
An Offline Dictionary Attack against a

Three-Party Key Exchange Protocol

Junghyun Nam∗, Kim-Kwang Raymond Choo∗∗, Juryon Paik∗∗∗,
Dongho Won∗∗∗

∗Department of Computer Engineering, Konkuk University,

322 Danwol-dong, Chungju-si, Chungcheongbuk-do 380-701, Korea

jhnam@kku.ac.kr
∗∗Information Assurance Research Group, Advanced Computing Research Centre,

University of South Australia, Mawson Lakes, SA 5095, Australia

raymond.choo@unisa.edu.au
∗∗∗Department of Computer Engineering, Sungkyunkwan University,

300 Cheoncheon-dong, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea

wise96@ece.skku.ac.kr, dhwon@security.re.kr

Abstract

Despite all the research efforts made so far, the design of protocols for
password-authenticated key exchange (PAKE) still remains a non-trivial
task. One of the major challenges in designing such protocols is to protect
low-entropy passwords from the notorious dictionary attacks. In this work,
we revisit Abdalla and Pointcheval’s three-party PAKE protocol presented
in Financial Cryptography 2005, and demonstrate that the protocol is
vulnerable to an off-line dictionary attack whereby a malicious client can
find out the passwords of other clients.
Keywords : Password-authenticated key exchange (PAKE), three-party
key exchange, password, dictionary attack.

1 Introduction

Unlike high-entropy cryptographic keys, passwords are drawn from a relatively
small space like a dictionary, and are easy for humans to remember and use.
Eventually, it is this advantage that password-based authentication has come
to be widely used in today’s computing environments. Bellovin and Merritt [6]
was the first to consider how two parties, who only share a password, establish a
common session key over a public network which might be fully controlled by an
adversary. Due to the practical significance of password-based authentication,
this initial work has been followed by a large number of password-authenticated
key exchange (PAKE) protocols [5, 4, 9, 10].

A major threat to the design of secure PAKE protocols is off-line dictionary
attacks [11, 1, 12]. Unlike on-line dictionary attacks where each password guess
is verified via a new on-line transaction, off-line dictionary attacks allow the

1

attacker to verify password guesses in an off-line manner using an automated
program. Hence, off-line dictionary attacks are much more powerful and practi-
cal than on-line dictionary attacks, and must be prevented. The concern about
off-line dictionary attacks is significantly increased in the three-party setting.
In contrast to the two-party setting where the two parties are assumed to share
the same password, the three-party setting assumes that each party, called a
client, does not share any password with other clients, but holds their individ-
ual password which is shared only with a trusted authentication server. This
means that three-party PAKE protocols should be designed to be secure even
against attacks by a malicious insider who is a legitimate protocol participant
[2, 14, 15].

In Financial Cryptography 2005, Abdalla and Pointcheval proposed a simple
three-party PAKE protocol [3] which we denote by AP-3PAKE. Compared with
the protocol of [2], the AP-3PAKE protocol is very efficient both in terms of
computation and communication complexities. Moreover, unlike the protocols
of [11, 14, 15], AP-3PAKE requires no use of cryptographic keys like server’s
public/private keys, allowing clients to manage only their passwords. Although
the claimed proof of security for AP-3PAKE was found to be invalid [13], there
have been so far no known offline dictionary attacks against the protocol. In this
paper, we present a previously unpublished off-line dictionary attack against
the AP-3PAKE protocol. Our dictionary attack can be viewed as an insider
attack since it is mounted by one protocol participant against (the password
of) the other participant. By identifying the vulnerability, we hope that similar
structural mistakes can be avoided in the future design of three-party PAKE
protocols.

2 A Review of the AP-3PAKE Protocol

This section revisits the AP-3PAKE protocol, Abdalla and Pointcheval’s three-
party PAKE protocol [3]. The protocol participants consist of a single server S
and two clients A and B. The clients A and B wish to establish a session key
between them while the server S exists to provide the clients with authentication
services. Let pwA and pwB be the passwords of A and B, respectively. Each
client’s password is assumed to be shared with the authentication server S via
a secure channel. The followings are the public system parameters used in the
protocol.

• A finite cyclic group G of prime order q and a random generator g of the
group G.

• A hash function H modeled as a random oracle. The outputs of H are
κ-bit strings, where κ is a security parameter representing the length of
session keys.

• Two hash functions G1 and G2 modeled as random oracles. The outputs
of G1 and G2 are the elements of the cyclic group G.

With the system parameters established, the AP-3PAKE protocol runs in two
communication rounds as follows:

2

A S B

(pwA) (pwA, pwB) (pwB)

x ∈ Zq, X = gx y ∈ Zq, Y = gy

pwA,1 = G1(A,B, pwA) pwB,1 = G1(A,B, pwB)

X∗ = X · pwA,1 Y ∗ = Y · pwB,1

pwA,1 = G1(A,B, pwA)

pwB,1 = G1(A,B, pwB)

X = X∗/pwA,1

Y = Y ∗/pwB,1

z ∈ Zq, R ∈ {0, 1}γ

X = Xz, Y = Y z

pwA,2 = G2(A,B,R, pwA, X
∗)

pwB,2 = G2(A,B,R, pwB , Y
∗)

X
∗

= X · pwB,2

Y
∗

= Y · pwA,2

pwA,2 = G2(A,B,R, pwA, X
∗) pwB,2 = G2(A,B,R, pwB , Y

∗)

Y = Y
∗

/pwA,2 X = X
∗

/pwB,2

K = Y
x

K = X
y

T = R‖X∗‖Y ∗‖X
∗

‖Y
∗

T = R‖X∗‖Y ∗‖X
∗

‖Y
∗

SK = H(A‖B‖S‖T ‖K) SK = H(A‖B‖S‖T ‖K)

X∗ Y ∗

R, Y ∗, X
∗

, Y
∗

R,X∗, X
∗

, Y
∗

Figure 1: Abdalla and Pointcheval’s three-party PAKE protocol

1. Client A chooses a random x ∈ Zq and computes X = gx and pwA,1 =
G1(A,B, pwA).

1 Then A computes X∗ = X · pwA,1 and sends X∗ to the
server S.

2. Similarly, client B chooses a random y ∈ Zq and computes Y = gy and
pwB,1 = G1(A,B, pwB). Then B computes Y ∗ = Y · pwB,1 and sends Y ∗

1In the protocol description of [3], the identities of the clients were incorrectly
omitted from the input of the hash functions G1 and G2. Abdalla and Pointcheval
corrected this omission in the full version of the paper, which is available at
http://www.di.ens.fr/∼mabdalla/pubs.html.

3

to S.

3. Upon receiving X∗ and Y ∗, S first recovers X and Y by computing X =
X∗/G1(A,B, pwA) and Y = Y ∗/G1(A,B, pwB). Next, S selects a random
element z ∈ Zq and a random string R ∈ {0, 1}γ , where γ is a security
parameter which determines the bit-length of R. S then computes

X = Xz,

Y = Y z,

pwA,2 = G2(A,B,R, pwA, X
∗),

pwB,2 = G2(A,B,R, pwB, Y
∗),

X
∗

= X · pwB,2,

Y
∗

= Y · pwA,2,

and sends ⟨R, Y ∗, X
∗
, Y

∗⟩ and ⟨R,X∗,X
∗
, Y

∗⟩ to A and B, respectively.

4. After receiving ⟨R, Y ∗,X
∗
, Y

∗⟩ from S, A computes

pwA,2 = G2(A,B,R, pwA, X
∗),

Y =
(Y

∗

pwA,2

)
,

K = Y
x
.

Then A defines the transcript T = R∥X∗∥Y ∗∥X∗∥Y ∗
and computes the

session key SK = H(A∥B∥S∥T∥K).

5. With ⟨R,X∗, X
∗
, Y

∗⟩ received from S, B computes

pwB,2 = G2(A,B,R, pwB , Y
∗),

X =
(X

∗

pwB,2

)
,

K = X
y
.

Then B defines the transcript T = R∥X∗∥Y ∗∥X∗∥Y ∗
and computes the

session key SK = H(A∥B∥S∥T∥K).

The correctness of AP-3PAKE can be easily verified fromK = Y
x
= X

y
= gxyz.

Figure 1 shows a high-level depiction of AP-3PAKE.

3 An Off-Line Dictionary Attack against AP-
3PAKE

The AP-3PAKE protocol seems to be secure against off-line dictionary attacks
if we only consider honest clients who stick to the protocol specification. But
in the 3-party setting, there may be malicious clients who deviate from the
protocol. Indeed, the existence of insider attacks by malicious clients is one of
the major differences between the 2-party and the 3-party settings [2, 14, 15].

4

We here show that AP-3PAKE is not secure against an off-line dictionary attack
in the presence of a malicious client.

Our attack exploits the fact that, once the session key SK has been estab-
lished, the clients A and B will exchange their subsequent messages that are
generated using the key SK. Let msgSK be the first such message. Without
loss of generality and for simplicity, we assume that it is the client A who gen-
erates/sends msgSK . Then, our off-line dictionary attack can be mounted by
B against A’s password. (We note, however, that our attack also works even
when msgSK is generated/sent by B. In this case, the attack can be mounted
by A against B’s password.) The attack proceeds as follows:

Step 1. The attacker B runs the protocol with the client A and the server S.
In this run, everything proceeds as specified by the protocol, except that:

B replaces the message ⟨R, Y ∗,X
∗
, Y

∗⟩ from S to A with

the forged message ⟨R, Y ∗, X
∗
, Ỹ ∗⟩, where Ỹ ∗ = Y

∗ · Y .

As a result of the replacement, A will compute its session key as SK =
H(A∥B∥S∥T̃∥K̃), where T̃ = R∥X∗∥Y ∗∥X∗∥Ỹ ∗ and

K̃ =
(Ỹ ∗

pwA,2

)x

=
(Y ∗ · Y
pwA,2

)x

=
(Y · pwA,2 · Y

pwA,2

)x

= (Y · Y)x

= gxyz · gxy.

Step 2. Now since A has computed its session key SK, A will generate msgSK

using the key SK in one of the following three scenarios:

• Key Confirmation: If key confirmation is required, A will send a
confirmation message cfrm computed as a function of SK. Assume,
without affecting our result, that the well-known technique of [5, 7]
is used for key confirmation. Then cfrm is computed as cfrm =
H(SK∥v) for some known value v. In this case, msgSK = cfrm.

• Message Authentication: A typical usage of session keys is to
authenticate subsequent messages. Let m be a message to be sent
from A to B. If m has to be authenticated, A will generate a message
authentication code (MAC) σ for the message m under the session
key SK by running a MAC generation algorithm Mac (i.e., σ =
Mac(SK,m)), and then will send the message/MAC pair mTag =
(m,σ) to B. In this case, msgSK = mTag.

• Message Encryption: Another typical usage of session keys is to
encrypt subsequent messages. Suppose that A has to send a message
m in an encrypted form. Then, A is likely to run a symmetric en-
cryption algorithm Enc with key SK and input message m to get
back a ciphertext cprt (i.e., cprt = Enc(SK,m)). The ciphertext
cprt can then be transmitted to B. In this case, msgSK = cprt.

5

Once in possession ofmsgSK ∈ {cfrm,mTag, cprt}, the attacker B aborts
the protocol session alleging that session-key computation has failed due
to an unexpected error.

Step 3. Using the message ⟨R,X∗, X
∗
, Y

∗⟩ received from S, B computes

K =
(X

∗

pwB,2

)y

= gxyz.

Step 4. Next, B makes a guess pw′
A for the password pwA and computes X ′ =

X∗/G1(A,B, pw′
A), K̃

′ = K ·X ′y, and SK ′ = H(A∥B∥S∥T̃∥K̃ ′) with T̃
defined as above. B then performs one of the following three computations
depending on the type of msgSK :

cfrm′ = H(SK ′∥v) if msgSK = cfrm,
σ′ = Mac(SK ′,m) if msgSK = mTag,
m′ = Dec(SK ′, cprt) if msgSK = cprt.

Here, Dec is the symmetric decryption algorithm associated with Enc.

Step 5. Now, B verifies the correctness of pw′
A by checking the appropriate

one of the following conditions:

cfrm′ ?
= cfrm if msgSK = cfrm,

σ′ ?
= σ if msgSK = mTag,

Is m′ meaningful? if msgSK = cprt.

Notice that if pw′
A and pwA are equal, then the conditions ought to be sat-

isfied. Although verifying the third condition “Is m′ meaningful?” takes
longer than verifying the first/second conditions, it can still be done au-
tomatically by a computer program and can be substantially speed up by
tuning the condition.

Step 6. B repeats Steps 4 and 5 until a correct password is found.

The attack above is an off-line dictionary attack since the steps for verifying
password guesses can be performed in an off-line manner by an automated
computer program.

References

[1] Abdalla M., Bresson E., Chevassut O., and Pointcheval D., Password-Based
Group Key Exchange in a Constant Number of Rounds, In PKC 2006,
LNCS 3958, 427–442, 2006.

[2] Abdalla M., Fouque P., and Pointcheval D., Password-Based Authenticated
Key Exchange in the Three-Party Setting, In PKC 2005, LNCS 3386, 65–
84, 2005.

6

[3] Abdalla M. and Pointcheval D., Interactive Diffie-Hellman Assumptions
with Applications to Password-Based Authentication, In FC 2005, LNCS
3570, 341–356, 2005.

[4] Abdalla M. and Pointcheval D., Simple Password-Based Encrypted Key
Exchange Protocols, In CT-RSA 2005, LNCS 3376, 191–208, 2005.

[5] Bellare M., Pointcheval D., and Rogaway P., Authenticated Key Exchange
Secure against Dictionary Attacks, In EUROCRYPT 2000, LNCS 1807,
139–155, 2000.

[6] Bellovin S. and Merritt M., Encrypted Key Exchange: Password-Based
Protocols Secure against Dictionary Attacks, In 1992 IEEE Symposium on
Research in Security and Privacy, 72–84, 1992.

[7] Bresson E., Chevassut O., Pointcheval D., and Quisquater J., Provably Au-
thenticated Group Diffie-Hellman Key Exchange, In 8th ACM Conference
on Computer and Communications Security, 255–264, 2001.

[8] Coron J., Patarin J., and Seurin Y., The Random Oracle Model and the
Ideal Cipher Model are Equivalent, In CRYPTO 2008, LNCS 5157, 1–20,
2008.

[9] Katz J., Ostrovsky R., and Yung M., Efficient and Secure Authenticated
Key Exchange using Weak Passwords, Journal of the ACM, 57(2009), 78–
116.

[10] Katz J. and Vaikuntanathan V., Round-Optimal Password-Based Authen-
ticated Key Exchange, In TCC 2011, LNCS 6597, 293–310, 2011.

[11] Lin C., Sun H., and Hwang T., Three-Party Encrypted Key Exchange:
Attacks and a Solution, ACM SIGOPS Operating Systems Review,
34(4)(2000), 12–20.

[12] Nam J., Paik J., Kang H., Kim U., and Won D., An Off-Line Dictionary
Attack on a Simple Three-Party Key Exchange Protocol, IEEE Communi-
cations Letters, 13(3)(2009), 205–207.

[13] Szydlo M., A Note on Chosen-Basis Decisional Diffie-Hellman Assumptions,
In FC 2006, LNCS 4107, 166–170, 2006.

[14] Yoneyama K., Efficient and Strongly Secure Password-Based Server Aided
Key Exchange, In INDOCRYPT 2008, LNCS 5365, 172–184, 2008.

[15] Zhao J. and Gu D., Provably Secure Three-Party Password-Based Authen-
ticated Key Exchange Protocol, Information Sciences, 184(2012), 310–323.

7

