of Claims 7 – 10, that the outputs of Hb
h(n, z),G′′bh:1(n, z), . . . ,G′′bh:3(n, z)

are computationally indistinguishable for each h ∈ {η′ + 1, η′ + 2} and that the outputs of
G′′bη′+1:3(n, z) and G′′bη′+2:3(n, z) are computationally indistinguishable. The only difference
from the proofs of Claims 7 – 10 is that we use the hiding property of Com (rather than that
of sExtCom) when proving the indistinguishability between the outputs of G′′bη′+1:3(n, z) and
G′′bη′+2:3(n, z).

3. Use a hybrid argument to conclude that the output of Hb
η′+1(n, z) and that of Hb

η′+2(n, z) are
computationally indistinguishable.

□

Combining Claims 4, 5, and 6 and Equation (14), we obtain Lemma 5. This concludes the proof of
Lemma 5. □

5.2 Proof of Robustness

Lemma 6. For any constant κ ∈ N, CCACom is κ-robust.

Like the robustness of previous CCA-secure commitments [CLP10, CLP16, LP12], the robust-
ness of our CCA-secure commitment can be shown by using the techniques in the proof of its CCA
security.

Proof of Lemma 6. We show that there exists a ppt simulator S such that for any ppt adversaryA and
any κ-round ppt ITM B, the following indistinguishability holds.{

outputB,AO
[
B(1n, y)↔ AO(1n, z)

]}
n∈N,y,z∈{0,1}n

c≈
{
outputB,S

[
B(1n, y)↔ S(1n, z)

]}
n∈N,y,z∈{0,1}n (15)

First, we consider the following hybrid experiments.

Hybrid D0(n, y, z): Hybrid D0(n, y, z) is an experiment in which AO(1n, x, z) interacts with party
B(1n, y, z) as in the definition of robustness, i.e., A interacts with B while interacting with the
committed-value oracle O in concurrent sessions of CCACom. The output of the experiment is
the joint output of B andA.

Hybrid D1(n, y, z): Hybrid D1(n, y, z) is the same as D0(n, y, z) except that at the end of each right
session (i.e., each session between A and O), the oracle O returns ValueΓ(sCEC) to A rather
than ValueΓ(s) as the committed value of this session, where s = (s1, . . . , s10n) is the shares
that are committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are

committed to in the row of CECom in Stage 3, and Γ is the subset that is committed to in the
CCACom1:1 commitment in Stage 1.

Hybrid D2(n, y, z): Hybrid D2(n, y, z) is the same as D1(n, y, z) except for syntactical differences:
Roughly speaking, D2(n, y, z) is an experiment in which D1(n, y, z) is executed in such a way
that we can use the robust concurrent extraction lemma later. Formally, D2(n, y, z) is defined
as follows. Recall that in the setting of the robust concurrent extraction lemma (Lemma 2), an
adversary,Arobust, launches the robust-concurrent attack by interacting with the online extractor
E; specifically, Arobust interacts with E as a party A of an arbitrary two-party protocol Π while
interacting with E as the committers of CECom concurrently and obtaining a value from E at
the end of each session of CECom (where the values that are returned from E are supposed to
be the committed values of the CECom sessions). Then, consider the following Π andArobust.

49

Π: In Π, the κ-round ppt ITM B (for which we are proving robustness of CCACom) interacts
with party A honestly.

Arobust: Arobust takes a non-uniform advice z and internally executes D1(n, y, z) with the fol-
lowing changes. (Recall that the execution of D1(n, y, z) involves an interaction withA.)
• In the session betweenA and B,Arobust forwards all the messages fromA to E (who

internally emulates B) and forwards back all the messages from E toA.
• In Stage 3 of each right session, Arobust receives a row of CECom commitments

fromA and forwards it to E (who internally emulates the receivers of CECom). Let
α = (α1, . . . , α10n) denote the responses from E at the end of the row of the CECom
commitments.

• At the end of each right session, Arobust sends ValueΓ(α) to A as the committed
value of this right session.

The output ofArobust is that of the internally emulatedA.

From the robust concurrent extraction lemma, there exists a robust simulator Srobust such that
for the aboveArobust, there exists an online extractor E that satisfies the following.

• For any row of CECom thatArobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n) be the shares that
are committed to in this row of CECom and α = (α1, . . . , α10n) be the responses from E
at the end of this row. Then, for every j ∈ [10n], if the j-th CECom commitment in this
row is valid and its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .
• Srobust can simulate the robust-concurrent attack betweenArobust and E.

Hybrid D2(n, y, z) is the experiment RealArobust
E,Π (n, y, z) of the robust concurrent extraction lemma.

The output of D2(n, y, z) is that of the internally emulated RealArobust
E,Π (n, y, z).

Hybrid D3(n, y, z): Hybrid D3(n, y, z) differs from D2(n, y, z) in that the execution of RealArobust
E,Π (n, y, z)

(i.e., the robust-concurrent attack between Arobust and E) is replaced with an interaction be-
tween party B of Π and the robust simulator Srobust of the robust concurrent extraction lemma.
The output of D3(n, y, z) is the joint output of B and Srobust.

For k ∈ {0, . . . , 3}, let Dk(n, y, z) be the random variable for the output of Dk(n, y, z).
Our simulator S is the simulator Srobust in D3(n, y, z). Notice that from the constructions of the

hybrids, we have

D0(n, y, z) = outputB,AO
[
B(1n, y)↔ AO(1n, z)

]
,

D3(n, y, z) = outputB,S
[
B(1n, y)↔ S(1n, z)

]
.

First, we notice that we have {D0(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D1(n, y, z)}n∈N,y,z∈{0,1}n . This is because

from the same argument as in the proof of Claim 7, we can show that the view of A in D1(n, y, z) is
statistically close to that in D0(n, y, z).

Next, we notice that we have {D1(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D2(n, y, z)}n∈N,y,z∈{0,1}n . This is because

from the same argument as in the proof of Claim 8, we can show that an execution of D1(n, y, z) is
statistically simulated in D2(n, y, z).

Next, we notice that we have {D2(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D3(n, y, z)}n∈N,y,z∈{0,1}n . This is because

from the robust concurrent extraction lemma, we can show that the interaction between Srobust and B
in D3(n, y, z) is statistically close to that betweenArobust and E in D2(n, y, z).

Now, from the hybrid argument, we obtain Indistinguishability (15). □

Combining Lemmas 5 and 6, we obtain Theorem 1. This concludes the proof of Theorem 1. □

50

6 Black-Box Composable MPC Protocol

In this section, we show our black-box construction of a general MPC protocol. Our protocol is secure
in the angel-based UC framework [PS04, CLP10, CLP16]. Roughly speaking, this framework (called
theH-EUC framework) is the same as the UC framework [Can01] except that both the adversary and
the environment in the real and ideal worlds have access to a super-polynomial-time functionalityH
called an angel (or a helper). For details, see [PS04, CLP10, CLP16].

We use the results of Canetti et al. [CLP10, CLP16] and Lin and Pass [LP12]. Let ⟨C,R⟩ be any
RCCA-round robust CCA-secure commitment scheme, ⟨S ,R⟩ be any ROT-round semi-honest obliv-
ious transfer protocol, and H be a helper that breaks ⟨C,R⟩ in essentially the same way as the
committed-value oracle of ⟨C,R⟩ does. Then, Lin and Pass [LP12] showed that there exists a black-
box O(max(ROT,RCCA))-round protocol that securely realizes the ideal oblivious transfer functionality
FOT in theH-EUC framework.

Theorem 2 ([LP12]). Assume the existence of an RCCA-round robust CCA-secure commitment scheme
⟨C,R⟩ and the existence of an ROT-round semi-honest oblivious transfer protocol ⟨S ,R⟩. Then, there
exists an O(max(RCCA,ROT))-round protocol that H-EUC-realizes FOT . Furthermore, this protocol
uses ⟨C,R⟩ and ⟨S ,R⟩ only in a black-box way.

In [CLP10, CLP16], Canetti et al. showed the following.

Theorem 3 ([CLP10, CLP16]). For every well-formed functionality F , there exists a constant-round
FOT -hybrid protocol thatH-EUC-realizes F .

Then, we obtain the following theorem by combining Theorems 1, 2, and 3.

Theorem 4. Assume the existence of ROT-round semi-honest oblivious transfer protocols. Then, there
exists a super-polynomial-time helperH such that for every well-formed functionality F , there exists
a max(Õ(log2 n),O(ROT)))-round protocol that H-EUC-realizes F . Furthermore, this protocol uses
the underlying oblivious transfer protocol only in a black-box way.

References

[Bar05] Boaz Barak. How to play almost any mental game over the net - Concurrent composi-
tion via super-polynomial simulation. In 46th FOCS, pages 543–552. IEEE Computer
Society Press, October 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box
construction of a non-malleable encryption scheme from any semantically secure one.
In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 427–444. Springer,
Heidelberg, March 2008.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-
box constructions of adaptively secure protocols. In Omer Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 387–402. Springer, Heidelberg, March 2009.

[CDMW17] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. A black-box
construction of non-malleable encryption from semantically secure encryption. Journal
of Cryptology, Mar 2017.

51

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg,
August 2001.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. Journal of Cryptology,
19(2):135–167, April 2006.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In 34th ACM STOC, pages 494–503.
ACM Press, May 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st FOCS, pages 541–550. IEEE
Computer Society Press, October 2010.

[CLP16] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in
the plain model from standard assumptions. SIAM Journal on Computing, 45(5):1793–
1834, 2016.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic functions.
Journal of the ACM, 50(6):852–921, 2003.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure com-
putation in constant rounds. In David Pointcheval and Thomas Johansson, editors, EU-
ROCRYPT 2012, volume 7237 of LNCS, pages 99–116. Springer, Heidelberg, April
2012.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In 53rd FOCS, pages 51–60. IEEE
Computer Society Press, October 2012.

[GLP+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-efficient
concurrently composable secure computation via a robust extraction lemma. In Yev-
geniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 260–289. Springer, Heidelberg, March 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704. ACM
Press, June 2011.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In Ran
Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 412–426. Springer, Heidelberg,
March 2008.

52

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions of protocols for secure computation. SIAM Journal on Computing,
40(2):225–266, 2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box construc-
tions for secure computation. In Jon M. Kleinberg, editor, 38th ACM STOC, pages
99–108. ACM Press, May 2006.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round black-
box construction of composable multi-party computation protocol. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 343–367. Springer, Heidelberg, Febru-
ary 2014.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without
set-up. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 461–478. Springer, Heidelberg, August 2012.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Ran Canetti, editor,
TCC 2008, volume 4948 of LNCS, pages 571–588. Springer, Heidelberg, March 2008.

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental se-
curity from number theoretic assumptions. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 343–359. Springer, Heidelberg, March 2006.

[MOSV06] Daniele Micciancio, Shien Jin Ong, Amit Sahai, and Salil P. Vadhan. Concurrent zero
knowledge without complexity assumptions. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 1–20. Springer, Heidelberg, March 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 160–
176. Springer, Heidelberg, May 2003.

[PLV12] Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for UC from only OT. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 699–717. Springer, Heidelberg, December
2012.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In 43rd FOCS, pages 366–375. IEEE Computer Society
Press, November 2002.

53

Commit Phase

The committer C and the receiver R receive common inputs 1n and tag ∈ {0, 1}2t(n)−1
. To commit

to v ∈ {0, 1}, the committer C chooses random v1, . . . , v2t(n)−1 ∈ {0, 1}n such that v =
⊕

j v j, and
for each j ∈ [2t(n)−1] in parallel, C commits to v j by using CCACom with tag (j, tag j), where
tag j is the j-th bit of tag.

Decommit Phase

C sends v to R and decommits all the CCACom commitments.

Figure 15: One-one CCA-secure commitment scheme CCACom1:1.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal
composability without trusted setup. In László Babai, editor, 36th ACM STOC, pages
242–251. ACM Press, June 2004.

[PTV14] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam.
Concurrent zero knowledge, revisited. Journal of Cryptology, 27(1):45–66, January
2014.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
403–418. Springer, Heidelberg, March 2009.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 415–
431. Springer, Heidelberg, May 1999.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In 51st FOCS, pages 531–540. IEEE Computer Society Press, October 2010.

A One-One CCA Commitment for Long Tags from Parallel CCA Com-
mitment for Short Tags

Lemma 7. Let r(·) and t(·) be arbitrary functions such that t(n) = O(log n), and let CCACom be an
r(n)-round commitment scheme that satisfies strong computational binding property and parallel CCA
security for tags of length t(n). Then, there exists an r(n)-round commitment scheme CCACom1:1 that
satisfies strong computational binding property and one-one CCA security for tags of length 2t(n)−1.
Furthermore, if CCACom uses the underlying one-way function only in a black-box way, so does
CCACom1:1.

Proof . CCACom1:1 is shown in Figure 15. The strong computational binding property follows from
that of CCACom. Thus, it remains to show that CCACom1:1 is one-one CCA secure.

We show that for any ppt adversaryA that interacts with O only in a single session, the following
are computationally indistinguishable:

• {IND0(CCACom1:1,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(CCACom1:1,A, n, z)}n∈N,z∈{0,1}∗

54

Without loss of generality, we can assume that the tag that A uses in the right session is always
different from the tag that A uses in the left session. (This is because instead of using the same tag
in the left and right sessions, A can use different tags in the left and right sessions and then output
⊥; recall that the output of the experiment is ⊥ whenever A uses the same tag in the left and right
sessions.)

Assume for contradiction that there exist a ppt distinguisher D and a polynomial p(·) such that
for infinitely many n, there exists z ∈ {0, 1}∗ such thatD distinguishes IND0(CCACom1:1,A, n, z) and
IND1(CCACom1:1,A, n, z) with advantage at least 1/p(n). In the following, we fix any such n and z.

Let us consider the following ppt adversary B against CCA security of CCACom. B internally in-
vokesA and simulates the experiment IND0(CCACom1:1,A, n, z) forA as follows. First, B chooses
random j∗ ∈ [2t(n)−1], and for each j ∈ [2t(n)−1] \ { j∗}, B chooses random v j ∈ {0, 1}n. Then, in the left
session, when A outputs challenge values m0,m1 ∈ {0, 1}n and tag tag = (tag1, . . . , tag2t(n)−1), B sets
v(b)

j∗ := mb ⊕
⊕

j, j∗ v j for each b ∈ {0, 1} and sends challenge v(0)
j∗ , v

(1)
j∗ and tag (j∗, tag j∗) ∈ {0, 1}t(n)

to the external left committer. When B receives a CCACom commitment from the left commit-
ter (the committed value is either v(0)

j∗ or v(1)
j∗), B forwards it to A. At the same time, B gener-

ates CCACom commitments to (v j) j, j∗ and sends them to A. In the right session, B forwards
a CCACom1:1 commitment from A to O as 2t(n)−1 parallel commitments of CCACom with tags
{(j, t̃ag j)} j∈[2t(n)−1]. Then, B receives (v1, . . . , v2t(n)−1) from O, and if v j , ⊥ for all j ∈ [2t(n)−1], B
returns v :=

⊕
j v j toA; if v j = ⊥ for some j, B returns ⊥ toA. Let y be the output of the simulated

experiment IND0(CCACom1:1,A, n, z), and let β ← D(y). Then, if tag j∗ = t̃ag j∗ , B outputs fail,
and otherwise, A outputs fail with probability (N − 1)/N and outputs β with probability 1/N, where
N = |{ j s.t. tag j , t̃ag j}| is the Hamming distance between tag and t̃ag.

We reach a contradiction by showing that B breaks the CCA security of CCACom; in particular,

|Pr [IND0(CCACom,B, n, z) = 1] − Pr [IND1(CCACom,B, n, z) = 1]| ≥ 1
p(n) · poly(n)

.

For b ∈ {0, 1}, let βb be the random variable representing the value of β in INDb(CCACom,B, n, z)
and abortb be the event that B outputs fail in INDb(CCACom,B, n, z). Since B internally simulates
IND0(CCACom1:1,A, n, z) or IND1(CCACom1:1,A, n, z) perfectly depending on the value that is
committed to in the left session, we have

Pr
[
βb = 1

]
= Pr

[
D(INDb(CCACom1:1,A, n, z)) = 1

]
.

Hence, from our assumption, we have∣∣∣Pr
[
β0 = 1

] − Pr
[
β1 = 1

]∣∣∣ ≥ 1
p(n)

.

Also, since we assume that it always holds that tag , t̃ag, for each b ∈ {0, 1} we have

Pr [¬abortb] =
N

2t(n)−1 ·
1
N
=

1
2t(n)−1 .

Note that when tag j∗ , t̃ag j∗ , a tag (j, t̃ag j) in the right session is different from the tag (j∗, tag j∗) in
the left session for each j ∈ [2t(n)−1]. Hence, when abortb does not occur, the output of INDb(CCACom,
B, n, z) is βb. Thus, we have

|Pr [IND0(CCACom,B, n, z) = 1] − Pr [IND1(CCACom,B, n, z) = 1]|
=

∣∣∣Pr
[
β0 = 1 ∧ ¬abort0

] − Pr
[
β1 = 1 ∧ ¬abort1

]∣∣∣
=

∣∣∣Pr
[
β0 = 1

] − Pr
[
β1 = 1

]∣∣∣ · 1
2t(n)−1

≥ 1
p(n) · poly(n)

.

55

In the third line, we use Pr
[
βb = 1 ∧ ¬abortb

]
= Pr

[
βb = 1

] · Pr [¬abortb] (i.e., the independence
between the event abortb and the event that βb = 1, which follows from the fact that abortb always
occurs with probability 1/2t(n)−1, independently of the values of tag and t̃ag). This concludes the
proof. □

56

