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Abstract. In this article, we analyse the security of the authenticated
encryption mode JAMBU, a submission to the CAESAR competition that
remains currently unbroken. We show that the security claims of this
candidate regarding its nonce-misuse resistance can be broken. More
precisely, we explain a technique to guess in advance a ciphertext block
corresponding to a plaintext that has never been queried before (nor its
prefix), thus breaking the confidentiality of the scheme when the attacker
can make encryption queries with the same nonce. Our attack is very
practical as it requires only about 232 encryption queries and computa-
tions (instead of the 2128 claimed by the designers). Our cryptanalysis
has been fully implemented in order to verify our findings. Moreover,
due to the small tag length of JAMBU, we show how this attack can be
extended in the nonce-respecting scenario to break confidentiality in the
adaptative chosen-ciphertext model (IND-CCA2) with 296 computations,
with message prefixes not previously queried.
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1 Introduction

Authenticated encryption is a very useful cryptographic primitive that provides
both privacy and authenticity when sending data. It is a handy component for
many security engineers and protocol designers as it avoids for example the
classical threat of a misinterpretation of the privacy-only security provided by
a simple encryption mode. The encryption algorithm usually takes as input a
plaintext P , some public associated data AD, a public nonce value IV , a secret
key K, and it outputs a ciphertext C and a tag value T . Conversely, the decryp-
tion algorithm usually takes as input a ciphertext C, a tag value T , some public
associated data AD, a public nonce value IV , a secret key K, and outputs either
the original plaintext P or an error flag if the authentication process is not valid.
Using an encryption scheme for the privacy part and a MAC for the authenticity
part is a possible way to obtain authenticated encryption, but the goal of the
ongoing CAESAR competition [5] is to push to the industry a single primitive
providing both properties at the same time, with a single core function, which
would potentially permit faster and simpler solutions.



JAMBU is an nonce-based authenticated encryption operating mode proposed
by Wu and Huang [15], that can be instantiated with any block cipher. Yet,
the submission AES-JAMBU to the CAESAR competition uses AES-128 [7] as
internal block cipher. The main advantage of JAMBU mode is its low memory
requirement, which places it in the group of lightweight authenticated encryp-
tion modes. Indeed, when instantiated with a 2n-bit block cipher and without
counting the memory needed to store the secret key, JAMBU will only require to
maintain a 3n-bit internal state, where classical authenticated encryption modes
like OCB [12, 10] would require a 6n-bit internal state or even more. In terms of
speed performances, AES-JAMBU is reasonably fast, being about twice slower than
AES-CBC [14] (but much slower than OCB since the calls to the internal cipher
cannot be parallelized).

The security claims of JAMBU are given in the CAESAR competition submis-
sion document [15]. When instantiated with a 2n-bit block cipher, JAMBU pro-
cesses plaintext blocks of n bits and eventually outputs an n-bit tag T . When
the nonce is not reused, JAMBU is claimed to provide 2n-bit security for confi-
dentiality and n-bit security for authentication. When the nonce is misused (i.e.
several encryptions can be performed with the same nonce), JAMBU is claimed
to remain reasonably strong. More precisely, in that scenario, the confidential-
ity of JAMBU is supposed to be only partially compromised as the authors claim
that “it only leaks the information of the first block or the common prefix of the
message”. Regarding authentication in the nonce-misuse scenario, the authors
remain vague, only mentioning that “the integrity of JAMBU will be less secure
but not completely compromised”.

Our contribution. In this article, we first describe a very practical attack on
JAMBU that breaks its confidentiality claim in the nonce-misuse scenario. More
precisely, with only 2n/2 encryption queries and computing time (which amounts
to 232 for AES-JAMBU), we are able to predict the value of a ciphertext block
corresponding to a chosen plaintext whose prefix has never been queried to the
encryption oracle before, which invalidates the designers’ 2n-bit security claim.

Our attack works by trying to force a zero-difference on the input of one of
the internal block cipher calls of JAMBU. Normally, forcing such a collision on a
2n-bit value should require 2n computations, but thanks to a divide-and-conquer
technique, we are able to divide this event in two subparts, for a total cost of
2n/2 computations. Having a collision on one of the internal block cipher calls
will render this particular JAMBU round totally linear with regards to differences,
and will eventually allow us to predict a ciphertext block for the next round.

Then, because of the rather small tag size of JAMBU, we are able to extend
our technique to the more interesting case of a nonce-respecting attacker. More
precisely, with 23n/2 computations (which amounts to 296 for AES-JAMBU), one
can break JAMBU’s confidentiality in the adaptive chosen-ciphertext model, with
message prefixes not previously queried.

We first describe JAMBU authenticated encryption mode in Section 2 and
then explain our nonce-misuse scenario attack in Section 3, while the nonce-



respecting attack will be presented in Section 4. Finally, in order to confirm our
claims, we have implemented the nonce-misuse attack on AES-JAMBU as detailed
in Section 5. We remark that our techniques will work independently of the
cipher instantiating the JAMBU mode, yet in the rest of this article we will focus
on AES-JAMBU for ease of description.

2 The JAMBU authenticated encryption scheme

2.1 Description of JAMBU

JAMBU uses a k-bit secret key K and an n-bit public nonce value IV to authen-
ticate a variable length associated data AD and to encrypt and authenticate a
variable length plaintext P . It produces a ciphertext C, which has the same bit
length with plaintext, and an n-bit tag T .

The encryption process of JAMBU consists of 5 phases as described below:
padding, initialization, processing of the associated data, processing of the plain-
text, and finalization/tag generation. The computation structure is illustrated in
Figures 1, 2 and 3, where each line represents an n-bit value. We will represent
the 3n-bit internal state of JAMBU by the variables (Si, Ri) with Si = (Ui, Vi),
where Ri, Ui and Vi are n-bit values. We will denote by EK the internal cipher
using the secret key K.

Padding. First, the associated data AD is padded with 10* padding: a ‘1’ bit
is appended to the data, followed by the least number of ‘0’ bits (possibly none)
to make the length of the padded associated data become a multiple of n-bit.
Then, the same padding method is applied to the plaintext.

Initialization. As depicted in Figure 1, JAMBU uses an n-bit public nonce
value IV to initialize the internal state: S0 = EK(0n‖IV )⊕ (02n−3‖101), where
‖ denotes concatenation, and R0 = U0.

Processing of the associated data. The padded associated data is divided
into n-bit blocks, and then processed block by block as described in Figure 1.
Note that a single padded block 1||0n−1 will be processed in the case of an empty
associated data string. We omit the details of this phase since it is irrelevant to
our attack. Moreover, in the rest of the article we will only use empty AD
strings, so we get S1 = (U1, V1) = EK(S0)⊕ (1||02n−2||1) and R1 = R0 ⊕ U1.

Processing of the plaintext. We denote by p the number of plaintext blocks
after padding and P = (P1, P2, . . . , Pp). The plaintext is processed block by
block as depicted in Figure 2. At round i, the internal state is updated with
the plaintext block Pi by Si+1 = (Ui+1, Vi+1) = EK(Si) ⊕ (Pi||Ri) and Ri+1 =
Ri ⊕ Ui+1. The ciphertext block Ci is then computed with Ci = Pi ⊕ Vi+1.
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Finalization and tag generation. When all the plaintext blocks are pro-
cessed, the final state is (Sp+1, Rp+1). The authentication tag T is generated
with two internal block cipher calls, as depicted in Figure 3.
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Fig. 3. Finalization and tag generation

2.2 Security claims

The security claims of JAMBU are given in the CAESAR competition submis-
sion document [15]. When the nonce is not reused, JAMBU is claimed to provide
2n-bit security for confidentiality and n-bit security for authentication. We note
that the type of confidentiality security (i.e. IND-CPA, IND-CCA1 or IND-CCA2)
is not mentioned by the designers. When the nonce is misused (i.e. several en-
cryptions can be performed with the same nonce), JAMBU is claimed to remain



reasonably strong. Namely, in that scenario, the confidentiality of JAMBU is sup-
posed to be only partially compromised as the authors claim that it only leaks
the information of the first block or the common prefix of the message. Regard-
ing authentication in the nonce-misuse scenario, the authors remain vague, only
mentioning that “the integrity of JAMBU will be less secure but not completely
compromised”. We summarize in Table 1 the security claims of the CAESAR
competition candidate AES-JAMBU where n = 64. We remark that as with many
authenticated encryption schemes, if verification fails during decryption the new
tag and the decrypted plaintext should not be given as output. Moreover it is
also important to note that the total amount of message material (plaintext and
associated data) that can be protected by a single key is limited to 264 bits for
AES-JAMBU.

Confidentiality Integrity

(bits) (bits)

nonce-respecting 128 64

nonce-misuse
128 (except first not

block or common prefix) specified

Table 1. Security claims for AES-JAMBU.

3 Attack on JAMBU in nonce-misuse scenario

In this section, we analyze JAMBU in the nonce-misuse attack model, where a
nonce can be used to encrypt multiple plaintexts. In such a model, JAMBU is
an online authenticated encryption scheme, namely the i-th ciphertext block is
produced before the i + 1-th plaintext block is read. An inherent property of
online authenticated encryption is that common prefix plaintext blocks always
produce the same corresponding ciphertext blocks. According to the security
claims of JAMBU [15], the only compromised confidentiality security from the
nonce-respecting model to the nonce-misuse model is this additional inherent
property as becoming an online authenticated encryption in the latter model.

However, we present here a practical attack to distinguish JAMBU from a
random online authentication encryption, which invalidates the designers’ con-
fidentiality security claims of JAMBU in the nonce-misuse model.

3.1 Confidentiality of online authenticated encryption

For an online encryption scheme (EK ,DK) with a key space K, its confidential-
ity security is usually defined via upper bounding the advantage of all chosen-



plaintext distinguishers.3 We give a brief description as follows, and refer inter-
ested readers to [8, 1] for the full formal definitions. Let OAE denote the set
of all online authenticated encryption algorithms that have the same block and
tag size with (EK ,DK). Let (OEnc, ODec) $← OAE denote an algorithm randomly
selected from OAE . Let D be a distinguisher that interacts with EK or Enc, and
outputs one bit. Its advantage is defined as:

Advcpa
E (D) := Pr

[
K

$← K,DEK ⇒ 1
]
− Pr

[
(OEnc, ODec) $← OAE ,DOEnc ⇒ 1

]
.

Then we define Advcpa
E (t, q, σ, `) := maxD Advcpa

E (D), where the maximum takes
over all distinguishers that run in time t and make q queries, each of length at
most ` blocks and of total length at most σ blocks.

3.2 Attack overview

Our attack is based on an observation that we explain below. JAMBU maintains
a 3n-bit internal state, but uses only one invocation to a 2n-bit block cipher EK

to update it per plaintext block. Thus, there are always n state bits per round
which are not updated through the strong primitive (i.e. the underlying block
cipher). More precisely, every round Si = (Ui, Vi) is input to the block cipher:
(Xi, Yi) = EK(Si). On the other hand, Ri is linearly injected into the updated
state as Vi+1 = Yi⊕Ri. Furthermore, if a pair of plaintexts satisfying ∆Si = 0 is
found, then the state differences in two consecutive rounds are linearly related,
i.e., ∆Vi+2 = ∆Ri, which will be exploited by our cryptanalysis.

Overall, our attack can be divided into three parts. First the attacker will
try to build a special difference structure in the internal state by querying the
encryption of a fixed message4 with several different nonces. Then, using this
special differential structure, he will try to recover the values of these internal
differences and at the same time force a zero-difference on the input of one of
the internal cipher call. Finally, based on this differential structure that is now
fully known and controlled, he will be able to distinguish JAMBU from a random
online authenticated encryption, and further forge some ciphertext blocks for a
message that has never been queried before.

3.3 First step

For the first step, the attacker picks a random n-bit message block P1, and
asks for the encryption of this message for 2n/2 distinct nonce values. Since the
corresponding ciphertext blocks are also n-bit long, the attacker will have a good
chance to observe a collision on the block C1. We denote IV and IV ′ the two

3 It has been proven that an authenticated encryption satisfying both IND-CPA and
INT-CTXT security notions is also IND-CCA secure [4, 3, 9].

4 We note that it is not necessary that the message is fixed. Just for the simplicity of
description, we use a fixed message here and in subsequent sections.



nonces leading to that collision. One can easily see from Figure 4 that since no
difference is inserted in the block P1, a collision on C1 necessarily means that
we have a collision on the difference value of the upper branch and lower branch
of the internal state (i.e. the difference values in R1 and in Y1 are equal). We
denote that difference by ∆R, and we denote the random difference in X1 by
∆S . We remark that for this first attack step, we do not need to reuse any nonce
value.
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Fig. 4. The first step of the attack.

3.4 Second step

In the second step, the goal will be to deduce the value of ∆S and ∆R which
remain unknown at this moment. In order to achieve this, the attacker will now
try to insert a difference in P1 in a hope that it will be equal to ∆S . If his choice
is right, one can see from Figure 5 that he will cancel the difference in U2 and
that the difference appearing on the next ciphertext block C2 (for a plaintext
block P2 without difference) will necessarily be ∆R. A key observation is that
since no difference will be present any more on the input of the incoming block
cipher call, the difference on C2 will remain ∆R whatever the choice on the
value of P1. To summarize, if the attacker adds the difference ∆S in P1, then
the difference in C2 will remain the same (i.e. ∆R) whatever the value of P1 is.
This behavior is what the attacker will use to detect when he makes the right
choice for the difference insertion in P1.

The detailed procedure to find ∆S is as follows. Firstly, the attacker con-
structs two tables as depicted in Fig. 6, each having 2n/2 three-tuples of one-
block plaintexts, such that all pairs created by taking one element from each
of these two tables will correspond to all the 2n possible differences on a n-bit
value. More precisely, let 〈i〉 denote the integer i in a n/2-bit binary repre-
sentation5. One table T1 is { ( 〈0〉‖〈i〉, 〈1〉‖〈i〉, 〈2〉‖〈i〉 ) }, where i ranges over
all n/2-bit values.6 We denote by ( 〈0〉‖〈i〉, 〈1〉‖〈i〉, 〈2〉‖〈i〉 ) the i-th element
5 Typically n is 64, or 128, i.e. even integers.
6 Note that the attacker can use any three distinct constants other than 〈0〉, 〈1〉,

and 〈2〉 to construct the tables. Here we use these particular constants just for the
simplicity of notations.
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Fig. 5. The second step of the attack.

of T1. The other table T2 is { ( 〈j〉‖〈0〉, 〈1 ⊕ j〉‖〈0〉, 〈2 ⊕ j〉‖〈0〉 ) }, where j
ranges over all n/2-bit values. Similarly we denote the j-th element of T2 by
( 〈j〉‖〈0〉, 〈1 ⊕ j〉‖〈0〉, 〈2 ⊕ j〉‖〈0〉 ). The pairwise differences between T1 and
T2 are { ( 〈0〉‖〈i〉 ) ⊕ ( 〈j〉‖〈0〉 ) = 〈j〉‖〈i〉 }, where i and j independently range
over all n/2-bit values. Thus, one can see that it covers all the possible dif-
ferences of one-block n-bit plaintext. In particular, although each element is
a 3-tuple of plaintexts and hence each pair consist of three n-bit differences
by XORing the corresponding plaintexts, these differences are all equal, i.e.,
( 〈0〉‖〈i〉 )⊕ ( 〈j〉‖〈0〉 ) = ( 〈1〉‖〈i〉 )⊕ ( 〈1⊕ j〉‖〈0〉 ) = ( 〈2〉‖〈i〉 )⊕ ( 〈2⊕ j〉‖〈0〉 ).
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Fig. 6. The tables T1 and T2. An example of element pair for difference 〈j〉‖〈i〉.

Secondly, the attacker selects a random one-block plaintext P2. For each
element ( 〈0〉‖〈i〉, 〈1〉‖〈i〉, 〈2〉‖〈i〉 ) in table T1, he uses separately the three plain-



text block values as the first block P1, concatenates them with P2 as the second
block, and makes three encryption queries with the nonce IV to receive the three
corresponding ciphertexts. Then, the attacker computes the pairwise differences
on the second block of these ciphertexts. In details, let C[〈0〉‖〈i〉]2, C[〈1〉‖〈i〉]2
and C[〈2〉‖〈i〉]2 denote the second ciphertext blocks corresponding to 〈0〉‖〈i〉‖P2,
〈1〉‖〈i〉‖P2 and 〈2〉‖〈i〉‖P2 respectively. The attacker computes the following two
n-bit differences and stores them.

∆C[〈i〉]1 = C[〈1〉‖〈i〉]2 ⊕ C[〈0〉‖〈i〉]2, ∆C[〈i〉]2 = C[〈2〉‖〈i〉]2 ⊕ C[〈0〉‖〈i〉]2.

Similarly, for each element of the second table T2, the attacker makes encryption
queries with the above P2 as the second block and IV ′ as the nonce to receive the
ciphertexts, and then computes the pairwise differences of the second ciphertext
blocks, denoted as (∆C ′[〈i〉]1, ∆C ′[〈i〉]2). Then he matches the differences to
previously stored { (∆C[〈i〉]1, ∆C[〈i〉]2) }. Once a matched pair is found, the
attacker computes ∆R and ∆S from the corresponding plaintexts and ciphertexts
as follows

∆R = C[〈0〉‖〈i〉]2 ⊕ C ′[〈j〉‖〈0〉]2, ∆S = ( 〈0〉‖〈i〉 )⊕ ( 〈j〉‖〈0〉 ) = 〈j〉‖〈i〉.

If the attacker does not find a match after running all elements in T2, he outputs
0.

Now we evaluate the success probability of this step if the attacker interacts
with JAMBU. For a pair (〈0〉‖〈i〉)‖P2 with nonce IV and (〈j〉‖〈0〉)‖P2 with nonce
IV ′, if ∆S = 〈j〉‖〈i〉, we have that C[〈0〉‖〈i〉]2 ⊕C ′[〈j〉‖〈0〉]2 = ∆R as explained
in Section 3.2. Similarly, we have that C[〈1〉‖〈i〉]2 ⊕ C ′[〈1 ⊕ j〉‖〈0〉]2 = ∆R and
C[〈2〉‖〈i〉]2 ⊕ C ′[〈2⊕ j〉‖〈0〉]2 = ∆R. Then, we further deduce that

C[〈0〉‖〈i〉]2 ⊕ C ′[〈j〉‖〈0〉]2 = C[〈1〉‖〈i〉]2 ⊕ C ′[〈1⊕ j〉‖〈0〉]2
⇒ C[〈0〉‖〈i〉]2 ⊕ C[〈1〉‖〈i〉]2 = C ′[〈j〉‖〈0〉]2 ⊕ C ′[〈1⊕ j〉‖〈0〉]2
⇒ ∆C[〈i〉]1 = ∆C ′[〈j〉]1

With an identical reasoning, we deduce that ∆C[〈i〉]2 = ∆C ′[〈j〉]2. On the other
hand, if ∆S 6= 〈j〉‖〈i〉, the pair of the i-th element from T1 and the j-th element
from T2 will have to satisfy the two n-bit equality conditions randomly, which
will happen with probability 2−2n. Since there are in total 2n such pairs, the
probability of faulty positive pairs is negligible. Hence, the attacker gets the
correct values of ∆S and ∆R with a probability very close to 1.

3.5 Third step

Finally, in the third and last step, the attacker will choose a random one-block
value P1 such that P1 and P1 ⊕ ∆S have never been queried before as first
plaintext block (he can simply keep track of the previously queried P1 values).
Then, he will pick a random value for the second plaintext block P2 and ask
the encryption of the message (P1||P2) with the nonce IV . He receives cipher-
text blocks C1 and C2 from the encryption oracle. Then the attacker asks the



encryption of another message (P1 ⊕∆S‖P2) with the nonce IV ′, and receives
ciphertext blocks C ′1 and C ′2. Then he computes C2 ⊕ C ′2, and compares it to
∆R. If C2 ⊕ C ′2 = ∆R holds, the attacker outputs 1. Otherwise, the attacker
outputs 0.

One can easily evaluate the advantage of the attacker. For JAMBU, he will
output 1 with a probability equal to 1. On the other hand, for a random au-
thenticated encryption, he outputs 1 with a probability of 2−n. Therefore, the
advantage of the attacker is almost 1.

3.6 Attack and complexity summary

To summarize, our attack requires in total about O(2n/2) encryption queries and
computations, and can be divided into three parts:

• first step (2n/2 encryption queries and computations): the attacker picks
a plaintext block P1 and queries encryption of this block for 2n/2 distinct
nonces. He keeps the nonce pair (IV, IV ′) that leads to a collision on the
ciphertext block C1.

• second step (4 · 2n/2 encryption queries and computations): the attacker
picks a random second plaintext block P2 and a random n/2-bit value I
and queries the encryption of the 2n/2 plaintext blocks P1 = (0n/2‖I) con-
catenated with P2 with nonce IV and the encryption of the 2n/2 plaintext
blocks P1 = (I‖0n/2) concatenated with P2 with nonce IV ′. He repeats the
process with a few other constant values instead of 0n/2 in order to improve
the filtering, and he eventually deduces the value of ∆S by checking which
difference applied in P1 leads to the same difference in C2 whatever is the
choice of I. He directly deduces that this difference on C2 is actually ∆R.

• third step (2 encryption queries and computations): the attacker picks a
random value P1 such that P1 and P1 ⊕ ∆S have never been queried be-
fore, and asks the encryption oracle for the ciphertext corresponding to the
message (P1||P2) with nonce IV . He receives (C1||C2). Then he queries the
encryption of (P1⊕∆S‖P2) with nonce IV ′ and receive (C ′1‖C ′2). Finally he
checks if C ′2 ⊕ C2 = ∆R holds.

We remark that for JAMBU-AES [15], we have n = 64 and thus the confiden-
tiality security is only around 32 bits in the nonce-misuse attack model. Thus,
our cryptanalysis invalidates the confidentiality claims of the JAMBU designers.

3.7 Extension to a plaintext-recovery attack

Our distinguishing attack can be extended to a more powerful plaintext-recovery
attack in a straightforward way. The setting is as follows. Note that our attack
is in the chosen-plaintext model, and hence the attacker requires only the en-
cryption algorithm of JAMBU. In other words he is given access to an encryption
oracle of JAMBU instantiated with a randomly selected key that is secret to the
attacker. He is allowed to query any plaintext of his own choice and gets the



corresponding ciphertext. In the end, the attacker is required to choose a new
(nonce, ciphertext) pair and to produce a corresponding plaintext for it. If the
plaintext is indeed valid and if the prefix to its last block has never been queried
before, then the plaintext-recovery attack is said to succeed (the reason of these
restrictions is detailed in the discussion on trivial attacks in Section 3.8).

The procedure is as follows and it also has three steps. The first two steps
are exactly the same as the first two steps of the distinguishing attack detailed
in Sections 3.3 and 3.4, and we adopt the same notations. In the third and last
step, the attacker will choose a random value P1 such that P1 and P1⊕∆S have
never been queried before as first plaintext block under the nonce IV and IV ′.
Then, he will pick a random value for the second plaintext block P2 and ask the
encryption of the message (P1||P2) with the nonce IV . He receives ciphertext
blocks C1 and C2 from the encryption oracle. Since he knows the value of ∆R and
∆S , he will be sure that if he applies the difference ∆S on P1 with nonce IV ′, he
will get difference ∆S on C1 and difference ∆R on C2. Therefore, he can predict
the plaintext (P1 ⊕ ∆S , P2 ⊕ ∆R) corresponding to ciphertext (C1 ⊕ ∆S ||C2)
with nonce IV ′. Moreover, it is easy to see that (C1 ⊕ ∆S ||C2) is not a prefix
of any of previous returned ciphertext of the encryption of JAMBU, since the first
ciphertext block is a permutation of the first plaintext block under the same
nonce, and since P1⊕∆S has not been queried before as the first plaintext block
under IV ′ to the encryption oracle. One might argue that P1 is the first plaintext
block and this is included in the security exclusions in the JAMBU security claims.
However, we have used P1 for simplicity of description, but the attack remains
the same with any amount of random message blocks prepended to P1.

The complexity of the above plaintext-recovery attacks is also O(2n/2) en-
cryption queries and computations. The success probability is almost 1 (we omit
the detailed evaluation since it is similar to the distinguishing attack).

3.8 Discussion on trivial attacks

Recently, Rogaway claimed a generic plaintext-recovery attack on online authen-
ticated encryption in the nonce-misuse setting [11]. His attack adopts divide-
and-conquer strategy and recovers the plaintext block by block. In details, the
attacker uses the recovered first i− 1 plaintext blocks as prefix, guesses the i-th
plaintext block, and verifies the correctness by sending it to encryption oracle
and comparing the received i-th ciphertext block with the i-th target ciphertext
block. However, obviously this attack essentially just reveals again the inherent
weakness of online authenticated encryption that has been known before and
has been also explicitly pointed out by the designer of JAMBU: common prefix
plaintext blocks produces the same corresponding ciphertext blocks. In particu-
lar, the attacker has to query a plaintext to the encryption oracle, then receive
a ciphertext that is exactly the same as the target ciphertext, and then output
this plaintext as the correct plaintext. As a comparison, in our plaintext recovery
setting, we explicitly exclude such rather trivial attacks by restricting that the



last block of the target ciphertext (or plaintext) must not share its prefix with
any previously returned ciphertext from the encryption oracle.

One can also think of the following trivial distinguishing attack on JAMBU and
several other CAESAR candidates. For an ideal online authenticated encryption
as defined in [8, 1], the i-th plaintext block should be input to a random per-
mutation to produce the i-th ciphertext block, where the index of the random
permutation is determined by the nonce, the associated data and the first i− 1
plaintext blocks. On the other hand, for JAMBU the i-th plaintext block is simply
XORed to an internal state: Ci = Pi ⊕ Vi+1, where the value of Vi+1 is de-
termined by the nonce, the associated data and the first i− 1 plaintext blocks.
Hence, ∆Ci = ∆Pi always holds under the same nonce, the same associated data
and the same first i− 1 plaintext blocks. In details, an attacker queries a nonce
IV and a one-block plaintext P1 to the encryption oracle, and receives a cipher-
text C1. He then queries the same nonce IV and another one-block plaintext
P ′1 to the encryption, and receives a ciphertext C ′1. If C1 ⊕ C ′1 = P1 ⊕ P ′1 holds,
the attacker outputs 1. Otherwise, he outputs 0. This distinguishing attack can
trivially be extended to a plaintext-recovery attack on single-block ciphertexts.

As a comparison, our attacks reveal a specific weakness of JAMBU: when pro-
cessing plaintext blocks, it uses only one invocation to a small block cipher (2n
bits) to update a larger state (3n bits). Such a design choice obviously favours
efficiency, but our attacks imply that there is a greater security compromise to
pay than originally expected by the JAMBU designers.

4 Attack on JAMBU in nonce-respecting scenario

In this section, we analyse the confidentiality security of JAMBU in the nonce-
respecting scenario. JAMBU claims a 2n-bit confidentiality security (or 128-bit
security for AES-JAMBU) in this setting. However, the claim statement does not
contain any specification on the attack model considered (IND-CPA, IND-CCA1 or
IND-CCA2). Hence, one may wonder if JAMBU can achieve such a confidentiality
security level under all (previously known) attack models7. We note that the
adaptive chosen-ciphertext security (IND-CCA2) of JAMBU can be trivially broken
with 2n queries by reusing messages with common prefixes (see Section 4.4).
However, our distinguishing attack works with prefixes not previously queried.
Furthermore, our method can be extended to a more powerful plaintext-recovery
attack.

4.1 Confidentiality under an adaptive chosen-ciphertext attack

For an authenticated encryption scheme (EK ,DK) with a key space K, its con-
fidentiality security under adaptive chosen-ciphertext attacks has been defined

7 Yet we trivially observe that JAMBU can only achieve 2n confidentiality security in
the IND-CCA3 model [13] (and not the expected 22n), due to its n-bit tag size.



in [2], usually referred to as IND-CCA2. Here we provide a brief description, and
refer interested readers to [2] for the full formal definition. Let RO denote a ran-
dom oracle that has the same output bit length as EK on every input plaintext.
Let D be a distinguisher that interacts with (EK ,DK) or (RO,DK), and outputs
one bit. Its advantage is defined as:

Advcca2
E (D) := Pr

[
K

$← K,DEK ,DK ⇒ 1
]
− Pr

[
K

$← K,DRO,DK ⇒ 1
]
.

Then we define Advcca2
E (t, q, σ, `) := maxD Advcca

E (D), where the maximum is
taken over all distinguishers that run in time t and makes q queries, each of length
at most ` blocks and of total length at most σ blocks. The distinguisher must
not make two queries with the same nonce to the encryption oracle that is EK
or RO. Moreover, we assume the distinguisher does not query the outputs from
one oracle to the other oracle. Namely, he does not query the received ciphertext
from EK or RO to DK , and does not query the received plaintext from DK to
EK or RO. These assumptions aim at preventing trivial distinguishing attacks.

4.2 Distinguishing attack

We notice that JAMBU uses an n-bit tag. Therefore, one can always obtain the
corresponding plaintext for a ciphertext of his own choice from the decryption
oracle by making at most 2n queries, i.e., by exhaustively guessing the tag value.
Based on this observation, we can transform the distinguishing attack in the
nonce-misuse setting detailed in Section 3 to a distinguishing attack in nonce-
respecting setting, with a complexity increase by a factor 2n and hence with
a total complexity of 23n/2, which is lower than the 2n-bit security one might
expect.

In details, the attack in the nonce-misuse setting consists of three steps, and
the repeating nonces requirement happens in steps 2 and 3. Thus, we will mainly
modify these two steps. We adopt the same notation as Section 3.

First step. The procedure is exactly the same as before. For the plaintext P1,
its ciphertext is denoted as C1 under the nonce IV and as C ′1 under the nonce
IV ′. Then we denote V [IV ]2 = P1 ⊕ C1 and V [IV ′]2 = P1 ⊕ C ′1.

Second step. Firstly, the attacker constructs tables T1 and T2 as before. Sec-
ondly, he selects a random one-block ciphertext block C2. For each element
( 〈0〉‖〈i〉, 〈1〉‖〈i〉, 〈2〉‖〈i〉 ) in table T1, he executes a similar procedure to inter-
act with the decryption oracle for each of 〈0〉‖〈i〉, 〈1〉‖〈i〉 and 〈2〉‖〈i〉. Here we
use 〈0〉‖〈i〉 as an example to describe this procedure. The attacker computes
V [IV ]2 ⊕ ( 〈0〉‖〈i〉 ) as the first ciphertext block, concatenates it with C2 as the
second block, and queries the constructed two-block ciphertext to the decryption
oracle with the nonce IV and with a random selected tag value. If the decryption
oracle returns a failure symbol ⊥, the attacker changes the tag to a new value,



and makes a decryption query with the same nonce and the same ciphertext. He
will repeat such decryption queries by exhaustively trying new tag values until
the decryption oracle returns a plaintext instead of ⊥. In the returned plaintext,
it is easy to get that the first block is 〈0〉‖〈i〉, and we denote its second block
as P [〈0〉‖〈i〉]2. Similarly, we define notations P [〈1〉‖〈i〉]2 and P [〈2〉‖〈i〉]2 for the
second plaintext block corresponding to 〈1〉‖〈i〉 and 〈2〉‖〈i〉 respectively. Once a
plaintext obtained, the attacker computes the pairwise differences of the second
plaintext blocks as follows:

∆P [〈i〉]1 = P [〈1〉‖〈i〉]2 ⊕ P [〈0〉‖〈i〉]2, ∆P [〈i〉]2 = P [〈2〉‖〈i〉]2 ⊕ P [〈0〉‖〈i〉]2.

For each element of the other table T2, the attacker makes similar decryption
queries, but using IV ′ as nonce and V [IV ′]2 to compute the first ciphertext
blocks. We denote the computed pairwise differences of the second plaintext
blocks as (∆P ′[〈j〉]1, ∆P ′[〈j〉]2). The attacker matches the differences to previ-
ously stored { (∆P [〈i〉]1, ∆P [〈i〉]2) }. Once a matched pair is found, the attacker
computes ∆R and ∆S from the corresponding plaintexts and ciphertexts as fol-
lows:

∆R = P [〈0〉‖〈i〉]2 ⊕ P ′[〈j〉‖〈0〉]2, ∆S = ( 〈0〉‖〈i〉 )⊕ ( 〈j〉‖〈0〉 ) = 〈j〉‖〈i〉.

If no match is found after trying all elements in T2, the attacker outputs 0.

Third step. The attacker selects a random one block C1 such that C1 and
C1 ⊕ ∆S have not been queried before as a first block of ciphertext under the
nonces IV and IV ′. Then, he selects another random block C2. Firstly, the
attacker makes queries C1‖C2 to the decryption oracle with the nonce IV by
exhaustively guessing the tag until he receives the plaintext ciphertext, where
the second plaintext block is denoted as P2. Secondly, the attacker makes queries
C1⊕∆S‖C2 to the decryption oracle with the nonce IV ′ by exhaustively guess-
ing the tag until he receives the plaintext ciphertext, where the second plaintext
block is denoted as P ′2. Finally, he computes ∆P2 = P2 ⊕ P ′2, and compares it
to ∆R. If ∆P2 = ∆R, the attacker outputs 1. Otherwise, he outputs 0.

The overall complexity is dominated by step 2, which is upper bounded by
O(23n/2) (or 296 for AES-JAMBU). The advantage of the distinguisher is almost
1 (we omit the detailed evaluation since it is similar with that of the attacks in
previous sections).

4.3 Extension to a plaintext-recovery attack

The plaintext-recovery attack setting is as follows. The attacker is given access
to both encryption and decryption oracles of JAMBU instantiated with a randomly
selected key that is secret to the attacker. He is allowed to make encryption and
decryption queries of his own choice. Note that he must not make two encryption
queries with the same nonce. In the end, the attacker is required to choose a nonce



and a ciphertext (where the last block of the ciphertext must not have the same
prefix than the last blocks of any previously outputted or queried ciphertext
under the same nonce) and to produce a corresponding plaintext for it. If the
plaintext is indeed valid, the plaintext-recovery attack is said to succeed.

The attack procedure is similar with that of distinguishing attacks from Sec-
tion 4.2. The first two steps are exactly the same, and we adopt the same no-
tations. In the third and last step, the attacker will choose a random one-block
value C1 such that C1 and C1 ⊕∆S have never been outputted as the first ci-
phertext block from the encryption oracle and have never been queried to the
decryption oracle as first ciphertext block under the nonce IV and IV ′. Then,
he will pick a random value for the second plaintext block C2 and interact with
the decryption oracle to receive the plaintext P1‖P2 of the ciphertext (C1||C2)
under the nonce IV . Since he knows the value of ∆R and ∆S , he will be sure
that if he applies the difference ∆S on P1 with nonce IV ′, he will get differ-
ence ∆S on C1 and difference ∆R on C2. Therefore, he can predict the plaintext
(P1⊕∆S , P2⊕∆R) corresponding to ciphertext (C1⊕∆S ||C2) with nonce IV ′.

The complexity of the above plaintext-recovery attacks is O(23n/2) encryp-
tion queries and computations (or 296 for AES-JAMBU), and its success probability
is almost 1 (we omit the detailed evaluation, since it is similar to the distinguish-
ing attack).

4.4 Discussion on trivial attacks

In the nonce-respecting scenario, although the attacker cannot make two en-
cryption queries with the same nonce, he is allowed to repeat nonces during
the interaction with the decryption oracle. Hence, if he makes more than 2n de-
cryption queries, he will obtain more than one pairs of plaintext and ciphertext
under the same nonce. As a result, this leads to several trivial attacks (similar
to the trivial attacks on JAMBU in the adaptive chosen-ciphertext attack model
described in Section 3.8). For example, the attacker can interact with the de-
cryption oracle to receive a plaintext P1 for nonce IV and a one-block ciphertext
C1, and then interact with the encryption oracle to receive a ciphertext C ′1 for
a random one-block plaintext P ′1 with the same nonce IV . Finally he checks if
P1 ⊕C1 = P ′1 ⊕C ′1 holds. We refer to Section 3.8 for more discussions on trivial
attacks on JAMBU.

5 Implementation of the attack

We have implemented the attack on AES-JAMBU for the nonce-misuse scenario
as described in Section 3 and we have verified the special differential structure
from Figure 5. For simplicity, the associated data was set to be empty, and the
128-bit key was set to 0x100f0e0d0c0b0a090807060504030201.



5.1 Results of the attack

In the first step of the attack, we chose a random 64-bit plaintext P1 and asked
for encryption under different nonce values. With 232 encryption queries, we
found a collision on a pair of ciphertexts C1, C

′
1 with a pair of nonce values

IV, IV ′ (see Table 2).

Table 2. First step of the attack

K : 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10

IV : b1 ef 89 a0 4e 21 30 bd

IV ′ : 10 5a 1f 5b 34 49 1e 5c

P1 : 7f 95 77 ca 09 77 a8 a5

C1 : 2d 2b 58 18 fa f5 af f1

C′
1 : 2d 2b 58 18 fa f5 af f1

With this pair of nonce values, we proceeded to the second step of the attack,
P2 being set to zero for simplicity. We constructed the tables T1 and T2 and by
matching the differences in the second block of ciphertexts, we obtained the
values of ∆S and ∆R. Table 3 shows the first tuple of the pair of plaintexts and
ciphertexts tables with the matching difference.

Table 3. Second step of the attack

〈j〉‖〈0〉 || P2 : 60 28 6d 74 00 00 00 00 00 00 00 00 00 00 00 00

C′[〈j〉‖〈0〉]2 : af 45 56 9e 26 c6 7e d0

〈0〉‖〈i〉 || P2 : 00 00 00 00 93 47 1e 92 00 00 00 00 00 00 00 00

C[〈0〉‖〈i〉]2 : 73 79 44 54 a7 b4 5b 4c

∆S : 60 28 6d 74 93 47 1e 92

∆R : dc 3c 12 ca 81 72 25 9c

In the third step, we chose a random 128-bit plaintext (P1‖P2) and asked
for its encryption with nonce IV . Upon receiving the ciphertext (C1‖C2), we
deduced the ciphertext (CD

1 ‖CD
2 ) = (C1⊕∆S‖C2⊕∆R) for the plaintext (P1⊕

∆S‖P2) with nonce IV ′ without querying it to the encryption oracle. Finally,
we checked that by asking for the encryption of the plaintext (P1⊕∆S‖P2) with
nonce IV ′, the ciphertext (C ′1‖C ′2) obtained is indeed what we had deduced (as
can be seen from Table 4).

The codes for the attack on AES-JAMBU are included in the supporting doc-
ument, they are separated in two main codes - Step 1 and Step 2 of the attack,
AES-NI is used for running AES-JAMBU.



Table 4. Third step of the attack

IV : b1 ef 89 a0 4e 21 30 bd

P1‖P2 : 95 d9 43 9e 0b 4d 6d 27 6a ba db 0a 12 f8 13 45

C1‖C2 : c7 67 6c 4c f8 cf 6a 73 6b 05 9b c6 fc e6 7a ee

∆S : 60 28 6d 74 93 47 1e 92

∆R : dc 3c 12 ca 81 72 25 9c

CD
1 ‖CD

2 : a7 4f 01 38 6b 88 74 e1 b7 39 89 0c 7d 94 5f 72

IV ′ : 10 5a 1f 5b 34 49 1e 5c

P1 ⊕∆S‖P2 : f5 f1 2e ea 98 0a 73 b5 6a ba db 0a 12 f8 13 45

C′
1‖C′

2 : a7 4f 01 38 6b 88 74 e1 b7 39 89 0c 7d 94 5f 72

5.2 Running time of the attack

For the first step of the attack, it took about 3.7 hours and 36GB of memory to
find a collision. While for the second step of the attack, it took about 8.8 hours
and 320GB to find ∆S and ∆R.

For the second step of the attack, one can do a trade-off between the com-
putation time and memory requirement. For instance, instead of constructing
tables of 232 elements, one can construct tables of 230 (or 228 respectively) ele-
ments and the computation time takes about 2.2 hour (or 0.5 hour respectively)
and 80GB (or 20GB respectively) of memory. However, in this case, one would
have to guess the 2 (or 4 respectively) most significant bits of the difference
values i and j. Hence, by repeating the attack procedure 16 times (or 256 times
respectively), the value of ∆S and ∆R can be recovered by enumerating all the
possible most significant bits values.

Conclusion

In this article, we have proposed a cryptanalysis of the confidentiality of JAMBU
in both the nonce-misuse and nonce-respecting models. Namely, we have shown
that one can break confidentiality in the nonce-misuse scenario with 232 com-
putations and queries, while having access to only the encryption oracle. For
the nonce-respecting, we show that our attack can be extended to break confi-
dentiality security of JAMBU with 296 computations and queries in the adaptive
chosen-ciphertext attack model, with message prefixes not previously queried.

It would be an interesting future work to study how JAMBU could be patched
to resist these attacks. We believe that one simple possibility would be to output
Pi−1 instead of Pi during round i (while keeping the insertion of Pi in the
internal state). This would probably prevent our attack since the last block of
the distinguishing plaintext/ciphertext pair would have the exact same prefix
than the last block of previously queried pairs.
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