
Towards a Full-Featured Implementation of Attribute

Based Credentials on Smart Cards⋆

Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

Radboud University Nijmegen, ICIS DS, Nijmegen, The Netherlands
{a.delapiedra, jhh, pim}@cs.ru.nl

Abstract. Attribute-based Credentials (ABCs) allow citizens to prove certain properties
about themselves without necessarily revealing their full identity. Smart cards are an at-
tractive container for such credentials, for security and privacy reasons. But their limited
processing power and random access storage capacity pose a severe challenge. Recently,
we, the IRMA team, managed to fully implement a limited subset of the Idemix ABC
system on a smart card, with acceptable running times. In this paper we extend this
functionality by overcoming the main hurdle: limited RAM. We implement an efficient
extended Pseudo-Random Number Generator (PRNG) for recomputing pseudorandom-
ness and reconstructing variables. Using this we implement Idemix standard and domain
pseudonyms, AND proofs based on prime-encoded attributes, and equality proofs of rep-
resentation modulo a composite, together with terminal verification and secure messaging.
In contrast to prior work that only addressed the verification of one credential with only
one attribute (particularly, the master secret), we can now perform multi-credential proofs
on credentials of 5 attributes and complex proofs in reasonable time. We provide a detailed
performance analysis and compare our results to other approaches.

1 Introduction

In Europe several eID systems supporting electronic transactions (particularly in Austria, Bel-
gium, Estonia, Finland, Germany, Netherlands, Portugal, Spain and Sweden) exist. These sys-
tems vary a lot in terms of functionality, security levels, and the amount of privacy protection
and user control they offer [28,32], and are extensively studied in projects such as Future ID and
STORK [1, 2]. Using eIDs, the massive utilization of username/password pairs on the Internet
could be replaced by a Single-Sign-On (SSO) approach. For this reason a wide range of identity
federation systems have been proposed in the last decade, such as SAML [20] and OpenID [33].
These systems rely on a three-party scheme, distinguishing a user, a Service Provider (SP), and
an Identity Provider (IdP). To access the service, the user logs in to the IdP, who provides an
authentication token to the SP containing all the necessary information. Several security and pri-
vacy risks associated with this approach have been identified [30]. For example, the IdP knows
every transaction its user performs [5].

Attribute Based Credentials (ABC) solve these problems, as follows. Credentials are secure
containers of attributes, that can be selectively disclosed to the SP by the user. Moreover, the un-
derlying cryptographic protocols are unlinkable, ensuring that repeated use of the same credential
cannot be linked to one another. Despite the growing number of ABC systems (e.g. [6, 10, 14]),

⋆ The work described in this paper has been supported under the ICT theme of the Cooperation
Programme of the 7th Framework Programme of the European Commission, GA number 318424
(Future ID). This research is conducted within the Privacy and Identity Lab (PI.lab) and funded by
SIDN.nl (http://www.sidn.nl). The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions to improve the quality of the paper.

2 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

there are very few applications of such systems in practice. ABC systems rely on the secrecy
of a master secret that binds all credentials to a single user. For security and privacy reasons
it is therefore preferable to store this master secret and the associated credentials on a smart
card, and run all cryptographic protocols (e.g. for issuing credentials and selectively disclosing
attributes) on the smart card itself. This way the master secret never leaves the card. However,
the limited processing power and random access storage capacity of the smart card pose a se-
vere challenge for implementing the complex cryptographic protocols. Only recently, the IRMA1

team, managed to fully implement a limited subset of the Idemix ABC system on a smart card,
with acceptable running times [36]. In this paper we extend this functionality by overcoming the
main hurdle: limited RAM.

Our contributions. We first describe, in Section 2, different architectures and implementa-
tions of attribute based credentials presented in the literature. Then, in Section 3 we introduce
the actual capabilities of the IRMA card, its execution model and its current limitations. In
Section 4, we present the design of a PRNG for reducing the RAM requirements of the execution
of proofs of knowledge in smart cards. This enables us to extend the number of attributes per
credential, beyond the current IRMA limit of 5 attributes per credential. Our construction for
recomputing randomness incurs an overhead of only 39.81 ms (3.66 %). Next, we broaden that ap-
proach to implement standard and domain pseudonyms in Section 5. Standard pseudonyms add
401.60 ms overhead, while domain pseudonyms in combination with standard pseudonyms add
658.63 ms overhead. Moreover, we can now perform equality proofs of representation across dif-
ferent credentials by combining this technique with variable reconstruction in RAM (e.g. 2,261.19
ms in the best case across 2 credentials, while the rest of proposed works in the literature only
addressed the case of verifying one credential with one attribute (namely, the master secret) and
obtained performance figures beyond 4 and 7 seconds [9,35]). This is discussed in Section 6. We
implement the terminal verification and a secure channel for ABCs from [4] in Section 7. For each
of these constructions we provide a detailed performance analysis, providing performance figures
of our own constructions as well as giving those of alternative approaches (tested on the same
hardware), and comparing the results. Finally, we provide a performance analysis of all these
operations using prime-encoded attributes [13] in Appendix A. In this respect, Bichsel et al. esti-
mated an extra computation time of 1,684 ms over their verification operation with one attribute
(i.e. the master secret) using a modulus of 1,536 bits in the prime-encoded AND proof [9]. That
is 1.684 + 10.550 = 12.234 seconds. In our case (Appendix A) we can perform AND proofs with
credentials of 5 attributes in 1,214.24 ms (hiding all the attributes) and we only require 1,547.83
ms for proving the ownership of the 5 attributes revealing them all using a modulus of 1,024 bits.
In this case, we required 1,579.53 ms when proving the ownership of a pseudonym. Moreover, we
show that the computation of equality proofs of representation involving several credentials on
the smart card is also feasible relying on prime-encoding attributes.

2 Related work

Generally, private ABCs rely on the idea of a blind and randomizable signature over a set of
attributes [21]. A user that owns this type of signature can perform authentication operations
by selectively disclosing a subset of attributes that describes her digital identity. Moreover, it is
not possible to link transactions to signatures. Modern anonymous credential systems such as
Idemix [14] and U-Prove [10] rely on that building block in combination with proofs of knowl-
edge [22]. In the last few years, a myriad of credential systems has been implemented in smart
cards [8, 9, 31, 35, 36]. Due to their availability in the market and their functionalities, the Java

1 https://www.irmacard.org (accessed August 11, 2014)

CANS 2014 3

Card and MULTOS platforms are generally the preferred targets. Bichsel et al. presented the
first implementation of Idemix on the Java Card platform in 2009. Proving the possession of one
credential with one attribute (i.e. the master secret), required 7.4 seconds (1,280-bit modulus)
and 10.55 seconds with a modulus of 1,536 bits [9]. Sterckx et al. followed a similar approach for
implementing the signing protocol of Direct Anonymous Attestation (DAA) in Java Cards [35].
In their design, one transaction requires 4.2 seconds using a modulus of 1,024 bits. Nonetheless,
the Java Cards 2 that Bichsel et al. and Sterckx et al. relied on do not provide direct access
to modular arithmetic operations. Consequently, these authors had to rely on different strate-
gies for performing modular multiplications and exponentiations, thus undermining the overall
performance of the implementation. The IRMA card is based on the MULTOS platform embed-
ded on the Infineon SLE78 chip. In contrast, this chip supports a variety of modular arithmetic
operations that are crucial in the implementation of anonymous credentials together with asym-
metric encryption primitives (RSA), signature schemes (RSA, ECDSA), symmetric encryption
techniques (AES, 3DES) and hashing algorithms (SHA-1, SHA-2). Vullers et al. implemented
in this platform the issuing and selective disclosure operations of Idemix. Using credentials of
5 attributes, the disclosure of all the attributes requires 0.947 seconds whereas the worst case
(hiding the 5 attributes) is performed in 1.454 seconds [36].

3 The IRMA card

IRMA relies on the specification of the Identity Mixer Anonymous Credential System [14] and is
the first full card (i.e. no off-card or precomputation based) implementation of Idemix on smart
cards suitable for real life transactions i.e the performance of a typical operation is reduced to
1–1.5 seconds [36] in comparison to the first attempts for implementing anonymous credentials
in the literature (Section 2). Idemix provides different functionalities for proving the possession
of attribute-based credentials and their properties e.g. [12, 18].

Idemix relies on different cryptographic blocks such as the Camenisch-Lysyanskaya (CL)
signature, secure under the Strong RSA assumption [16]. Each credential can be categorized
as an attribute container, protected by a CL signature generated by an issuer. This signature
guarantees the integrity of the credentials i.e. modification, deletion or adding new attributes to
a credential by the user can be easily detected by a verifier. Moreover, each credential is linked
to the cardholder by her master secret, securely stored on the card in IRMA.

After the issuing process, the users owns a CL signature over one credential, represented by
the triple (A, e, v) over (m0,m1, ...,m5). This information is stored in the card for each credential.
The CL signature is created by an issuer according to its public key (S,Z,R0, R1, ..., R5 ∈ QRn, n)
using its secret key (p, q). For instance, a CL signature over a set of attributes (m0, ...,m5) is
computed by selecting A, e and v s.t. Ae = ZR−m0

0 R−m1

1 R−m2

2 R−m3

3 R−m4

4 R−m5

5 S−v mod n.
Then, a third party can check the validity of the signature by using the issuer’s public key and
the tuple (A, e, v) as Z ≡ AeRm0

0 Rm1

1 Rm2

2 Rm3

3 Rm4

4 Rm5

5 Sv mod n. In IRMA, for performance
reasons, the size of the modulus n is restricted to ln = 1, 024 bits whereas the attributes are
represented as lm = 256 bits. The rest of parameters are set as l′e = 120, lø = 80, lH = 256,
le = 504, and lv = 1, 604 bits2.

The key property of the CL signature in Idemix is to prove its possession without revealing
additional information and performing the selective disclosure of the cardholder’s attributes
(Protocol 1) via discrete logarithm representation modulo a composite proofs of knowledge [25].

2 The term l′
e represents the size of the interval where the e values are selected, lø is the security

parameter of the statistical ZKP, and lH is the domain of the hash function used in the Fiat-Shamir
heuristic (we use SHA-256). Finally le and lv are related to the size of e and v parameters of the CL
signature.

4 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

Protocol 1: Message flow for proving the ownership of a CL signature over a set of attributes
Prover Public Verifier

Z
∏

i∈Ar
R

−mi

i = A′eSv′ ∏
i∈Ar̄

R
mi

i S, Z, R0, R1, ..., R5 ∈ QRn, n A′, v′, mi∈Ar

Signature randomization

rA ∈R {0, 1}ln+lø

A′ = ASrA mod n

v′ = v − erA

e′ = e− 2le−1

Generation of t values

ẽ ∈R ±{0, 1}l′

e
+lø+lH

ṽ′ ∈R ±{0, 1}lv+lø+lH

m̃i ∈R ±{0, 1}lm+lø+lH (i ∈ Ar̄)

Z̃ = A′ẽ(
∏

i∈Ar̄
R

m̃i

i)Sṽ′ Z̃
−−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−− c ∈R {0, 1}lH

Generation of s values

ê = ẽ + ce′

v̂′ = ṽ′ + cv′

m̂i = m̃i + cmi(i ∈ Ar̄)
ê,v̂′,{m̂i}i∈Ar̄−−−−−−−−−−−−−−−−−−−−−−−−→ A′êSv̂′ ∏

i∈Ar̄
R

m̂i

i

?
=

Z̃ (Z
∏

i∈Ar
R

−mi

i)c

The typical 3-movement protocol (commitment, challenge and response) depicted in Pro-
tocol 1 is transformed into a Non-Interactive Proof of Knowledge (NIZK) via the Fiat-Shamir
heuristic [24]. Therefore, the challenge c is computed by the card via a collision-resistant hash-
function over the commitments and common values. Accordingly, an empty proof of possession
over a set of attributes (m0, ...,m5) is represented using the Camenisch-Staedler notation [19]
as: NIZK: {(ε′, ν′, α0, ..., α5) : Z ≡ ±Rα0

0 Rα1

1 Rα2

2 Rα3

3 Rα4

4 Rα5

5 Aε
′

Sν
′

mod n} being the Greek
letters (ε′, ν′) and (α0, ..., α5) the values of the signature and the set of attributes proved in
zero knowledge and not revealed i.e. ∈ Ar̄. The set of revealed attributes is represented by Ar.
Similarly, one can prove the CL signature over a set of attributes revealing some of them. For
instance, revealing m1 and hiding (m0,m2,m3,m4,m5) would be represented in zero knowledge
as NIZK: {(ε′, ν′, α0, α2, α3, α4, α5) : ZR−m1

1 ≡ ±Rα0

0 Rα2

2 Rα3

3 Rα4

4 Rα5

5 Aε
′

Sν
′

mod n}.
In IRMA, the prover part of Idemix is implemented in the card as a set of states

(PROVE_CREDENTIAL, PROVE_COMMITMENT, PROVE_SIGNATURE and PROVE_ATTRIBUTE) that mimics
the Prover-Verifier interaction between a terminal and the smart card3. In each transaction,
both entities exchange ISO 7816 APDUs that retrieve and write data in the smart card volatile
(RAM) and non-volatile (EEPROM) memories [27]. When the card receives a verification request,
it changes its initial state to PROVE_CREDENTIAL. Then, it acquires a presentation policy with
the description of the attributes that must be revealed (i.e. those {mi}i∈Ar

) and hidden (i.e.
{mi}i∈Ar̄

). Then, the card performs the operations depicted in Protocol 1 (PROVE_COMMITMENT).
Afterwards, the card changes its working state to PROVE_SIGNATURE. In this state, the verifier can
request the randomized tuple (A′, ê, v̂′). Finally, the card switches to PROVE_ATTRIBUTE, where
the verifier is allowed to request the set of revealed and hidden attributes related to the proof.

3 We refer the reader to [36] for a description about how a (A, e, v) triple is obtained by the card.

CANS 2014 5

3.1 Execution model

The latency of the verification operation can be modeled first according to the number of at-
tributes per credential (n = 5 in the case of IRMA) together with the number of attributes that
are revealed (r) or hidden. If we consider the worst case (all the attributes are hidden), n− r+ 1
extra computations will be required for generating each m̂i value (one extra operation is consid-
ered since the master secret is always hidden). Otherwise, the mi attributes are sent in clear to
the verifier. Eq. 1 represents the overall latency of the four states described above according to
the (n, r) parameters.

Tverify(n, r) = Tsel cred + Tgen commit(n, r) +
∑

i=A,e,v

Tget sig(i) +

n∑

i=1

Tget attr(i) (1)

The time that Tsel cred comprises is related to the PROVE_CREDENTIAL state whereas
Tgen commit(n, r) represents PROVE_COMMITMENT and Tget sig(i)\Tget attr(i) are related to the
PROVE_SIGNATURE and PROVE_ATTRIBUTE states respectively. Furthermore, the latency of the
PROVE_COMMITMENT state can be expanded to the following expression:

Tgen commit(n, r) =
∑

i=A,v

Trand sig(i)+Tgen t values(n−r+1)+Thash+Tgen s values(n−r+1) (2)

Eq. 2 represents the randomization of the CL signature and the generation of the t values,
s values and the challenge c. Further, Tgen t values represents the latency due to the computation
of the commitment according to the number of non-disclosed values i.e. Σn−r+1

i=1 Tmul exp(R
m̃i

i).

This value is then multiplied by A′ẽ ·S ṽ
′

as described in Section 3. In addition, n− r random m̃i

values must be generated. Finally, the s values are generated according to the number of hidden
attributes:

Tgen s values(n− r + 1) = Tgen ê + Tgen v̂′ +

r∑

i=0

Tgen m̂i
(3)

From the Equations 1-3 we notice the following. First, that the pseudorandomness used to
derive the (ẽ, ṽ′) tuple and the m̃i values are used in both Tgen t values and Tgen s values. Second,
that the overall verification time is dominated by the number of non-revealed attributes (n− r)
that requires: (1) the modular exponentiations computed during the generation of the t values

and (2), the random generation of the m̃i values and the computation of the correspondent m̂i

value as m̂i = m̃i + cmi. All in all, any possible optimization in the implementation must be
driven by: (1) recomputing the pseudorandomness utilized in the m̃ values and (2) reducing the
overhead of the required computation for hiding the selected attributes.

3.2 Memory model

In the current IRMA implementation, the CL signatures and the credential attributes are stored
in EEPROM. Besides, the intermediate values m̂i and the randomized signature are computed in
RAM in order to speed-up the overall performance of the verification operation. Since the RAM
only comprises 960 bytes (together with 1,160 bytes of transient memory), we must consider how
to scale the operations with credentials of a large number of attributes in order to deal with those
intermediate values. In this respect, independently storing each m̂i value for large credentials is
impossible due to the RAM restrictions. In the current implementation, based on 5 + 1 m̂i values
(taking into account the master secret, which is always hidden), one verification session requires
74 · 6 = 444 bytes of RAM, 74 bytes is the required space for storing one m̂i value. Finally, given
the current memory utilization, any optimization should be based on rearranging the storage of
the random m̃i values.

6 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

4 Preliminary optimizations

Our goal is to generate as many m̂i values as needed without being limited by the current RAM
size . This would make it possible to operate with larger credentials in the card. As noted before,
these values are used in two parts of the generation of the NIZK: (1) during the computation
of the commitment and (2) for hiding the desired attributes in the generation of the s values.
In the seminal paper of Bichsel et al. they suggested the utilization of a PRNG to regenerate
the random exponent of the Idemix verification operation in the case of one credential with one
attribute (i.e. the master secret) [9]. Consequently, we can extend this approach to regenerate all
the involved pseudorandomness, not only the random exponents, for supporting credentials with
a large number of attributes and implementing: pseudonyms, domain pseudonyms and AND
proofs. Moreover, we coupled this technique with variable reconstruction in RAM for making
possible to compute multi-credential proofs in the case of the equality proofs of representation.

Using cryptographic primitives such as block ciphers and Message Authentication Codes
(MACs), conjectured as pseudorandom generators under the assumption that one-way functions
exist (cf. [26,29]), a wide range of PRNGs has been proposed in the literature e.g. [7,23]. There-
fore, it is expected that the output of these constructions would be indistinguishable from random
by any probabilistic polynomial time algorithm or distinguisher. Among the schemes described
in [7,23] (e.g. Fortuna, HMAC DBRG and HASH DBRG), all share the same behaviour: (1) acquire new
entropy, (2) process the entropy into a seed and, if needed, add a personalizing string, and (3)
generate pseudorandom bits using a cryptographic primitive (e.g. a block cipher) categorized as
Generator Function (GF). The HASH DBRG PRNG utilizes SHA-1/-2 for generating pseudoran-
domness whereas the HMAC DBRG PRNG can optionally rely on one of those primitives following
the HMAC construction, where a key k is also part of the initial state. Finally, a PRNG can be
constructed using a block cipher such as Fortuna [23], which only enciphers a counter using a
key derived from an entropy input and processed via SHA-256.

In Table 1, we present the performance results in our target device for computing one m̂i

value (74 bytes) using six different PRNGs. We also present the number of calls to the GF in
each case to generate |m̂i| bytes. Notice that the PRNGs based on HMACs are considerably
slower due to the fact that they require performing two hash operations per call together with
two updating functions [7]. Moreover, the performance of using Fortuna and the PRNG based
on SHA-1 is similar, given that the number of calls to the SHA-1 hash algorithm is almost equal
in both cases (26.33 ms and 29.32 ms respectively). However, when a considerable amount of
pseudorandomness per session is generated (particularly, during the execution of a proof that
involves more than one credential), a difference of 3 ms can be significant4. In this respect, we
have lowered the security level to AES-128 (24.76 ms per m̂i).

In our case, during each verification session, a seed k is generated as the last 128 bits of
the SHA-1 hash operation of the concatenation of the MULTOS PRNG output together with
the string “IRMA”. Then, this seed is fed into the GF (AES-128) as the key. At the beginning
of each verification session a counter c is initialized to 0 and incremented in the generation of
each pseudorandom block of 128 bits. When the verification process is finished the seed stored in
RAM is erased by the discharge of the capacitors of the smart card and in the next verification
session, a new seed is generated. Thus, this design provides backtracking resistance between
verification sessions. Moreover, prediction resistance is ensured if we rely on the security of the

4 See, for instance, the number of required calls in our approach for performing equality proofs of
representation (Section 6, Table 4). In that case, only generating the pseudorandomness associated to
a (A′, ê, v̂′) triple for one credential of 5 attributes needs 9 + 16 + 4 + 5 · 6 = 59 calls to the PRNG if
all the attributes are hidden.

CANS 2014 7

Table 1: Performance of PRNG candidates in the IRMA card for generating an m̂i value of 74
bytes

Work PRNG GF Block size (bytes) No. calls (GF) Delay (ms)

[7] HMAC DBRG SHA-1 20 12 48.64
[7] HASH DBRG SHA-1 20 5 26.33
[7] HMAC DBRG SHA-256 32 10 106.78
[7] HASH DBRG SHA-256 32 4 47.47
[23] Fortuna AES-256 16 5 29.32

This work IRMA AES-128 16 5 24.76

AES block cipher. The PRNG runs the following sequence in this case: initPRNG() ⇒ m̃i ⇒
resetPRNG() ⇒ m̃i.

4.1 Results for verifying a full credential

In our implementation we proceed as follows. We replace the former 74 ·6 bytes for storing all the
m̂i values by three values maintained in RAM during the verification session: the seed/AES key
(128/8 = 16 bytes), the counter c (16 bytes) and 74 bytes for the m̂i values that are generated
when required. Thus, when an m̂ value needs to be generated, we get as many blocks as needed for
filling the 74 random bytes space and the counter c is incremented after each block is computed.
This process is repeated two times. First, during the computation of the t value and second,
during the s values generation. In the second part, the PRNG is reset to its initial state (by
choosing c = 0 again) in order to obtain the same output as the first time without storing all the
reconstructed m̂ values. This requires 74 + 16 + 16 = 106 bytes of RAM instead of 74 · 6 = 444
bytes. Nonetheless, an extra latency for computing all the m̂ values at run time is expected. This
is depicted in Table 25. We have considered both worst cases (WC, where all the attributes are
hidden) and best cases (BC, where only the master secret (m0) is hidden).

Table 2: Performance overhead while verifying five attributes using a custom PRNG for gener-
ating the m̂ values (ms)

Work Encoding Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5) Total

This work normal BC 103.10 840.73 14.12, 11.52, 19.54 38.32, 11.51*5 1,084.91
This work normal WC 104.95 1,307.35 15.11, 11.48, 19.49 38.30*6 1,688.20

[36] normal BC 104.12 826.25 14.16, 11.48, 19.50 12.10, 11.49*5 1,045.10
[36] normal WC 105.20 1,259.24 16.10, 11.49, 19.48 12.13*6 1,484.32

According to Eq. 1–3, the calculation of the m̂ values as m̃i + cmi was performed in
Tgen commit(n, r). Now, that generation operation is performed on demand in Tget attr(i) i.e.

5 The notation and abbreviations in Tables 2–3 and 5–9 are utilized as follows. First, for those latencies
that are related to the same operation e.g. Tget attr(i), only one element appears multiplied by the
number of elements of its type that are involved e.g. 11.51 ∗ 5. Then, for each element that is optional
according to the different proofs represented in the same table, a vertical bar (|) appears in the header
of the table (e.g. Table 3). For those values that do not belong to the proof an horizontal bar (−) is
utilized. Finally, we represent the best performance figures in bold.

8 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

when the verifier asks for those values. Therefore, Tgen s values is represented as Tgen s values =

Tgen ê +Tgen v̂′ and
n∑
i=1

Tget attr(i) includes the generation of m̂i as Tgen m̂i
for r m̂i values. This

means, that we reduce the overall time in Tgen commit(n, r) but add an extra delay according to
the random generation of the m̃i values. We also obtained an extra delay in Tget attr(i), consisting
of (1) recomputing the pseudorandomness for each m̃i value and (2) computing m̂i = m̃i + cmi.
All in all, we obtained a reduction of RAM of 338 bytes with an added overall latency of 203.88
ms in the worst case whereas the extra latency in the best case is only restricted to the generation
of the m̂i value for hiding the master secret, where only 39.81 ms are required6.

5 Implementation of standard and domain pseudonyms

Given the optimizations described in the past section, now it is possible to implement additional
proofs in combination to proving the ownership of a CL signature over a set of attributes. In
this section, we relate our implementation of Idemix pseudonyms [15]. They provide extended
operations to basic protocols such as issuing a credential associated to a pseudonym or connect
the cardholder’s verification process to a given pseudonym. The latter, would guarantee being
recognized the next time an user visited the same SP. Besides standard pseudonyms (described as
randomized commitments to the cardholder’s master secret i.e. Nym = gm0hr mod Γ where both
generators (g, h) and modulo Γ are public and part of the system group parameters) it is possible
to create pseudonyms associated to a certain domain such as an organization. They are derived as
dNym = gm0

dom where gdom = H(dom)(Γ−1)/ρ and the group Z∗

Γ has order Γ − 1 = ρ · b for a prime
ρ [15]. For instance, proving the ownership of both a standard and domain pseudonyms can be per-
formed in zero knowledge as NIZK: {(ε′, ν′, α0, ..., α5, ψ) : Z ≡ ±Rα0

0 Rα1

1 Rα2

2 Rα3

3 Rα4

4 Rα5

5 Aε
′

Sν
′

mod n ∧ nym ≡ gα0hψ mod Γ ∧ dNym ≡ gα0

dom mod Γ} without revealing any attribute. How-
ever, performing a certain degree of selective disclosure would provide the SP with more iden-
tification details linked to the pseudonym. In order to design a RAM-efficient implementation
of standard/domain pseudonyms, the associated pseudorandomness to r and m0 must be re-
computed by the PRNG that we presented in Section 4. Therefore, the PRNG would follow the
initPRNG() ⇒ m̃i ⇒ r̃ ⇒ m̃0 ⇒ r ⇒ resetPRNG() ⇒ m̃i ⇒ r̃ ⇒ m̃0 sequence in order to
recompute the required pseudorandom values during the generation of both t- and s values in
the case of proving the ownership of a standard pseudonym and a domain pseudonym.

5.1 Results for verifying a full credential with an associated pseudonym

The user must store in EEPROM the two generators (g, h), together with r and the modulus Γ .
Given that our target device is comprised of 80KB of EEPROM and the current implementation
is 31,897 bytes we have plenty of space for storing different pseudonyms. In this respect, encod-
ing pseudonyms as strings of 32 bytes would allow to store up to 80K−(31, 897/32) = 1, 503
pseudonyms in the card. Finally, in addition to the revealed or hidden attributes that the card-
holder sends to the verifier, the commitments nym and dNym together with the s value r̂ are
recomputed and their respective delay is added to Tget attr(i). As in Table 2, we have repre-
sented the best case/worst case scenarios for each type of pseudonym in Table 3. In comparison
to Table 2, performing the extra number of modular exponentiations related to the pseudonyms
commitments (e.g. nym) required 1,176.02 - 840.73 = 335.29 ms in the best case. However, due
to the optimizations described in Section 4, is also possible to store extra commitments in RAM
in order to avoid recomputing them during Tget attr.

6 Extending the number of attributes of the credential also involves modifying the issuing protocol
implementation. Given the space limits, we opted for showing how to compute complex proofs.

CANS 2014 9

Table 3: Performance analysis of proving the ownership of standard and domain pseudonyms
(normal encoding, ms)

Implementation Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5, nym, r̂|dNym) Total

Nym BC 103.10 1,176.02 15.30, 11.41, 19.57 38.42, 11.55*5, 13.95, 50.99 1,486.51

Nym WC 103.15 1,647.33 15.35, 11.54, 19.57 38.11*6, 13.99, 50.86 2,065.42

Nym ∧ dNym BC 103.01 1,373.37 15.28, 11.41, 19.35 38.39, 11.83*5, 14.02, 58.37 | 51.12 1,743.54

Nym ∧ dNym WC 104.23 1,836.00 15.19, 11.59, 19.24 38.02*6, 13.84, 58.32 | 51.42 2,338.01

6 Tailored execution of equality proofs of representation

Sometimes, it is useful to prove that two or more credentials share some values [17]. This type of
proof would enable verifiers to evaluate different properties in the credentials of the cardholder,
for instance, proving that two or more credentials belong to the same cardholder via the master
secret that is included in all the credentials with independence of the issuer. This is essential to
prevent credential pooling attacks.

In this section, we restrict ourselves to equality proofs of two credentials, where the ownership
of the cardholder is proved through the equality of the master secret, and where independent
selective disclosures can be performed in each credential. Given two credentials issued by differ-
ent issuers over the same master secret (m0) and two different CL signatures (A1, e1, v1) and
(A2, e2, v2), we describe an empty (i.e. where all the attributes of the first and second credentials
are hidden) equality proof of this type as: NIZK: {(ε′

1, ν
′

1, ε
′

2, ν
′

2, µ, (α1, ..., α5), (β1, ..., β5)) : Z(1) ≡

±R
(1)µ
0 R

(1)α1

1 R
(1)α2

2 R
(1)α3

3 R
(1)α4

4 R
(1)α5

5 A(1)ε′

1S(1)ν′

1 mod n1 ∧ Z(2) ≡ ±R
(2)µ
0 R

(2)β1

1 R
(2)β2

2 R
(2)β3

3

R
(2)β4

4 R
(2)β5

5 A(2)ε′

2S(2)ν′

2 mod n2}. Where µ represents the non-disclosed master secret7 and the

two public keys of the issuers consists of (S(1), Z(1), R
(1)
0 , R

(1)
1 , ..., R

(1)
5 ∈ QRn1

, n1) and (S(2), Z(2)

, R
(2)
0 , R

(2)
1 , ..., R

(2)
5 ∈ QRn2

, n2). Moreover, the following s values for the groups of attributes of

each credential and the master secret need to be computed: m̂0 = m̃0 + cm0, m̂
(1)
1 = m̃

(1)
1 +

cm
(1)
1 , m̂

(1)
2 = m̃

(1)
2 +cm

(1)
2 , m̂

(1)
3 = m̃

(1)
3 +cm

(1)
3 , m̂

(1)
4 = m̃

(1)
4 +cm

(1)
4 , m̂

(1)
5 = m̃

(1)
5 +cm

(1)
5 , m̂

(2)
1 =

m̃
(2)
1 +cm

(2)
1 , m̂

(2)
2 = m̃

(2)
2 +cm

(2)
2 , m̂

(2)
3 = m̃

(2)
3 +cm

(2)
3 , m̂

(2)
4 = m̃

(2)
4 +cm

(2)
4 , m̂

(2)
5 = m̃

(2)
5 +cm

(2)
5 .

Finally, v̂1 = ṽ′

1 + cv′

1, v̂2 = ṽ′

2 + cv′

2, ê′

1 = ẽ1 + ce1 and ê′

2 = ẽ2 + ce2 are computed for each
CL signature in Tget sig(i).

6.1 Design

In order to implement these proofs, we must address three types of requirements in terms of:
(1) space, (2) performance and (3) cryptographic capabilities of the card. First, we need space
to store and/or maintain in RAM two or more (A, e, v) tuples in order to generate each t value

of the proof. Moreover, we also require space for storing the (ê, v̂′) tuples for each credential
during the computation of each s value. Furthermore, we need to perform all these computations
in a reasonable time. In this respect, performing the operations in RAM would be a top priority.
Finally, we need a hash primitive for computing multiple and subsequent blocks of data (t values)
in order to generate the challenge c. In this case, we need to include the set of the t and common
values for each credential in the proof. Since the MULTOS hash function for obtaining a SHA-256
digest requires the full input in memory, and that resource is limited in our target device, we

7 In this case α0 = β0 if both credentials belong to the same cardholder. We represent the non-disclosed
master secret as µ following the Camenisch-Staedler notation [19].

10 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

must find an alternative function that can compute hashes with partial inputs in a subsequent
manner.

In order to implement the equality proof on the card and be able to cope with multiple
signatures of different issuers we extend the PRNG described in Section 4 and couple it with
variable reconstruction in RAM. We notice that the (ê, v̂′) values only depend on the (ẽ, ṽ)
pseudorandom variables. Since they do not depend on m̃, the same space reserved in RAM for
such value (74 bytes as described in Section 4) can be reused for (ê, v̂′) if their size is adapted to
the largest value (i.e. 255 bytes in the case of ṽ). This approach, makes it possible to sequentially
reconstruct via the deterministic PRNG ê and v̂′ (i.e. as ê = ẽ + ce′ and v̂′ = ṽ + cv′) for each
credential during the generation of the t- and s values. Furthermore, the randomized computation
of the signature component A′ requires rA, another random value that can be derived from the
PRNG. Moreover, since the randomization of this value is independent form the rest of the
signature (e, v) and the m̂i values, we can compute all these variables in a sequentially way.
After each pseudorandom value has been recomputed, the reconstructed variable is temporary
stored in the transaction memory of the card till it is requested by the verifier.

Therefore, the generation and recomputing of these values for an equality proof of two creden-

tials would be orchestrated by the PRNG as initPRNG() ⇒ r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒

ṽ(2) ⇒ ẽ(2) ⇒ m̃
(2)
i ⇒ resetPRNG() ⇒ r

(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i .

We describe two8 different alternatives for performing this proof according to different scenarios
and speed requirements.

Alternative a: equality proofs across n credentials We have depicted in Table 4 the
performance of recomputing the randomness for the (A′, v̂′, ê, m̂i) values and reconstructing their
values in RAM. Despite the required number of calls to the PRNG is higher in v̂′, the overall
execution time is dominated by the reconstruction of A′ that requires recomputing the SrA

modular exponentiation (235.191 ms). In contrast to the execution model described in Section
3.2, we have rearranged the computation of (A′, ê, v̂′) to (A′, v̂′, ê) since the computation of v̂′

requires rA. On the contrary, ê does not depend on other values.

Table 4: Time required for reconstructing A′

i, v̂
′

i, êi, and m̂i in RAM

Variable Operation Size (bytes) No. of calls to PRNG Delay (ms)

A′
i ASrA 138 9 235.191

v̂′
i v′ = v − e · rA 255 16 104.365

v̂ = ṽ′ + c · v′

êi ẽ + c · e′ 57 4 30.710
m̂i m̃i + c ·mi 74 5 36.708

Finally, in relation to the third requirement, we rely on the PRIM_SECURE_HASH_IV primitive
of the MULTOS card in order to subsequently hash each t value. This primitive makes possible
to avoid maintaining a long string of bytes in RAM with all the required inputs for generating
the challenge. Therefore, each A′ and t value is generated in an iterative way and sequentially
added to the temporary digest. After the last t value, the transaction nonce is hashed and the
final digest is derived. In contrast to Eq. 2, the s values for each credential signature (ê, v̂′) are

8 We provide a third alternative via prime encoding in Appendix A.

CANS 2014 11

now recomputed on demand when the verifier request them. Consequently, that latency is added
to Tget sig(i).

Alternative b: equality proofs across 2 credentials In this alternative, we work under
the assumption that each card stores only two credentials i.e. one root credential with different
information about an issuing organization, an expiration date or a revocation state together
with a second credential that includes the cardholders attributes. In both credentials the master
secret is shared and an equality proof can be performed across the two in order to proof the
validity of the card or the attributes. In this case, it can be possible to store both A′(1) and A′(2)

and avoid recomputing them two times as described in the first alternative (Table 4). Moreover,

the randomization factors r
(1)
A and r

(2)
A can be stored too in order to avoid regenerate them via

the PRNG during the computing of v̂′

i. In this case, we use the transient memory of the card
for storing these four values. Given that its size is 1,016 bytes and the APDU buffer is limited
to 256 bytes according to the ISO 7816 standard we can use up to 1,016 - 256 = 760 bytes
for storing these values. In this respect, we need 2 · 128 bytes for A′(1), A′(2) and 2 · 138 bytes

for r
(1)
A and r

(2)
A in our case. Finally, the PRNG sequence for this approach is represented by

initPRNG() ⇒ r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i ⇒ resetPRNG() ⇒

ṽ(1) ⇒ ẽ(1) ⇒ m̃
(1)
i ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i skipping the regenerated values r

(1)
A , r

(2)
A (stored).

6.2 Results for performing an equality proof of representation with two full

credentials

We have depicted in Table 59 the performance of equality proofs using the two described alter-
natives (a, b) for proving that the credentials (2 in this example) of the cardholder share their
master secret and therefore, are linked to her.

Table 5: Performance overhead while verifying two credentials with 5 attributes using the equality
proof (normal encoding, ms)

Alternative Case Tsel cred (ms) Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5) Total

a BC 104.12 1,805.24 (231.95, 91.63, 27.47)(1,2) (32.02, 10.11*5)(1) , (10.10*5)(2) 2,744.51

a WC 105.23 2,738.78 (228.38, 91.64, 27.55)(1,2) (31.50*6)(1) , (31.13*5)(2) 3,883.83

b BC 103.99 1,743.37 (17.82, 91.58, 27.40)(1,2) (32.05, 10.49*5)(1) , (10.53*5)(2) 2,261.19

b WC 103.47 2,673.60 (14.78, 91.25, 27.37)(1,2) (31.86*6)(1) , (31.19*5)(2) 3,390.60

Using the second alternative (b), it can be possible to perform an equality proof of represen-
tation in 2,261.19 ms revealing all the attributes, whereas hiding all the attributes would require
1,129.40 extra ms. Finally, the first alternative (a), due to the fact that we recompute (ê, v̂′) for
each credential in the generation of each t value, increases the execution time of Tgen commit(n, r)
from 840.73 ms (verification of one credential, best case, Table 2) to 1,805.24 ms (best case, all
the attributes are revealed) and from 1,307.35 ms (verification of one credential, all the attributes

9 We use the superscripts 1 and 2 for referring to the operations related to the credentials 1 and 2 of the
equality proof. During the randomization of the CL signatures the operations for each credential are
the same. We have put together the operations related to each credential in the worst case. Therefore,
two pairs of 5 attributes are hidden together with the master secret i.e. 6 + 5 operations if the master
secret is hidden during the computation of the s values of the first credential.

12 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

hidden, Table 2) to 2,738.78 ms (worst case, all the attributes remain hidden). However, given
the case that the user is requested to perform an equality proof of her credentials, it would be
rare to hide all the attributes in the case that one of the credentials (e.g. a root credential) would
contain information about the issuing operation required to be revealed e.g. a date, the name of
an organization, etc.

7 Authenticated secure channel

We have depicted in Table 6 the results for performing all the operations described in Sections
4-6 through terminal verification and secure channel. We rely on the secure channel for ABCs
proposed by Alpár et al. in [4] and we perform terminal verification via ECDSA signatures using
the light secp160r1 (160 bits) curve [34]. Besides, we rely on the normative for secure messaging
of the German ID [11] for providing authentication and confidentiality (CBC-MAC and 3DES-
CBC are used [11]). If we compare our results depicted in Table 6 with the works described in
Section 2, Bichsel et al. required 7.4 seconds for verifying a credential of one attribute (i.e. master
secret, modulo 1,280 bits) whereas we can perform an equality proof of 5 credentials in the same
time (Appendix A, Figure 1). Besides, one transaction in the implementation of Sterckx et al.
required 4.25 s using a modulus of 1,024 bits whereas we can perform all the operations described
in Sections 4–6 (best cases) within the same time 10.

Table 6: Performance analysis of a full operation using terminal verification and secure channel
(normal encoding, ms)

Operation Case Tset sc Tsel cred Tgen commit Tget sig(A, e, v1, v2) Tget attr(m0, ..., m5|nym, r̂|dNym) Total

verify 1 cred BC 203.31 183.50 889.53 82.49, 49.40, 81.25, 68.82 76.04, 49.40*5 1,881.30

verify 1 cred WC 203.29 183.53 1,360.42 82.47, 49.38, 81.24, 68.80 76.14*6 2,484.10

Nym BC 203.32 185.26 1,226,26 81.99, 49.21, 80.88, 68.54 75.75, 49.28*5 | 81.01, 93.62 2,392.21

Nym WC 203.28 182.27 1,690.50 82.18, 49.35, 81.01, 68.57 75.70*6 | 81.32, 93.67 2,986.42

Nym ∧ dNym BC 203.29 182.41 1,419.52 82.19, 49.43, 81.02, 68.63 75.97, 49.41*5 | 81.38, 93.63 | 124.23 2,708.82

Nym ∧ dNym WC 203.31 182.56 1,893.67 82.02, 49.45, 81.02, 68.50 75.08*6 | 81.21, 93.75 | 124.26 3,310.23

eq. proof b BC 203.31 182.56 1,809.39 (82.10, 49.41, 81.05, 68.54)1,2 83.37, (49.99*5)1,2 3,340.71

eq. proof b WC 203.33 182.56 2,743.20 (82.12, 49.43, 81.02, 68.50)1,2 84.10, (84.33*5)1,2 4,618.62

We have made available our prototypes11 for public verifiability under the General Public
License (GPL) together with a terminal code based on the CHARM cryptographic framework [3].

8 Conclusions

We have presented the performance evaluation and our design options for implementing Idemix
on a smart card together with a variety of operations for executing complex proofs. We relied on
recomputing all the involved pseudorandommness using a PRNG. Moreover, we have described
our results in combination with a secure channel coupled with terminal verification based on
ECC. All our operations required between 1–3.3 seconds (best cases) and between 1–4.6 (all
cases) while the prior art only addressed the case of one credential with one attribute (i.e. the
master secret). In contrast, our performance figures can be acceptable in on-line settings and
could be adapted to off-line scenarios.

10 We also note that these results can be probably reproduced in other devices relying on the Infineon
SLE78 chip.

11 https://github.com/adelapie/irma_phase_2 (accessed August 11, 2014)

CANS 2014 13

References

1. EU FP7 Future ID (accessed August 11, 2014). http://www.futureid.eu/, 2014.
2. EU FP7 Secure idenTity acrOss boRders linKed (STORK) 2.0 (accessed August 11, 2014).

https://www.eid-stork2.eu/, 2014.
3. Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael Rushanan, Matthew

Green, and Aviel D. Rubin. Charm: a framework for rapidly prototyping cryptosystems. J. Crypto-
graphic Engineering, 3(2):111–128, 2013.

4. Gergely Alpár and Jaap-Henk Hoepman. A secure channel for attribute-based credentials: [short
paper]. In Digital Identity Management, pages 13–18, 2013.

5. Gergely Alpár, Jaap-Henk Hoepman, and Johanneke Siljee. The identity crisis. security, privacy and
usability issues in identity management. CoRR, abs/1101.0427, 2011.

6. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In ACM Conference on
Computer and Communications Security, pages 1087–1098, 2013.

7. E. Barker and J. Kelsey. NIST Special Publication 800-90A: Recommendation for Random Number
Generation Using Deterministic Random Bit Generators, 2012.

8. Lejla Batina, Jaap-Henk Hoepman, Bart Jacobs, Wojciech Mostowski, and Pim Vullers. Developing
efficient blinded attribute certificates on smart cards via pairings. In CARDIS, pages 209–222, 2010.

9. Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous credentials on a
standard Java Card. In ACM Conference on Computer and Communications Security, pages 600–
610, 2009.

10. Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy.
MIT Press, Cambridge, MA, USA, 2000.

11. BSI. TR-03110: Advanced Security Mechanisms for Machine Readable Travel Documents.
12. Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership and range

proofs. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer Science,
pages 234–252. Springer, 2008.

13. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials (extended version).
IACR Cryptology ePrint Archive, 2010:496, 2010.

14. Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous
credential system. In ACM Conference on Computer and Communications Security, pages 21–30,
2002.

15. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT ’01,
pages 93–118, London, UK, UK, 2001. Springer-Verlag.

16. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Proceedings
of the 3rd international conference on Security in communication networks, SCN’02, pages 268–289,
Berlin, Heidelberg, 2003. Springer-Verlag.

17. Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature schemes.
In CRYPTO, pages 413–430, 1999.

18. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. In CRYPTO, pages 126–144, 2003.

19. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended
abstract). In CRYPTO, pages 410–424, 1997.

20. Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0. Technical report, March 2005.

21. David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.
22. Ivan Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures on Data Security,

pages 63–86, 1998.
23. Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering: Design Principles

and Practical Applications. Wiley Publishing, 2010.
24. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature

problems. In CRYPTO, pages 186–194, 1986.

14 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

25. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO, pages 16–30, 1997.

26. R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science, SFCS ’89, pages
230–235, Washington, DC, USA, 1989. IEEE Computer Society.

27. ISO/IEC. International standard 7816–4.
28. Anja Lehmann, Patrik Bichsel, Bud Bruegger, Jan Camenisch, Alberto Crespo Garcia, Thomas

Gross, Andre Gutwirth, Moritz Horsch, Detlef Houdeau, Detlef Hühnlein, Frank-Michael Kamm,
Stephan Krenn, Gregory Neven, Charles Bastos Rodriguez, Johannes Schmölz, and Charlotte Bol-
liger. Survey and analysis of existing eid and credential systems. Technical Report Deliverable D32.1,
FutureID, 2013.

29. M Luby and C Rackoff. Pseudo-random permutation generators and cryptographic composition. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages
356–363, New York, NY, USA, 1986. ACM.

30. Eve Maler and Drummond Reed. The Venn of Identity: Options and Issues in Federated Identity
Management. IEEE Security and Privacy, 6(2):16–23, March 2008.

31. Wojciech Mostowski and Pim Vullers. Efficient U-Prove implementation for anonymous credentials
on smart cards. In Muttukrishnan Rajarajan, Fred Piper, Haining Wang, and George Kesidis, editors,
SecureComm, volume 96 of Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 243–260. Springer, 2011.

32. Ingo Naumann and Giles Hogben. Privacy features of European eID card specifications. Network
Security, 2008(8):9 – 13, 2008.

33. David Recordon and Drummond Reed. OpenID 2.0: A Platform for User-centric Identity Manage-
ment. In Proceedings of the Second ACM Workshop on Digital Identity Management, DIM ’06, pages
11–16, New York, NY, USA, 2006. ACM.

34. Standards for Efficient Cryptography Group. Sec 2: Recommended elliptic curve domain parameters.
SECG2, 2000.

35. Michael Sterckx, Benedikt Gierlichs, Bart Preneel, and Ingrid Verbauwhede. Efficient implementa-
tion of anonymous credentials on java card smart cards. In 1st IEEE International Workshop on
Information Forensics and Security (WIFS 2009), pages 106–110, London,UK, 2009. IEEE.

36. Pim Vullers and Gergely Alpár. Efficient selective disclosure on smart cards using Idemix. In Simone
Fischer-H editor, 3rd IFIP WG 11.6 Working Conference on Policies and Research in Identity
Management, IDMAN 2013, London, UK, April 8-9, 2013. Proceedings.

Appendix A: Equality proofs of representation via prime-encoded

attributes

The main operation of Idemix is the modular exponentiation where the number of these op-
erations is related to the amount of the cardholder’s attributes that are hidden i.e. O(l) for l
attributes. Recently, Camenisch et al, proposed an alternative method for encoding attributes
that reduces the overall number of modular exponentiations to 2 [13]. They utilize a base R1 for
encoding all the attributes, which are represented as prime numbers. Therefore, the attribute
corresponding to R1 consists of the product mt =

∏l
i=1 mi for l attributes. Proving the pres-

ence of an attribute mi in mt is performed via the coprime property: one shows that a certain
attribute mi can divide the product mt. For instance, proving that the attribute m1 belongs
to mt is represented in zero knowledge as NIZK: {(ε′, ν′, α0, α1) : Z ≡ ±Rα0

0 (Rm1

1)α1Aε
′

Sν
′

mod n}. In addition, the commitment C = ZmtSr mod n and the t values C̃ = (Zm1)m̃hSr

mod n and C̃0 = Zm̃tS r̃ mod n must be computed, where mh = mt/mr and mr consists on
the product of attributes mi that are revealed (in this case mr = m1). Moreover, Z, S ∈ QRn
are both part of the issuer public key as described in Section 3. Finally, the verifier checks C

and C0 as C̃
?
= C−c(Zmr)m̂hS r̂ mod n and C̃0

?
= C−cZm̂S r̂ mod n together with the ver-

ification of the ownership of the CL signature as described in Protocol 1. This is performed

CANS 2014 15

using the following s values computed and sent by the card: m̂0 = m̃0 + cm0, m̂ = m̃ + cm,
m̂h = m̃h + cmh and r̂ = r̃+ cr. In this case, the PRNG would compute the following sequence:
initPRNG() ⇒ m̃i ⇒ m̃h ⇒ r̃ ⇒ r ⇒ m̃t ⇒ resetPRNG() ⇒ m̃i ⇒ m̃h ⇒ r̃. Otherwise, not
revealing any attribute, that is, only proving the ownership of the signature would be represented
as NIZK: {(ε′, ν′, α0, α1) : Z ≡ ±Rα0

0 Rα1

1 Aε
′

Sν
′

mod n}. This requires two exponentiations with
independence of the number of attributes hidden. In this case, the PRNG would follow the same
sequence depicted in Section 4.

Table 7: Performance overhead while verifying five attributes using a custom PRNG for gener-
ating the m̂ values (ms)

Work Encoding Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5|C, r̂, m̂h) Total

This work prime BC 103.13 1,250.10 15.40, 11.61, 19.67 38.31, 11.53 | 13.94, 32.97, 51.14 1,547.83
This work prime WC 103.71 987.10 15.54, 11.44, 19.62 38.30*2 1,214.24

As depicted in Table 7 we notice that what we considered the worst case for normal encoding
is the opposite here. We reuse the notation utilized in Sections 4–7 i.e. WC for hiding all the
attributes and BC for revealing the content of a credential with the exception of m0. Hence,
only proving the ownership of a CL signature over a set of attributes without revealing any only
requires 1,214.24 ms. In contrast, revealing all the attributes requires the computation of C, C̃
and C̃0. Thanks to the optimizations carried out in Section 4 we can store C in RAM to avoid its
recomputing when the verifiers requests its value. However, revealing all the attributes requires
492.20 ms more in comparison to the utilization of traditional encoding due to the additional
modular exponentiations and multiplications required by the generation of C, C̃ and C̃o.

We have recomputed the performance of standard and domain pseudonyms from Table 3 in
Table 8 relying on prime-encoded attributes. In this respect, all the performance figures concern-
ing the worst cases were improved i.e. 485.89 ms (standard pseudonyms) and 499.76 ms (domain
pseudonyms in combination with standard pseudonyms, Section 5). However, revealing all the
attributes requires the computation of three commitments that need a larger number of modular
arithmetic operations in comparison to normal encoding (Table 3).

Table 8: Performance analysis of proving the ownership of standard and domain pseudonyms
(prime encoding, ms)

Implementation Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5|C, r̂, m̂h|nym, r̂|dNym) Total

Nym BC 103.13 1,720.73 15.41, 11.23, 19.46 38.42, 11.55 | 14.13, 32.48, 52.17 | 13.98, 50.33 2,083.01
Nym WC 104.11 1,288.88 15.54, 11.64, 19.22 38.11*2 | − | 13.99, 50.86 1,579.53

Nym ∧ dNym BC 103.17 2,255.31 15.29, 11.51, 19.12 38.39, 11.83 | 14.17, 32.44, 52.05 | 14.16, 58.34 | 51.12 2,676.92
Nym ∧ dNym WC 104.33 1,487.86 15.22, 11.49, 19.48 38.02*2 | − | 13.58, 58.11 | 52.12 1,838.25

It can be possible to rely on prime encoding attributes for performing equality proofs with a
better performance in comparison to the first two alternatives. In this respect, while the perfor-
mance of the best case would be slightly worst due to the computation of the extra commitments,
it can be possible to improve the performance of the worst one by reducing the number of expo-
nentiations to O(1 + 1) per credential instead of O(5) per credential as in the alternatives a and
b (Table 5). Proving that 2 credentials share m0 without revealing any attributes would be rep-

resented in zero knowledge as NIZK: {(ε′

1, ν
′

1, ε
′

2, ν
′

2, µ, α1, α2) : Z(1) ≡ ±R
(1)µ
0 R

(1)α1

1 A(1)ε′

1S(1)ν′

1

16 Antonio de la Piedra, Jaap-Henk Hoepman, Pim Vullers

mod n1 ∧ Z(2) ≡ ±R
(2)µ
0 R

(2)β1

1 A(2)ε′

2S(2)ν′

2 mod n2}. We note that there is an improvement of
496.59 ms and 989.82 ms in comparison to the alternatives b and a respectively (Table 9)

However, the computation of C, C̃o and C̃ together with the two extra s values undermines
any possibility of improving the figures related to the best cases from b and a.

Table 9: Performance overhead while verifying two credentials with 5 attributes using the equality
proof (ms)

Alternative Case Tsel cred (ms) Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5|C, r̂, m̂h) Total

c BC 103.23 3,145.11 (232.69, 91.37, 27.72)(1,2) (32.11, 11.01)(1) , (11.14)(2) | (13.90, 32.95, 51.14)(1,2) 4,202.74

c WC 104.17 2,023.94 (232.61, 91.52, 27.62)(1,2) (31.19*2)(1,2) 2,894.01

We have also estimated the time that requires computing equality proofs up to 8 credentials
using the alternatives a and c (Figure 1). We consider 4–5 seconds the acceptable time for an on-
line setting. Hence, performing equality proofs with 3 and 4 credentials revealing all the attributes
would be possible whereas execution times beyond 6 seconds (worst cases with 3 credentials and
beyond and best cases with 5 credentials and beyond) are unrealistic in practical scenarios.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(m

s)

Number of credentials

Performance of equality proof

best case (a)
worst case (a)
best case (b)

worst case (b)
best case (c)

worst case (c)

Fig. 1: Performance of the equality proof (credentials of five attributes)

We notice that it is possible to improve the performance results of an equality proof of 2
credentials hiding all the attributes by using this type of encoding. This approach would be only
useful in systems where an user should prove the ownership of n credentials without revealing
her attributes.

