
1

Key Indistinguishability vs.

Strong Key Indistinguishability

for Hierarchical Key Assignment Schemes

Arcangelo Castiglione, Alfredo De Santis and Barbara Masucci

Abstract

A hierarchical key assignment scheme is a method to assign some private information and encryption keys to a

set of classes in a partially ordered hierarchy, in such a way that the private information of a higher class can be

used to derive the keys of all classes lower down in the hierarchy.

In this paper we analyze the security of hierarchical key assignment schemes according to different notions:

security with respect to key indistinguishability and against key recovery, as well as the two recently proposed notions

of security with respect to strong key indistinguishability and against strong key recovery. We first explore the relations

between all security notions and, in particular, we prove that security with respect to strong key indistinguishability

is not stronger than the one with respect to key indistinguishability. Afterwards, we propose a general construction

yielding a hierarchical key assignment scheme offering security against strong key recovery, given any hierarchical

key assignment scheme which guarantees security against key recovery.

Index Terms

Access control, key assignment, provable security, key indistinguishability, strong key indistinguishability, key

recovery, strong key recovery.

I. INTRODUCTION

T
HE access control management ensures that only authorized users are given access to certain resources.

In particular, with respect to their respective powers and responsibilities, users are typically organized into

hierarchies, composed by several disjoint classes (security classes). Hierarchical structures are widely employed in

many different application areas, including database management systems, computer networks, operating systems,

military and government communications.

The use of cryptographic techniques to address the problem of key management in hierarchical structures has

been first considered by Akl and Taylor [1], who proposed a hierarchical key assignment scheme where each class

The authors are with the Dipartimento di Informatica, Università di Salerno, Fisciano, Salerno, 84084, Italy (e-mails: {arcastiglione, ads,

bmasucci}@unisa.it.)

2

is assigned a key that can be used, along with some public information generated by a trusted authority, to compute

the key assigned to any class lower down in the hierarchy. Subsequently, many researchers have proposed schemes

offering different trade-offs in terms of the amount of public and private information and the complexity of key

derivation (e.g., [2]–[18]). Many other proposals either support more general access control policies [19]–[22] or

satisfy additional time-dependent constraints [23]–[32]. Despite the large number of proposed schemes, many of

them lack a formal security proof and have been shown to be insecure against collusive attacks [27], [33]–[36],

whereby two or more classes collude to compute a key to which they are not entitled.

According to the security reduction paradigm introduced by Goldwasser and Micali [37], a scheme is provably-

secure under a complexity assumption if the existence of an adversary A breaking the scheme is equivalent to the

existence of an adversary B breaking the computational assumption [37]. Atallah et al. [14] first addressed the

problem of formalizing security requirements for hierarchical key assignment schemes and proposed two different

notions: security against key recovery and with respect to key indistinguishability. Informally speaking, the former

captures the notion that an adversary should not be able to compute a key to which it should not have access,

while in the latter, the adversary should not even be able to distinguish between the real key and a random string

of the same length. In particular, the model considered in [14] allows an adversary attacking a certain class in the

hierarchy to gain access to the private information assigned to all users not allowed to access such class, as well

as all the public information.

Atallah et al. [14] also proposed two provably-secure constructions for hierarchical key assignment schemes:

the first one is based on pseudorandom functions and satisfies security against key recovery, whereas, the second

one requires the additional use of a symmetric encryption scheme and guarantees security with respect to key

indistinguishability. Different constructions satisfying the above defined notions of security have been proposed

in [12], [15]–[18], [27], [31], [32], [38]. In particular, De Santis et al. [12], [17] proposed two different constructions

satisfying security with respect to key indistinguishability: the first one, which is based on symmetric encryption

schemes, is simpler than the one proposed in [14], requires a single computational assumption, and offers more

efficient procedures for key derivation and key updates; the second one, which is based on a public-key broadcast

encryption scheme, allows to obtain a hierarchical key assignment scheme offering constant private information and

public information linear in the number of classes. D’Arco et al. [15], [16] analyzed the Akl-Taylor scheme according

to the definitions proposed in [14] and showed how to choose the public parameters in order to get instances of

the scheme which are secure against key recovery under the RSA assumption. Moreover, they showed how to turn

the Akl-Taylor scheme in a construction offering security with respect to key indistinguishability; however such a

scheme, is less efficient than the constructions proposed in [12], [14], [17]. Freire et al. [18] proposed a construction

based on pseudorandom generators, satisfying security with respect to key indistinguishability. Finally, Ateniese et

al. [27], [32] extended the model proposed in [14] to schemes satisfying additional time-dependent constraints and

proposed two different constructions offering security with respect to key indistinguishability. Other constructions

for time-dependent schemes, offering different trade-offs in terms of amount of public and private information

and complexity of key derivation, were shown in [30], [31], [38], [39]. Recently, a more general scenario has

3

been considered for hierarchical key assignment schemes [40]. In such a scenario, the access control is not only

hierarchical, but also shared between different classes. In particular, the authors of [40] proposed a construction for

hierarchical and shared key assignment schemes that is secure with respect to key indistinguishability and relies on

both symmetric encryption and perfect secret sharing.

Freire et al. [41] proposed new security definitions for hierarchical key assignment schemes. Such definitions,

called security against strong key recovery and security with respect to strong key indistinguishability, provide the

adversary with additional compromise capability, thus representing a strengthening of the model provided in [14].

As stated by Freire et al., such a new model is able to characterize a variety of scenarios which may arise in

real-world situations, since it allows the protection of the key assigned to a certain class u, even when the keys

held by classes which are predecessors of u in the hierarchy have been leaked, due to their use, loss or theft. More

precisely, Freire et al. considered an adversary which, given a certain class, is allowed to gain the private information

assigned to all users not allowed to access such class, as well as all the public information and encryption keys

assigned to all the other classes which are predecessors of the target class in the hierarchy. Freire et al. also

proposed two hierarchical key assignment schemes which are secure in the sense of strong key indistinguishability.

The first construction is based on pseudorandom functions, whereas, the second one is based on forward-secure

pseudorandom generators. Finally, they showed that the notions of security against key recovery and against strong

key recovery are separated, i.e., there exist schemes that are secure against key recovery but which are not secure

against strong key recovery. On the other hand, they did not clarify the relations between the notions of security

with respect to key indistinguishability and with respect to strong key indistinguishability.

In this work, we explore the relations between all security notions for hierarchical key assignment schemes, by

clarifying implications and separations occurring between such notions. In particular, we show that security with

respect to strong key indistinguishability is not stronger than the one with respect to key indistinguishability, thus

establishing the equivalence between such two security notions. A similar result has been recently shown in the

unconditionally secure setting [42]. Furthermore, we also show how to construct a hierarchical key assignment

scheme which is secure against strong key recovery, starting from any scheme which guarantees security against

key recovery.

The paper is organized as follows: in Section II we review the definition of hierarchical key assignment schemes;

in Section III we describe all security definitions for hierarchical key assignment schemes; in Section IV we

analyze the relations among these definitions and in particular we show that security with respect to strong key

indistinguishability is not stronger than the one with respect to key indistinguishability; finally in Section V, we

show how to construct a hierarchical key assignment scheme secure against strong key recovery, starting from any

hierarchical key assignment scheme which is secure against key recovery.

II. HIERARCHICAL KEY ASSIGNMENT SCHEMES

Consider a set of users divided into a number of disjoint classes, called security classes. A security class can

represent a person, a department or a user group in an organization. A binary relation � that partially orders the

4

set of classes V is defined in accordance with authority, position or power of each class in V . The poset (V,�)

is called a partially ordered hierarchy. For any two classes u and v, the notation u � v is used to indicate that

the users in v can access u’s data. Clearly, since v can access its own data, it holds that v � v, for any v ∈ V .

We denote the accessible set of a class v by Av , which corresponds to the set {u ∈ V : u � v}, for any v ∈ V .

The partially ordered hierarchy (V,�) can be represented by the directed graph G∗ = (V,E∗), where each class

corresponds to a vertex in the graph and there is an edge from class v to class u if and only if u � v. We denote

by G = (V,E) the minimal representation of the graph G∗, namely, the directed acyclic graph corresponding to

the transitive and reflexive reduction of the graph G∗ = (V,E∗). The graph G has the same transitive and reflexive

closure of G∗, i.e., there is a path (of length greater than or equal to zero) from v to u in G if and only if there

is the edge (v, u) in E∗. Aho et al. [43] showed that every directed graph has a transitive reduction, which can be

computed in polynomial time and is unique for directed acyclic graphs. In the following, we denote by Γ a family

of graphs corresponding to partially ordered hierarchies. For example, Γ could be the family of the rooted trees [7],

the family of the d-dimensional hierarchies [13], etc..

A hierarchical key assignment scheme for a family Γ of graphs, corresponding to partially ordered hierarchies, is

defined as follows in [12], [15]–[17], [27], [30]–[32].

Definition 2.1: A hierarchical key assignment scheme for Γ is a pair (Gen,Der) of algorithms satisfying the

following conditions:

1) The information generation algorithm Gen is probabilistic polynomial-time. It takes as inputs the security

parameter 1τ and a graph G = (V,E) in Γ, and produces as outputs

a) a private information su, for any class u ∈ V ;

b) a key ku, for any class u ∈ V ;

c) a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and G, where s and k respectively

denote the sequences of private information and keys.

2) The key derivation algorithm Der is deterministic polynomial-time. It takes as inputs the security parameter

1τ , a graph G = (V,E) in Γ, two classes u, v in V , the private information su assigned to class u and the

public information pub, and produces as output the key kv assigned to class v if v ∈ Au, or a special rejection

symbol ⊥ otherwise.

We require that for each class u ∈ V , each class v ∈ Au, each private information su, each key kv , each

public information pub which can be computed by Gen on inputs 1τ and G, it holds that

Der(1τ , G, u, v, su, pub) = kv.

The efficiency of a hierarchical key assignment scheme is evaluated according to different parameters: storage

requirements, which correspond to the amount of secret data that needs to be distributed and stored by the users and

the amount of data that needs to be made public; the complexity of both key derivation and key update procedures

5

(it is desirable that updates to the access hierarchy require only local changes to the public information and do

not need any private information to be re-distributed); the computational assumption on which the security of the

scheme relies (it is desirable to employ standard assumptions).

III. NOTIONS OF SECURITY

A hierarchical key assignment scheme must be resistant to collusive attacks. More precisely, for each class u ∈ V ,

the key ku should be protected against a coalition of all users in the set Fu = {v ∈ V : u 6∈ Av}, corresponding

to the ones which are not allowed to compute the key ku.

Atallah et al. [14] first introduced two different security goals for hierarchical key assignment schemes: security

with respect to key-indistinguishability and security against key recovery. The former formalizes the requirement

that the adversary is not able to learn any information (even a single bit) about a key ku which it should not have

access to, i.e., it is not able to distinguish it from a random string having the same length. On the other hand, the

latter corresponds to the weaker requirement that an adversary is not able to compute a key ku which it should

not have access to. The notion of key indistinguishability offers security guarantees that cannot be achieved by

schemes whose security relies only upon key recovery. These stronger security guarantees could be necessary. For

example, as pointed out in [17], it is straightforward that the key indistinguishability notion is needed when the data

associated to a class are protected by means of a symmetric encryption scheme, whose implementation details make

the confidentiality of the ciphertext (or of part of it) depending on the secrecy of only a portion of the encryption

key.

Recently, Freire et al. [41] proposed a new security definition for hierarchical key assignment schemes. Such

a definition, called security with respect to strong key-indistinguishability, formalizes the requirement that the

adversary is not able to learn any information about a key ku which it should not have access to, even if it has the

additional capability of gaining access to the encryption keys associated to all other classes which are predecessors

of the target class in the hierarchy. Notice that these encryption keys might leak through usage and their compromise

could not directly lead to a compromise of the private information su or the encryption key ku of the target class u.

Freire et al. also introduced the definition of security against strong key recovery. Such a definition formalizes the

requirement that the adversary is not able to compute a key ku which it should not have access to, even if it has the

additional capability of gaining access to encryption keys assigned to all the other classes which are predecessors

of the target class in the hierarchy.

In the following, we consider a static adversary which, given a class u, is allowed to gain the private information

assigned to all users not allowed to access such class, as well as all the relative public information. For the case

of strong key indistinguishability and strong key recovery, such an adversary is also able to access keys assigned

to all other classes which are predecessors of the target class in the hierarchy. A different kind of adversary, the

adaptive one, could be also considered. In detail, such an adversary is first allowed to access all public information

as well as all private information of a number of classes of its choice; afterwards, it chooses the class u it wants to

attack. In [27], [32] it has been proved that security with respect to adaptive adversaries is (polynomially) equivalent

6

to the one against static ones. In particular, the scenario considered in [27], [32], [44] is more general, since the

lifetime of each key is limited to a given period of time. In such a setting, each class is assigned to a different

key for each different period of time. These schemes are called Time-Bound Hierarchical Key Assignment Schemes.

However, the equivalence between adaptive and static adversaries shown in [27], [32] also applies to hierarchical

key assignment schemes, since they can be seen as time-bound hierarchical key assignment schemes with a single

period of time. Therefore, in this paper we will only consider static adversaries.

We use the standard notation to describe probabilistic algorithm and experiments following [45]. If A(·, ·, . . .)

is any probabilistic algorithm then a ← A(x, y, . . .) denotes the experiment of running A on inputs x, y, . . . and

letting a be the outcome, the probability being over the coin tosses of A. Similarly, if X is a set then x ← X

denotes the experiment of selecting an element uniformly from X and assigning x this value. If w is neither an

algorithm nor a set, then x← w is a simple assignment statement. A function ǫ : N → R is negligible if for every

constant c > 0 there exists an integer nc such that ǫ(n) < n−c for all n ≥ nc.

A. Security w.r.t. Key Indistinguishability

Consider a static adversary STATu that wants to attack a class u ∈ V and which is able to corrupt all users

in Fu. We define an algorithm Corruptu, which on input the private information s generated by the algorithm

Gen, extracts the secret values sv associated to all classes v ∈ Fu. We denote by corru the sequence output by

Corruptu(s). Two experiments are considered. In the first one, the adversary is given the key ku, whereas, in the

second one, it is given a random string ρ having the same length as ku. It is the adversary’s job to determine

whether the received challenge corresponds to ku or to a random string. We require that the adversary will succeed

with probability only negligibly different from 1/2.

Definition 3.1: [IND-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G =

(V,E) be a graph in Γ, let (Gen,Der) be a hierarchical key assignment scheme for Γ and let STATu be a static

adversary which attacks a class u. Consider the following two experiments:

Experiment ExpIND−1

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

d← STATu(1
τ , G, pub, corru, ku)

return d

Experiment ExpIND−0

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

ρ← {0, 1}length(ku)

d← STATu(1
τ , G, pub, corru, ρ)

return d

7

The advantage of STATu is defined as

AdvIND

STATu
(1τ , G) = |Pr[ExpIND−1

STATu
(1τ , G) = 1]

− Pr[ExpIND−0

STATu
(1τ , G) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G = (V,E) in Γ and each u ∈ V , the

function AdvIND

STATu
(1τ , G) is negligible, for each static adversary STATu whose time complexity is polynomial in

τ .

B. Security against Key Recovery

Now consider the case where there is a static adversary STATu which wants to compute the key assigned to a

class u ∈ V . As done before, we denote by corru the sequence output by the algorithm Corruptu, on input the

private information s generated by the algorithm Gen. The adversary, on input all public information generated by

the algorithm Gen, as well as the private information corru, outputs a string k′u and succeeds whether k′u = ku.

We require that the adversary will succeed with probability only negligibly different from 1/2length(ku).

Definition 3.2: [REC-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies, let G =

(V,E) be a graph in Γ, let (Gen,Der) be a hierarchical key assignment scheme for Γ and let STATu be a static

adversary which attacks a class u. Consider the following experiment:

Experiment ExpREC

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

k′

u ← STATu(1
τ , G, pub, corru)

return k′

u

The advantage of STATu is defined as

AdvREC

STATu
(1τ , G) = Pr[k′u = ku].

The scheme is said to be secure in the sense of REC-ST if, for each graph G = (V,E) in Γ and each class u ∈ V ,

the function AdvREC

STATu
(1τ , G) is negligible, for each static adversary STATu whose time complexity is polynomial

in τ .

C. Security w.r.t. Strong Key Indistinguishability

Consider a static adversary STATu that wants to attack a class u ∈ V . Such adversary is able to corrupt all users

in Fu and to gain access to the keys associated to all classes in the set Pu = {v ∈ V \ {u} : u ∈ Av} of the

predecessors of class u. As done before, we denote by corru the sequence output by the algorithm Corruptu, on

input the private information s generated by the algorithm Gen. Moreover, we define an algorithm Keysu, which

on input the encryption keys k generated by the algorithm Gen, extracts keys kv associated to all classes v ∈ Pu.

8

We denote by keysu the sequence output by Keysu(k). Two experiments are considered. In the first one, the

adversary is given the key ku, whereas, in the second one, it is given a random string ρ having the same length as

ku. It is the adversary’s job to determine whether the received challenge corresponds to ku or to a random string.

We require that the adversary will succeed with probability only negligibly different from 1/2.

Definition 3.3: [STRONG-IND-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies,

let G = (V,E) be a graph in Γ, let (Gen,Der) be a hierarchical key assignment scheme for Γ and let STATu be

a static adversary which attacks a class u. Consider the following two experiments:

Experiment ExpSTRONG−IND−1

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysu ← Keysu(k)

d← STATu(1
τ , G, pub, corru, keysu, ku)

return d

Experiment ExpSTRONG−IND−0

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysu ← Keysu(k)

ρ← {0, 1}length(ku)

d← STATu(1
τ , G, pub, corru, keysu, ρ)

return d

The advantage of STATu is defined as

AdvSTRONG−IND

STATu
(1τ , G) = |Pr[ExpSTRONG−IND−1

STATu
(1τ , G) = 1]

− Pr[ExpSTRONG−IND−0

STATu
(1τ , G) = 1]|.

The scheme is said to be secure in the sense of STRONG-IND-ST if, for each graph G = (V,E) in Γ and each

u ∈ V , the function AdvSTRONG−IND

STATu
(1τ , G) is negligible, for each static adversary STATu whose time complexity

is polynomial in τ .

D. Security against Strong Key Recovery

Finally, consider the case where there is a static adversary STATu that wants to compute the key assigned to

a class u ∈ V . Such adversary is able to corrupt all users in Fu and gain access to the keys associated to all

classes in the set Pu of the predecessors of u. As done before, we denote by corru the sequence output by the

algorithm Corruptu, on input the private information s generated by the algorithm Gen. Moreover, we denote

by keysu the sequence output by Keysu(k). The adversary, on input all public information generated by the

9

algorithm Gen, as well as the private information corru and the sequence keysu, outputs a string k′u and succeeds

if k′u = ku. We require that the adversary will succeed with probability only negligibly different from 1/2length(ku).

Definition 3.4: [STRONG-REC-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies,

let G = (V,E) be a graph in Γ, let (Gen,Der) be a hierarchical key assignment scheme for Γ and let STATu be

a static adversary which attacks a class u. Consider the following experiment:

Experiment ExpSTRONG−REC

STATu
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysu ← Keysu(k)

k′

u ← STATu(1
τ , G, pub, corru, keysu)

return k′

u

The advantage of STATu is defined as

AdvSTRONG−REC

STATu
(1τ , G) = Pr[k′u = ku].

The scheme is said to be secure in the sense of STRONG-REC-ST if, for each graph G = (V,E) in Γ and

each class u ∈ V , the function AdvSTRONG−REC

STATu
(1τ , G) is negligible, for each static adversary STATu whose time

complexity is polynomial in τ .

IV. IMPLICATIONS AND SEPARATIONS

In this section, we analyze the relations between the security definitions described in Section III. In particular,

we show implications and separations occurring between such notions. Figure 1 summarizes our results.

STRONG− IND− ST IND− ST

STRONG− REC− ST

REC− ST

Figure 1: Relations between the security notions for hierarchical key assignment schemes.

It is easy to see that any adversary which breaks the security of the key assignment scheme in the sense of

10

STRONG-IND-ST can be easily turned into another adversary which breaks the security of the key assignment

scheme in the sense of STRONG-REC-ST. Hence, the next result holds.

Theorem 4.1: [STRONG-IND-ST⇒STRONG-REC-ST] Let Γ be a family of graphs corresponding to partially

ordered hierarchies. If a hierarchical key assignment scheme for Γ is secure in the sense of STRONG-IND-ST,

then it is also secure in the sense of STRONG-REC-ST.

In the following, we show that security against strong key recovery does not necessarily imply security with respect

to strong key indistinguishability. Let (Gen,Der) be a hierarchical key assignment scheme which is secure in the

sense of STRONG-REC-ST. We construct another scheme (Gen′, Der′) and we show that it is secure in the sense

of STRONG-REC-ST but is not secure in the sense of STRONG-IND-ST. Let u ∈ V be a class and let ku be the

key assigned by Gen to u. Algorithm Gen′ computes the key assigned to class u as k′u = 1||ku, where the symbol

|| denotes string concatenation. All other values computed by Gen′ are exactly the same as the ones computed by

Gen. Algorithm Der′ first computes ku by using Der, then obtains k′u = 1||ku. Let STATu be a static adversary

that simply checks whether the first bit x0 of the challenge x, corresponding either to the key k′u or to a random

string having the same length as k′u, is equal to 0. If this happens, then STATu can easily conclude that the challenge

x does not correspond to the key k′u, but is a random string. Since the advantage Adv
STRONG−IND

STATu
is non-negligible,

it follows that (Gen′, Der′) is not secure in the sense of STRONG-IND-ST. On the other hand, (Gen′, Der′) is

secure in the sense of STRONG-REC-ST. Assume by contradiction that (Gen′, Der′) is not secure in the sense of

STRONG-REC-ST. It follows that also (Gen,Der) is not secure in the sense of STRONG-REC-ST, thus leading

to a contradiction. For this reason, the next result holds.

Theorem 4.2: [STRONG-REC-ST 6⇒STRONG-IND-ST] Let Γ be a family of graphs corresponding to partially

ordered hierarchies. If there exists a hierarchical key assignment scheme for Γ which is secure in the sense of

STRONG-REC-ST, then there exists a hierarchical key assignment scheme for Γ that is secure in the sense of

STRONG-REC-ST but which is not secure in the sense of STRONG-IND-ST.

The relations between the definitions of security against strong key recovery and security against key recovery

have been established by Freire et al. [41]. In particular, they showed that the two notions of security against key

recovery and against strong key recovery are separated, i.e., there exist hierarchical key assignment schemes that

are secure against key recovery but which are not secure against strong key recovery. An example of such schemes

is the one based on pseudorandom functions, proposed by Atallah et al. [14]. Thus, the following theorems hold.

Theorem 4.3: [STRONG-REC-ST⇒REC-ST] Let Γ be a family of graphs corresponding to partially ordered

hierarchies. If a hierarchical key assignment scheme for Γ is secure in the sense of STRONG-REC-ST, then it is

also secure in the sense of REC-ST.

Theorem 4.4: [REC-ST 6⇒STRONG-REC-ST] Let Γ be a family of graphs corresponding to partially ordered

11

hierarchies. If there exists a hierarchical key assignment scheme for Γ which is secure in the sense of REC-ST,

then there exists a hierarchical key assignment scheme for Γ that is secure in the sense of REC-ST but which is

not secure in the sense of STRONG-REC-ST.

However, Freire et al. [41] did not clarify the relations between the notions of security with respect to key

indistinguishability and with respect to strong key indistinguishability. As stated by the next theorem, it is easy to see

that security with respect to strong key indistinguishability implies security with respect to key indistinguishability.

However, nothing is known about the other direction.

Theorem 4.5: [STRONG-IND-ST⇒IND-ST] Let Γ be a family of graphs corresponding to partially ordered

hierarchies. If a hierarchical key assignment scheme for Γ is secure in the sense of STRONG-IND-ST, then it is

also secure in the sense of IND-ST.

In the following, we show that security with respect to strong key indistinguishability is not stronger than the

one with respect to key indistinguishability, that is to say, STRONG-IND-ST and IND-ST are (polynomially)

equivalent.

Theorem 4.6: [IND-ST⇒STRONG-IND-ST] Let Γ be a family of graphs corresponding to partially ordered

hierarchies. If a hierarchical key assignment scheme for Γ is secure in the sense of IND-ST, then it is also secure

in the sense of STRONG-IND-ST.

Proof: Assume by contradiction that there exists a hierarchical key assignment scheme Σ for a graph G =

(V,E) in Γ, which is secure in the sense of IND-ST but that is not secure in the sense of STRONG-IND-ST.

Therefore, there exists a class u ∈ V and a static adversary STATu which is able to distinguish between experiments

ExpSTRONG−IND−0

STATu
and ExpSTRONG−IND−1

STATu
with non-negligible advantage. Recall that the only difference between

ExpSTRONG−IND−0

STATu
and ExpSTRONG−IND−1

STATu
is the last input of STATu, which corresponds to a random value chosen in

{0, 1}τ in the first experiment and to the real key ku in the second one.

Let Pu = {v ∈ V \ {u} : u ∈ Av} be the set of predecessors of class u, and, w.l.o.g., let (u1, . . . , um) be

any topological ordering of its elements. Notice that the sequence keysu, which is an input of STATu in both the

experiments ExpSTRONG−IND−0

STATu
and ExpSTRONG−IND−1

STATu
, contains exactly the keys ku1

, . . . , kum
. First of all, it is easy

to observe that if m = 0 the sequence keysu is empty, thus the experiments ExpSTRONG−IND−0

STATu
and ExpSTRONG−IND−1

STATu

correspond to ExpIND−0

STATu
and ExpIND−1

STATu
, respectively. In this case, since STATu is able to distinguish between such

experiments with non-negligible advantage, it follows that the scheme Σ is not secure in the sense of IND-ST,

which is a contradiction.

In addition, consider the case in which m > 0. We will show how to turn the adversary STATu into another

polynomial-time adversary STAT
′

uh
, where uh ∈ Pu, which breaks the scheme Σ in the sense of IND-ST, thus

leading to a contradiction. We construct two sequences Exp1,1
u , . . . ,Exp1,m+1

u and Exp2,1
u , . . . ,Exp2,m+1

u of

m + 1 experiments each, all defined over the same probability space, where the first experiment of the former

12

sequence, that is Exp1,1
u , is equal to ExpSTRONG−IND−0

STATu
, whereas, the last experiment of the latter sequence, that is

Exp2,m+1
u , is equal to ExpSTRONG−IND−1

STATu
.

For any q = 2, . . . ,m+ 1, experiment Exp1,q
u in the first sequence is defined as follows:

Experiment Exp1,q
u

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysqu ← Keysqu(k)

d← STATu(1
τ , G, pub, corru, keys

q

u, ρ)

return d

The output of the algorithm Keysqu is the sequence keysqu where the first q − 1 values are independently chosen

at random in {0, 1}τ and, if q ≤ m, the other m − q + 1 values correspond to the keys assigned to the classes

uq, . . . , um.

On the other hand, for any q = 1, . . . ,m, experiment Exp2,q
u in the second sequence is defined as follows:

Experiment Exp2,q
u

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysm−q+2
u ← Keysm−q+2

u (k)

d← STATu(1
τ , G, pub, corru, keys

m−q+2
u , ku)

return d

where keysm−q+2
u denotes the sequence where the first m − q + 1 values are independently chosen at random in

{0, 1}τ and, if q ≥ 2, the other q − 1 values correspond to the keys assigned to the classes um−q+2, . . . , um.

Since Exp1,1
u , which corresponds to ExpSTRONG−IND−0

STATu
, and Exp2,m+1

u , which corresponds to ExpSTRONG−IND−1

STATu
, can

be distinguished by STATu with non-negligible advantage, then there exists at least a pair of consecutive experiments,

in the sequence of 2m + 2 experiments obtained by composition of the two above defined sequences, which are

distinguishable by STATu with non-negligible advantage.

We first show that such a pair cannot consist of the two extremal experiments, namely, the last experiment of

the first sequence, that is Exp1,m+1
u , and the first experiment of the second sequence, that is Exp2,1

u . Assume

by contradiction that STATu is able to distinguish between Exp1,m+1
u and Exp2,1

u with non-negligible advantage.

Notice that the only difference between such two experiments is the last input of STATu, which corresponds to a

random value chosen in {0, 1}τ in experiment Exp1,m+1
u , and to the real key ku in experiment Exp2,1

u . We show

how to construct another adversary STAT
′

u which breaks the security of the scheme Σ in the sense of IND-ST, by

using the adversary STATu. The adversary STAT
′

u, on inputs 1τ , G, the sequence of private information corru and

a final value α, corresponding either to the key ku or to a random value chosen in {0, 1}τ , constructs the sequence

keysm+1
u needed for STATu choosing independently at random m elements in {0, 1}τ . Then, STAT′u outputs the same

output as STATu(1
τ , G, pub, corru, keys

m+1
u , α). Clearly, since STATu is able to distinguish between Exp1,m+1

u

13

and Exp2,1
u with non-negligible advantage, then STAT

′

u is able to distinguish between ExpIND−0

STAT′u
and ExpIND−1

STAT′u

with non-negligible advantage, thus breaking the security of the scheme Σ in the sense of IND-ST. Contradiction.

Thus, the pair of consecutive experiments which can be distinguished by STATu, belongs either to the first sequence

or to the second one.

Assume that the pair of distinguishable consecutive experiments belongs to the first sequence and it is composed

by Exp1,h
u and Exp1,h+1

u , for some h = 1, . . . ,m. Notice that the views of STATu in such two consecutive

experiments differ only for a single value, which corresponds to the key kuh
in Exp1,h

u and to a random value

chosen in {0, 1}τ in Exp1,h+1
u . We show how to construct an adversary STAT

′′

uh
which breaks the security of the

scheme Σ in the sense of IND-ST, by using the adversary STATu. In particular, we show that STAT′′uh
is able

to distinguish between experiments ExpIND−0

STAT′′u
h

and ExpIND−1

STAT′′u
h

with non-negligible advantage. The adversary

STAT
′′

uh
, on inputs 1τ , G, the sequence of private information corruh

and a final value α, corresponding either to

the key kuh
or to a random value chosen in {0, 1}τ , constructs the inputs for STATu as follows:

• First, STAT
′′

uh
extracts from corruh

the sequence corru. This can be done since uh ∈ Pu, i.e., uh is a

predecessor of u, hence classes which are corrupted for u are also corrupted for uh and their private information

is in corruh
.

• Then, STAT′′uh
uses corruh

and α to construct a sequence keysαu , which corresponds either to keyshu or to

keysh+1
u . In particular, the first h− 1 elements of keysαu are independently chosen at random in {0, 1}τ , the

h-th element is set equal to α, whereas, the remaining m− h+ 1 ones, which correspond to the keys of the

classes uh+1, . . . , um, are computed by using the private information of such classes, which are contained in

corruh
.

• Moreover, the last input for STATu is set equal to a random value ρ chosen in {0, 1}τ .

Finally, STAT′′uh
outputs the same output as STATu(1

τ , G, pub, corru, keys
α
u , ρ). Clearly, since STATu is able to

distinguish between Exp1,h
u and Exp1,h+1

u with non-negligible advantage, then STAT
′′

uh
is able to distinguish

between ExpIND−0

STAT′′u
h

and ExpIND−1

STAT′′u
h

with non-negligible advantage, thus breaking the security of the scheme Σ

in the sense of IND-ST. Contradiction.

Notice that if the pair of distinguishable consecutive experiments belongs to the second sequence, i.e., is composed

by Exp2,h
u and Exp2,h+1

u , for some h = 1, . . . ,m, the proof is similar to the previous case.

From Theorems 4.6, 4.1 and 4.3 we obtain the next result, which has already been proved in [32].

Theorem 4.7: [IND-ST⇒REC-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies.

If a hierarchical key assignment scheme for Γ is secure in the sense of IND-ST, then it is also secure in the sense

of REC-ST.

On the other hand, from Theorems 4.4, 4.2, 4.5, and 4.6, the next result, which has already been proved in [32],

follows.

Theorem 4.8: [REC-ST 6⇒IND-ST] Let Γ be a family of graphs corresponding to partially ordered hierarchies.

14

If there exists a hierarchical key assignment scheme for Γ which is secure in the sense of REC-ST, then there

exists a hierarchical key assignment scheme for Γ that is secure in the sense of REC-ST but which is not secure

in the sense of IND-ST.

V. TOWARDS SECURITY AGAINST STRONG KEY RECOVERY

As said in the previous section, the two notions of security against key recovery and against strong key recovery

are separated, i.e., there exist hierarchical key assignment schemes that are secure against key recovery but which

are not secure against strong key recovery. In this section, we investigate the possibility of obtaining a scheme

which is secure with respect to the stronger notion, starting from any scheme which is secure with respect to the

weaker one.

The idea behind our construction is the following. Given a graph G = (V,E) representing a partially ordered

hierarchy, we construct another graph G′ which represents the same hierarchy, but that has |V | additional classes.

Then, we use a hierarchical key assignment scheme to assign private information and encryption keys to the classes

of G′. This assignment can be easily turned into an assignment for the original graph G. Indeed, the private

information for each class in G is set equal to that assigned to the same class in G′, whereas, the encryption keys

for classes in G are those assigned to the additional classes in G′. We will show how the resulting hierarchical key

assignment scheme for G satisfies security agains strong key recovery, provided that the underlying scheme for G′

satisfies security against key recovery.

Formally, let Γ be a family of graphs corresponding to partially ordered hierarchies. For each graph G = (V,E)

in Γ we define a graph transformation, whose output, denoted by G′ = (V ′, E′), is called the extended graph for

G. We denote by Γ′ the family of extended graphs for elements in Γ. The transformation works as follows:

• For each u ∈ V , we place two classes u and u0 in V ′;

• For each class u ∈ V , we place the edge (u, u0) in E′;

• For each (u, v) ∈ E, we place the edge (u, v) in E′.

Figure 2 shows an example of the extended graph for G = (V,E), where V = {a, b, c, d} and E = {(a, b), (a, c), (b, d), (c, d)}.

Let Γ′ be the family of extended graphs for elements in Γ and let (Gen′, Der′) be a hierarchical key assignment

scheme for Γ′. The proposed key assignment scheme for Γ works as follows.

Algorithm Gen(1τ , G)

1) Construct the extended graph G′ = (V ′, E′) for G = (V,E);

2) Let (s′, k′, pub′) be the output of Gen′ on inputs (1τ , G′);

3) For each class u ∈ V , let su = s′u;

4) For each class u ∈ V , let ku = k′

u0
;

5) Let s and k be the sequences of private information and keys, respectively, computed in the previous steps;

6) Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

15

a a0

b b0

c c0

d d0

Figure 2: The graph G′ = (V ′, E′), where V = {a, b, c, d} and E = {(a, b), (a, c), (b, d), (c, d)}.

1) Let k′

v0
be the output of Der′ on inputs (1τ , G′, u, v0, s

′

u, pub
′);

2) Output kv = k′

v0
.

The next theorem states that if (Gen′, Der′) is secure against key recovery, then (Gen,Der) is secure against

strong key recovery.

Theorem 5.1: If (Gen′, Der′) is secure in the sense of REC-ST, then (Gen,Der) is secure in the sense of

STRONG-REC-ST.

Proof: Assume by contradiction that the scheme (Gen,Der) is not secure in the sense of STRONG-REC-ST.

Therefore, there exists a graph G = (V,E) in Γ and a class u ∈ V for which there exists a polynomial time adversary

STATu whose advantage AdvSTRONG−REC

STATu
(1τ , G) is non-negligible. We show how to construct a polynomial-time

adversary which, by using STATu, is able to break the security of the scheme (Gen′, Der′) in the sense of REC-ST.

Such an adversary, which we denote by STAT
′

u0
, on inputs 1τ , an extended graph G′, the public information pub′,

and the sequence corr′u0
of private information held by corrupted users, constructs the inputs for STATu as follows:

• First, STAT′u0
constructs the graph G from G′, so that G′ is the extended graph for G. This operation simply

involves the cancellation of all the classes v0 ∈ V ′.

• Then, the adversary sets the public information pub to be equal to pub′.

• Afterwards, the adversary extracts the sequence corru from corr′u0
. Indeed, corr′u0

contains the private

information s′v for each class v ∈ Fu.

• Moreover, the adversary constructs the sequence keysu as follows: first, it extracts from the sequence corr′u0

the private information s′v0 for each v 6= u. Such values are then used to compute the sequence of keys k′v0

for each v 6= u. These values are exactly the elements of the sequence keysu.

Finally, STAT′u0
returns the same output as STATu(1

τ , G, pub, corru, keysu). Therefore, it is easy to see that

16

Adv
REC

STAT′u0

(1τ , G′) = Adv
STRONG−REC

STATu
(1τ , G).

Since AdvSTRONG−REC

STATu
(1τ , G) is non-negligible, it follows that the adversary STAT

′

u0
is able to break the security

of the scheme (Gen′, Der′) in the sense of REC-ST. Contradiction.

VI. CONCLUSIONS

In this paper we have explored the relations between all security notions for hierarchical key assignment schemes

and, in particular, we have shown that security with respect to strong key indistinguishability is not stronger than

the one with respect to key indistinguishability. We have also proposed a general construction yielding a hierarchical

key assignment scheme offering security against strong key recovery, given any hierarchical key assignment scheme

which guarantees security against key recovery.

VII. ACKNOWLEDGEMENTS

We would like to thank Kenny Paterson for his valuable and detailed comments which helped us to improve the

readability of this paper.

REFERENCES

[1] S. G. Akl and P. D. Taylor, “Cryptographic Solution to a Problem of Access Control in a Hierarchy,” ACM Trans. Comput. Syst., vol. 1,

no. 3, pp. 239–248, 1983. [Online]. Available: http://doi.acm.org/10.1145/357369.357372

[2] S. J. MacKinnon, P. D. Taylor, H. Meijer, and S. G. Akl, “An Optimal Algorithm for Assigning Cryptographic Keys

to Control Access in a Hierarchy,” IEEE Trans. Computers, vol. 34, no. 9, pp. 797–802, 1985. [Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/TC.1985.1676635

[3] L. Harn and H. Lin, “A Cryptographic Key Generation Scheme for Multilevel Data Security,” Computers & Security, vol. 9, no. 6, pp.

539–546, 1990. [Online]. Available: http://dx.doi.org/10.1016/0167-4048(90)90132-D

[4] H. Liaw, S. Wang, and C. Lei, “A Dynamic Cryptographic Key Assignment Scheme in a Tree Structure,” Computers & Mathematics with

Applications, vol. 25, no. 6, pp. 109 – 114, 1993. [Online]. Available: http://www.sciencedirect.com/science/article/pii/089812219390305F

[5] H. Min-Shiang, “A Cryptographic Key Assignment Scheme in a Hierarchy for Access Control,” Math. Comput. Model., vol. 26, no. 2,

pp. 27–31, Jul. 1997. [Online]. Available: http://dx.doi.org/10.1016/S0895-7177(97)00120-9

[6] C.-H. Lin, “Dynamic Key Management Schemes for Access Control in a Hierarchy,” Computer Communications, vol. 20, no. 15, pp.

1381 – 1385, 1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S014036649700100X

[7] R. S. Sandhu, “Cryptographic Implementation of a Tree Hierarchy for Access Control,” Inf. Process. Lett., vol. 27, no. 2, pp. 95–98,

1988. [Online]. Available: http://dx.doi.org/10.1016/0020-0190(88)90099-3

[8] T. Wu and C. Chang, “Cryptographic Key Assignment Scheme for Hierarchical Access Control,” Comput. Syst. Sci. Eng., vol. 16, no. 1,

pp. 25–28, 2001.

[9] T. Chen and Y. Chung, “Hierarchical Access Control Based on Chinese Remainder Theorem and Symmetric Algorithm,” Computers &

Security, vol. 21, no. 6, pp. 565–570, 2002. [Online]. Available: http://dx.doi.org/10.1016/S0167-4048(02)01016-7

[10] V. R. L. Shen and T. Chen, “A Novel Key Management Scheme Based on Discrete Logarithms and Polynomial Interpolations,”

Computers & Security, vol. 21, no. 2, pp. 164–171, 2002. [Online]. Available: http://dx.doi.org/10.1016/S0167-4048(02)00211-0

[11] M. J. Atallah, K. B. Frikken, and M. Blanton, “Dynamic and Efficient Key Management for Access Hierarchies,” in Proceedings of the

12th ACM Conference on Computer and Communications Security, CCS 2005, Alexandria, VA, USA, November 7-11, 2005, V. Atluri,

C. Meadows, and A. Juels, Eds. ACM, 2005, pp. 190–202. [Online]. Available: http://doi.acm.org/10.1145/1102120.1102147

17

[12] A. D. Santis, A. L. Ferrara, and B. Masucci, “Efficient Provably-Secure Hierarchical Key Assignment Schemes,” in Mathematical

Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August 26-31,

2007, Proceedings, ser. Lecture Notes in Computer Science, L. Kucera and A. Kucera, Eds., vol. 4708. Springer, 2007, pp. 371–382.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74456-6 34

[13] M. J. Atallah, M. Blanton, and K. B. Frikken, “Key Management for Non-Tree Access Hierarchies,” in SACMAT 2006,11th ACM

Symposium on Access Control Models and Technologies, Lake Tahoe, California, USA, June 7-9, 2006, Proceedings, D. F. Ferraiolo and

I. Ray, Eds. ACM, 2006, pp. 11–18. [Online]. Available: http://doi.acm.org/10.1145/1133058.1133062

[14] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and Efficient Key Management for Access Hierarchies,” ACM Trans.

Inf. Syst. Secur., vol. 12, no. 3, 2009. [Online]. Available: http://doi.acm.org/10.1145/1455526.1455531

[15] P. D’Arco, A. D. Santis, A. L. Ferrara, and B. Masucci, “Security and Tradeoffs of the Akl-Taylor Scheme and Its Variants,” in

Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras,

Slovakia, August 24-28, 2009. Proceedings, ser. Lecture Notes in Computer Science, R. Královic and D. Niwinski, Eds., vol. 5734.

Springer, 2009, pp. 247–257. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-03816-7 22

[16] ——, “Variations on a theme by Akl and Taylor: Security and Tradeoffs,” Theor. Comput. Sci., vol. 411, no. 1, pp. 213–227, 2010.

[Online]. Available: http://dx.doi.org/10.1016/j.tcs.2009.09.028

[17] A. D. Santis, A. L. Ferrara, and B. Masucci, “Efficient Provably-Secure Hierarchical Key Assignment Schemes,” Theor. Comput. Sci.,

vol. 412, no. 41, pp. 5684–5699, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2011.06.024

[18] E. S. V. Freire and K. G. Paterson, “Provably Secure Key Assignment Schemes from Factoring,” in Information Security

and Privacy - 16th Australasian Conference, ACISP 2011, Melbourne, Australia, July 11-13, 2011. Proceedings, ser. Lecture

Notes in Computer Science, U. Parampalli and P. Hawkes, Eds., vol. 6812. Springer, 2011, pp. 292–309. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-22497-3 19

[19] J. Yeh, R. Chow, and R. Newman, “A Key Assignment for Enforcing Access Control Policy Exceptions,” in Proc. of the International

Symposium on Internet Technology, 1998, pp. 54–59.

[20] I.-C. Lin, M.-S. Hwang, and C.-C. Chang, “A New Key Assignment Scheme for Enforcing Complicated Access Control Policies in

Hierarchy,” Future Generation Computer Systems, vol. 19, no. 4, pp. 457 – 462, 2003, selected papers from the IEEE/ACM International

Symposium on Cluster Computing and the Grid, Berlin-Brandenburg Academy of Sciences and Humanities, Berlin, Germany, 21-24 May

2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167739X02002005

[21] A. D. Santis, A. L. Ferrara, and B. Masucci, “Cryptographic Key Assignment Schemes for Any Access Control Policy,” Inf. Process.

Lett., vol. 92, no. 4, pp. 199–205, 2004. [Online]. Available: http://dx.doi.org/10.1016/j.ipl.2004.03.019

[22] ——, “Unconditionally Secure Key Assignment Schemes,” Discrete Applied Mathematics, vol. 154, no. 2, pp. 234–252, 2006. [Online].

Available: http://dx.doi.org/10.1016/j.dam.2005.03.025

[23] W. Tzeng, “A Time-Bound Cryptographic Key Assignment Scheme for Access Control in a Hierarchy,” IEEE Trans. Knowl. Data Eng.,

vol. 14, no. 1, pp. 182–188, 2002. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/69.979981

[24] H. Chien, “Efficient Time-Bound Hierarchical Key Assignment Scheme,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 10, pp. 1301–1304,

2004. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/TKDE.2004.59

[25] H. Huang and C. Chang, “A New Cryptographic Key Assignment Scheme with Time-Constraint Access Control in a Hierarchy,” Computer

Standards & Interfaces, vol. 26, no. 3, pp. 159–166, 2004. [Online]. Available: http://dx.doi.org/10.1016/S0920-5489(03)00073-4

[26] J. Yeh, “An RSA-based Time-Bound Hierarchical Key Assignment Scheme for Electronic Article Subscription,” in Proceedings of the

2005 ACM CIKM International Conference on Information and Knowledge Management, Bremen, Germany, October 31 - November

5, 2005, O. Herzog, H. Schek, N. Fuhr, A. Chowdhury, and W. Teiken, Eds. ACM, 2005, pp. 285–286. [Online]. Available:

http://doi.acm.org/10.1145/1099554.1099629

[27] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci, “Provably-Secure Time-Bound Hierarchical Key Assignment Schemes,” in

Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober

30 - November 3, 2006, A. Juels, R. N. Wright, and S. D. C. di Vimercati, Eds. ACM, 2006, pp. 288–297. [Online]. Available:

http://doi.acm.org/10.1145/1180405.1180441

[28] S. Wang and C. Laih, “Merging: An Efficient Solution for a Time-Bound Hierarchical Key Assignment Scheme,” IEEE Trans.

Dependable Sec. Comput., vol. 3, no. 1, pp. 91–100, 2006. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/TDSC.2006.15

18

[29] W. Tzeng, “A Secure System for Data Access Based on Anonymous Authentication and Time-Dependent Hierarchical Keys,” in

Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2006, Taipei, Taiwan,

March 21-24, 2006, F. Lin, D. Lee, B. P. Lin, S. Shieh, and S. Jajodia, Eds. ACM, 2006, pp. 223–230. [Online]. Available:

http://doi.acm.org/10.1145/1128817.1128851

[30] A. D. Santis, A. L. Ferrara, and B. Masucci, “New Constructions for Provably-Secure Time-Bound Hierarchical Key Assignment

Schemes,” in SACMAT 2007, 12th ACM Symposium on Access Control Models and Technologies, Sophia Antipolis, France,

June 20-22, 2007, Proceedings, V. Lotz and B. M. Thuraisingham, Eds. ACM, 2007, pp. 133–138. [Online]. Available:

http://doi.acm.org/10.1145/1266840.1266861

[31] ——, “New Constructions for Provably-Secure Time-Bound Hierarchical Key Assignment Schemes,” Theor. Comput. Sci., vol. 407, no.

1-3, pp. 213–230, 2008. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2008.05.021

[32] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci, “Provably-Secure Time-Bound Hierarchical Key Assignment Schemes,” J.

Cryptology, vol. 25, no. 2, pp. 243–270, 2012. [Online]. Available: http://dx.doi.org/10.1007/s00145-010-9094-6

[33] X. Yi and Y. Ye, “Security of Tzeng’s Time-Bound Key Assignment Scheme for Access Control in a Hierarchy,” IEEE Trans. Knowl.

Data Eng., vol. 15, no. 4, pp. 1054–1055, 2003. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/TKDE.2003.1209023

[34] X. Yi, “Security of Chien’s Efficient Time-Bound Hierarchical Key Assignment Scheme,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 9,

pp. 1298–1299, 2005. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/TKDE.2005.152

[35] Q. Tang and C. J. Mitchell, “Comments On a Cryptographic Key Assignment Scheme,” Computer Standards & Interfaces, vol. 27, no. 3,

pp. 323–326, 2005. [Online]. Available: http://dx.doi.org/10.1016/j.csi.2004.07.001

[36] A. D. Santis, A. L. Ferrara, and B. Masucci, “Enforcing the Security of a Time-Bound Hierarchical Key Assignment Scheme,” Inf. Sci.,

vol. 176, no. 12, pp. 1684–1694, 2006. [Online]. Available: http://dx.doi.org/10.1016/j.ins.2005.07.002

[37] S. Goldwasser and S. Micali, “Probabilistic Encryption,” J. Comput. Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984. [Online]. Available:

http://dx.doi.org/10.1016/0022-0000(84)90070-9

[38] M. J. Atallah, M. Blanton, and K. B. Frikken, “Incorporating Temporal Capabilities in Existing Key Management Schemes,” in Computer

Security - ESORICS 2007, 12th European Symposium On Research In Computer Security, Dresden, Germany, September 24-26, 2007,

Proceedings, ser. Lecture Notes in Computer Science, J. Biskup and J. Lopez, Eds., vol. 4734. Springer, 2007, pp. 515–530. [Online].

Available: http://dx.doi.org/10.1007/978-3-540-74835-9 34

[39] E. Bertino, N. Shang, and S. S. W. Jr., “An Efficient Time-Bound Hierarchical Key Management Scheme for

Secure Broadcasting,” IEEE Trans. Dependable Sec. Comput., vol. 5, no. 2, pp. 65–70, 2008. [Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/TDSC.2007.70241

[40] A. Castiglione, A. De Santis, and B. Masucci, “Hierarchical and Shared Key Assignment,” in 17th International Conference on

Network-Based Information Systems, NBIS 2014, IEEE, 2014, pp. 263–270. [Online]. Available: http://dx.doi.org/10.1109/NBiS.2014.106

[41] E. S. V. Freire, K. G. Paterson, and B. Poettering, “Simple, Efficient and Strongly KI-Secure Hierarchical Key Assignment Schemes,”

in Topics in Cryptology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San Francisco,CA, USA, February

25-March 1, 2013. Proceedings, ser. Lecture Notes in Computer Science, E. Dawson, Ed., vol. 7779. Springer, 2013, pp. 101–114.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36095-4 7

[42] M. Cafaro, R. Civino, and B. Masucci, “On the Equivalence of Two Security Notions for Hierarchical Key Assignment Schemes in the

Unconditional Setting,” IEEE Trans. Dependable Sec. Comput., 2014. [Online]. Available: http://dx.doi.org/10.1109/TDSC.2014.2355841

[43] A. V. Aho, M. R. Garey, and J. D. Ullman, “The Transitive Reduction of a Directed Graph,” SIAM J. Comput., vol. 1, no. 2, pp.

131–137, 1972. [Online]. Available: http://dx.doi.org/10.1137/0201008

[44] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci, “A Note on Time-Bound Hierarchical Key Assignment Schemes,” Inf. Process.

Lett., vol. 113, no. 5-6, pp. 151–155, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.ipl.2013.01.006

[45] S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks,” SIAM J.

Comput., vol. 17, no. 2, pp. 281–308, 1988. [Online]. Available: http://dx.doi.org/10.1137/0217017

