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Abstract

In this paper, we propose a reasonable definition of predicate-hiding inner product en-
cryption (IPE) in a public key setting, which we call inner product encryption with cipher-
text conversion (IPE-CC), where original ciphertexts are converted to predicate-searchable
ones by an helper in possession of a conversion key. We then define a notion of full secu-
rity for IPE-CC, which comprises three security properties of being adaptively predicate-
and attribute-hiding in the public key setting, adaptively (fully-)attribute-hiding against the
helper, and usefully secure even against the private-key generator (PKG). We then present
the first fully secure IPE-CC scheme, and convert it into the first fully secure symmetric-key
IPE (SIPE) scheme, where the security is defined in the sense of Shen, Shi, Waters. All
the security properties are proven under the decisional linear assumption in the standard
model. The IPE-CC scheme is comparably as efficient as existing attribute-hiding (not
predicate-hiding) IPE schemes. We also present a variant of the proposed IPE-CC scheme
with the same security that achieves shorter public and secret keys. We employ two key
techniques, trapdoor basis setup, in which a new trapdoor is embedded in a public key, and
multi-system proof technique, which further generalizes an extended dual system approach
given by Okamoto and Takashima recently.

∗This is the full version of a paper appearing in Pairing 2013, the 6th International Conference on Pairing-
Based Cryptography, November 22–24, 2013, Beijing, China.
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1 Introduction

1.1 Background

The notion of predicate encryption (PE) was explicitly presented by Katz, Sahai and Waters
[14] for achieving fine-grained control over revealed information on encrypted data for various
predicate-searchable token key owners. In the encryption system, the owner of a (master) secret
key can create and issue tokens to system users. Informally, tokens in a predicate encryption
scheme correspond to predicates in some class F , and a sender associates a ciphertext with an
attribute in a set Σ; a ciphertext ctx associated with the attribute (or plaintext) x ∈ Σ can be
evaluated by token tkf corresponding to the predicate f ∈ F to learn whether f(x) = 1. In this
paper, we only consider this predicate-only PE [14, 24], in which attribute x can be treated as a
plaintext in a general functional encryption framework [9]. (However, we treat x as an attribute
hereafter.)

In addition, a security notion for PE, attribute-hiding, was defined in [14], where, roughly
speaking, a ciphertext conceals the associated attribute. More specifically, it requires that
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an adversary in possession of tokens tkf1 , . . . , tkfh
for predicates f1, . . . , fh cannot derive any

information on attribute x from ciphertext ctx other than the values of f1(x), . . . , fh(x).
Katz, Sahai and Waters [14] also presented a concrete construction of PE for a class of

predicates called inner product predicates, which represents a wide class of predicates that
includes an equality test (for IBE [2, 3, 5, 11] and HVE [10]), range queries [25], disjunctions or
conjunctions of equality tests, and, more generally, arbitrary CNF or DNF formulas. Informally,
an attribute of inner product predicates is expressed as vector �x and predicate f�v is associated
with vector �v, where f�v(�x) = 1 iff �v · �x = 0. (Here, �v · �x denotes the standard inner product.)

The attribute-hiding security achieved in [16, 17, 18] is more limited or weaker than that
achieved in [14, 20]. The former is called weakly-attribute-hiding, and the latter fully-attribute-
hiding. Although the IPE scheme [14] achieved fully-attribute-hiding, it is selectively secure
under non-standard assumptions. Subsequently, several attribute-hiding IPE schemes have been
proposed [16, 17, 18, 19, 23], for aiming at an IPE scheme with better security, e.g., adaptive
security, fully-attribute-hiding and weaker (standard) assumptions. This research direction
culminated in adaptively secure and fully-attribute-hiding IPE scheme under the decisional linear
(DLIN) assumption [20]. The basic scheme in [20] has a variant with shorter public and tokens
based on the technique in [19]. A hierarchical IPE (HIPE) scheme can be realized with the
same security. (For a practical variant of the schemes, refer to [22].)

However, all previous public key IPE schemes have a problem to be applied in a practical
system, that is, predicate token queries may leak some sensitive information, e.g., medical
personal history, patent strategy, or corporate sensitive data. This is unavoidable in a plain
public key IPE system, since anyone can generate a ciphertext associated with any attribute, and
then, by using it, check the predicate associated in (target) token. In order to avoid this problem,
Shen-Shi-Waters [24] proposed a symmetric-key IPE (SIPE) scheme, where predicate in a token
is hidden from any malicious users [24, 26]. The property is called predicate-hiding. They [24]
defined a strong security notion “full security”, which implies predicate- and attribute-hiding,
however, only constructed a weakly secure (selectively secure, single challenge) SIPE scheme
since it is based on a weakly secure public key IPE given in [14]. Therefore, to construct a fully
secure SIPE remains an interesting open problem.

Moreover, we require such an IPE functionality in a public key setting. To see the importance
of predicate- and attribute-hiding IPE in a public key setting, let us consider an example on
electronic medical record (EMR) storing and managing system that allows multiple hospitals
to export EMRs to a remote server. By sharing EMRs among the hospitals, patient care and
cost savings are greatly improved. Moreover, the database system provides a large source of
medical research for physicians, biologists, and pharmacists, etc. For example, pharmaceutical
companies use it for developing a new medicine.

Here, it is desirable that such a sensitive data be treated as encrypted data even for data
processing and retrievals, which protects privacy of data provider. In addition, in the above
example, multiple competitors, e.g., pharmaceutical companies, like to hide their access histories
from each other. Hence, to apply PE technology to the remote EMR server setting, we require

1. For providing and sharing EMRs among multiple medical institutes, PE should be realized
in a public key setting.

2. Attribute-hiding (for data-provider’s privacy) and predicate-hiding (for data-retriever’s
privacy) must be assured.

In other applications with remote storage servers, a PE-encrypted file system with the above
properties also highly improves user availability and removes privacy concerns. Recently, Boneh
et al.[7, 8] proposed function-private PE (including IPE) schemes, which assure predicate-hiding
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only when used predicates are sampled from any sufficiently unpredictable distribution. The
schemes does not guarantee predicate-hiding in the above setting, in general. Hence, to give
a reasonable and useful definition of predicate-hiding IPE in a public key setting which is
applicable in the above, is also an interesting open problem from a practical and theoretical
point of view.1

1.2 Our Results

1. This paper introduces a reasonable and useful definition of (a variant of) IPE for achieving
predicate-hiding in a public-key setting, i.e., IPE with ciphertext conversion (IPE-CC).

Here, two types of ciphertexts, original and converted, are introduced, and a new type
of key, conversion key, is used as well as public and secret keys: Each user encrypts an
attribute �x by using public key, and the generated ciphertext ct�x is called original. The
ciphertext is converted to a predicate-searchable one CT�x by a helper in possession of
the conversion key ck.

IPE-CC has two types of secret (or trapdoor) keys, sk and ck. Depending on which key
an adversary has, we have three security requirements:

(a) predicate-hiding of token key tk�v and attribute-hiding of ciphertexts (ct�x, CT�x)
against any malicious user with no secret key sk nor conversion key ck,

(b) (fully-)attribute-hiding of ciphertexts (ct�x,CT�x) against any malicious helper with
no secret key sk,

(c) predicate-hiding of token key tk�v and attribute-hiding of ciphertext ct�x against any
malicious PKG with no conversion key ck.

An IPE-CC scheme is called fully secure iff it satisfies all the above three security require-
ments.

2. This paper proposes the first fully-secure IPE-CC scheme, where all the security properties
are proven under the DLIN assumption in the standard model (Section 3).

Remark: Our IPE-CC scheme addresses privacy concerns given in the above remote
server system, which is illustrated in Figure 1. Every data-provider, e.g., Hospital A, B,..,
can put his encrypted data ct�x for data �x on the shared server, and each data-retriever,
e.g., Pharmaceutical Company X, Y,.., obtains his own token tk�v associated with a pred-
icate category �v from PKG. Here, a predicate category indicates an available range for
specific predicate searches, e.g., Company X is assigned for accessing patient-data in the
south of the U.S., and Y is assigned for accessing patient-data in the north. (The pred-
icate category may be empty condition.) The data-retriever delegates the (high-level)
token tk�v to a specific predicate token tk�v ∧ �w, where �w indicates some medical predicate,
e.g., records for cardiac patients aged 60 and above. (Refer to Section 3.3 for the 2-level
hierarchical IPE-CC scheme.) Helper converts original encrypted data ct�x to searchable
ones, CT�x, using conversion key ck (in some extra time). Note that the converted cipher-
texts are not made public (while original encrypted data on the database are publicly
accessible). In the figure, Company X sends a search query with delegated token tk�v ∧ �w,
and he obtains search result, f�v ∧ �w(�x) ∈ {0, 1}. The basic security (a) protects privacy for
both data-providers and data-retrievers from dishonest users, e.g., competing companies.
The security condition (b) assures no information leakage to the server administrator (i.e.,

1Boneh et al. [6] approached the problem based on PIR, which is a communication protocol, while our solution
is provided just by an encryption scheme (with much more efficient communication).
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Figure 1: Application to EMR storing and managing system, in which original encrypted data
ct�x are publicly accessible but converted ciphertexts CT�x are not made public. Pharmaceutical
Company X retrieves medical data with some medical predicate �w as well as a predetermined
condition �v.

helper) from ciphertexts on the server. Moreover, since converted ciphertexts are not pub-
lic, security (c) assures both predicate-hiding in tokens and attribute-hiding in ciphertexts
against PKG. Since to mitigate the power of PKG is important in PE systems, this se-
curity against PKG is useful and interesting. Thus, to summarize, the proposed scheme
provides attribute-hiding for ciphertexts as in [20] and predicate-hiding for tokens from
any malicious users but the helper. The technique can be applied to unbounded IPE in
[21].

3. We propose the first fully secure symmetric-key IPE (SIPE) scheme in the sense of the
definition by Shen, Shi and Waters [24] (Section 4). The scheme is (generically) converted
from our public key setting IPE-CC by including public key and conversion key into (mas-
ter) secret key. The security is also proven under the DLIN assumption in the standard
model.

4. We also present a variant of the proposed IPE-CC scheme with the same security that
achieves shorter public key and shorter (master) secret key (Section 5). Table 1 in Section
6 compares the proposed IPE-CC scheme (resp. SIPE scheme) with existing attribute-
hiding IPE schemes in the public key setting (resp. the existing SIPE scheme).

1.3 Key Techniques

Trapdoor Basis Setup: A full security notion of IPE-CC (in the public key setting) consists
of three types of hiding properties against various type adversaries, i.e., malicious users, helper,
or PKG. For achieving such a rich security property, we employ a new trapdoor embedded
in a public key. See Figure 2. The setup algorithm produces a pair of random dual bases
(B,B∗) on a dual pairing vector space (DPVS), and by using random matrix ck := W , linearly
transforms a part of the basis, B̂ (⊂ B), to a new basis D̂ := B̂ ·W , which is uniformly and
independently distributed from B. It outputs p̂k := D̂ as a part of a public key and the
corresponding sk := B̂

∗ as a secret key, where the bases are independent from each other if W
is not considered. Original ciphrtexts and tokens inherit this independence property from the
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Figure 2: Trapdoor basis setup with conversion key ck for public key p̂k and (master) secret
key sk, in which PK := B̂ is not directly used (with Enc, TokenGen, Conv, Query)

master key pair. The trapdoor (i.e., conversion key) W transforms the original ciphertexts to
searchable ones, which are related to tokens through the dual orthonormal property of (B,B∗).
We establish security properties against various level adversaries based on this trapdoor basis
setup construction.

In a subsequent work [15], we extend our trapdoor basis approach for achieving fully-
anonymous functional encryption schemes, where two trapdoor matrices, W1 and W2, are used
in re-encryption key generation and re-encrypted ciphertext generation, respectively.

Multi-System Proof Technique: As we observed, our IPE-CC scheme implies the first
fully secure SIPE scheme. Since no previous SIPE schemes are fully secure, we develop a
new technique to obtain the scheme, we call multi-system proof technique, which extends the
approach given in [20].

Based on Waters’ dual system encryption methodology, in the previous work [20], a large
hidden subspace was used for achieving fully-attribute-hiding of IPE, where the subspace was
2n-dimensional for n-dimensional attribute vectors and the two n-dimensional blocks played
different roles in the proof. Moreover, to hide a challenge bit b from adversary, unbiased cipher-
texts with ω0�x

(0) + ω1�x
(1) for challenge �x(0), �x(1) ∈ F

n
q (and ω0, ω1

U← Fq) played a key role in
the security proof.

In this work, for achieving both fully predicate- and attribute-hiding security of our schemes,
a simulator must deal with two types of challenges (�x(0), �x(1)) and (�v(0), �v(1)) simultaneously.
Since the above unbiased ciphertext (or token) construction is not enough for this purpose,
we use larger, 3n-dimensional, multi-system hidden subspace, and refined game hopping.2 See
Appendix A for the details.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from A

according to its distribution. When A is a set, y U← A denotes that y is uniformly selected from
A. We denote the finite field of order q by Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a

vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x·�v denotes the inner product
∑n

i=1 xivi. The vector �0 is abused as the zero
vector in F

n
q for any n. XT denotes the transpose of matrix X. I� and 0� denote the �×� identity

matrix and the �× � zero matrix, respectively. A bold face letter denotes an element of vector
space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉)
denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN )
and B

∗ := (b∗1, . . . , b∗N ), (x1, . . . , xN )B :=
∑N

i=1 xibi and (y1, . . . , yN )B∗ :=
∑N

i=1 yib
∗
i . For a

2In [24], a generic conversion from an adaptively secure single-challenge SIPE to a fully secure (multi-challenge)
SIPE is given. By using the conversion, we may take an approach to fully secure SIPE via single challenge secure
SIPE based on IPE in [20]. However, since the conversion loses efficiency, our SIPE in Section 4 is better.
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dimension n, �ej denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · · 0) ∈ F

n
q for j = 1, . . . , n.

GL(n,Fq) denotes the general linear group of degree n over Fq.

2 Definitions

2.1 Dual Pairing Vector Spaces (DPVS)

In this paper, for simplicity of description, we will present the proposed schemes on the sym-
metric version of dual pairing vector spaces (DPVS) [17, 16, 18] constructed using symmetric
bilinear pairing groups given in Definition 1. Owing to the abstraction of DPVS, the presen-
tation and the security proof of the proposed schemes are essentially the same as those on the
asymmetric version of DPVS, (q,V,V∗,GT ,A,A

∗, e), for which see Appendix A.2 in the full
version of [18]. The symmetric version is a specific (self-dual) case of the asymmetric version,
where V = V

∗ and A = A
∗.

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G 	= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) 	= 1. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing groups (q,G,GT , G, e) with security parameter λ.

Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V,

where ai := (
i−1︷ ︸︸ ︷

0, .., 0, G,
N−i︷ ︸︸ ︷

0, .., 0), and pairing e : V × V → GT . The pairing is defined by
e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, .., GN ) ∈ V and y := (H1, .., HN ) ∈ V.

This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) 	= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and
outputs a description of param′

V
:= (q,V,GT ,A, e) with security parameter λ and N -dimensional

V. It can be constructed by using Gbpg.

2.2 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN: Decisional Linear Assumption [4]) The DLIN problem is to guess
β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where GDLIN

β (1λ) : paramG :=

(q,G,GT , G, e)
R← Gbpg(1λ), κ, δ, ξ, σ

U← Fq, Y0 := (δ + σ)G,Y1
U← G, return (paramG, G, ξG, κG,

δξG, σκG, Yβ), for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for

the DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, �)→1

∣∣∣� R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ, �)→1

∣∣∣� R←
GDLIN

1 (1λ)
]∣∣ . The DLIN assumption is: For any probabilistic polynomial-time adversary E, the

advantage AdvDLIN
E (λ) is negligible in λ.

2.3 Inner Product Encryption with Ciphertext Conversion (IPE-CC)

This section defines inner product encryption with ciphertext conversion (IPE-CC) and its
security. An attribute (or plaintext) of inner product predicates is expressed as a vector �x ∈
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F
n
q \ {�0} and a predicate f�v is associated with a vector �v, where f�v(�x) = 1 iff �v · �x = 0. Let

Σ := F
n
q \ {�0}, i.e., the set of the attributes, and F := {f�v|�v ∈ F

n
q \ {�0}} i.e., the set of the

predicates.

Definition 4 An inner product encryption with ciphertext conversion (IPE-CC) scheme (for
predicates F and attributes Σ) consists of probabilistic polynomial-time algorithms Setup,TokenGen,
Enc,Conv and Query. They are given as follows:

• Setup takes as input security parameter 1λ, and it outputs a public key pk, a conversion
key ck, and a (master) secret key sk.

• TokenGen takes as input a public key pk, a (master) secret key sk, and a predicate vector
�v. It outputs a corresponding token tk�v.

• Enc takes as input a public key pk and an attribute (or plaintext) vector �x. It returns an
original ciphertext ct�x.

• Conv takes as input a public key pk, a conversion key ck, and an original ciphertext ct�x.
It returns a converted ciphertext CT�x.

• Query takes as input a public key pk, a token tk�v and a converted ciphertext CT�x. It
outputs either 0 or 1, indicating the value of the predicate f�v evaluated on the underlying
attribute �x.

Remark 1 In the introduction, we give an application example using a delegation from tk�v to
tk�v ∧ �w(:= tk(�v,�w)). While we can add this functionality, the explicit description of the delegation
is not included here for simple presentation. Refer to Section 3.3 for the 2-level hierarchical
IPE-CC scheme.

An IPE-CC scheme should have the following correctness property: for all (pk, ck, sk) R←
Setup(1λ, n), all f�v ∈ F and �x ∈ Σ, all tk�v

R← TokenGen(pk, sk, �v), all original ciphertexts ct�x
R←

Enc(pk, �x) and converted ciphertexts CT�x
R← Conv(pk, ck, ct�x), it holds that 1 = Query(tk�v,CT�x)

if f�v(�x) = 1. Otherwise, it holds only with negligible probability.
We then define the full security notion of IPE-CC, which consists of three security notions,

i.e., security against malicious users, malicious helper, and malicious PKG.

Definition 5 (Full Security of IPE-CC) An IPE-CC scheme is fully secure if for all prob-
abilistic polynomial-time adversaries A, all AdvDisU

A (λ), AdvDisH
A (λ) and AdvDisPKG

A (λ) are negli-
gible.

[Dishonest-User Game] The model for defining the adaptively predicate-hiding and adaptively
attribute-hiding security of IPE-CC against malicious user A is given as follows:

1. The challenger runs Setup to generate keys pk, ck and sk, and pk is given to A. The
challenger picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query is one of two
types:

• On the �-th ciphertext query, A outputs two attribute vectors (�x(0)
� , �x

(1)
� ). The chal-

lenger responds with (ct�,CT�), where ct�
R← Enc(pk, �x

(b)
� ) and CT�

R← Conv(pk, ck, ct�).
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• On the h-th token query, A outputs two predicate vectors, (�v(0)
h , �v

(1)
h ). The challenger

responds with tkh
R← TokenGen(pk, sk, �v

(b)
h ).

A’s queries are subject to the restriction that, for all ciphertext queries (�x(0)
� , �x

(1)
� ) and all

token queries (�v(0)
h , �v

(1)
h ), f

�v
(0)
h

(�x(0)
� ) = f

�v
(1)
h

(�x(1)
� ).

3. A outputs a guess b′ of b.

The success experiment in the above game, i.e., b′ = b, is denoted by SuccDisU
A (λ), and the

advantage of A is defined as AdvDisU
A (λ) := Pr[ SuccDisU

A (λ) ]− 1/2 for any security parameter λ.

[Dishonest-Helper Game] The model for defining the adaptively (fully-)attribute-hiding se-
curity of IPE-CC against malicious helper A is given as follows:

1. The challenger runs Setup to generate keys pk, ck and sk, and pk and ck are given to A.
The challenger picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query is one of two
types:

• On the �-th ciphertext query, A outputs two attribute vectors (�x(0)
� , �x

(1)
� ). The chal-

lenger responds with ct�
R← Enc(pk, �x

(b)
� ).

• On the h-th token query, A outputs a predicate vector, �vh. The challenger responds
with tkh

R← TokenGen(pk, sk, �vh).

A’s queries are subject to the restriction that, for all ciphertext queries (�x(0)
� , �x

(1)
� ) and all

token queries �vh, f�vh
(�x(0)
� ) = f�vh

(�x(1)
� ).

3. A outputs a guess b′ of b.

The success experiment in the above game, i.e., b′ = b, is denoted by SuccDisH
A (λ), and the

advantage of A is defined as AdvDisH
A (λ) := Pr[ SuccDisH

A (λ) ]− 1/2 for any security parameter λ.

[Dishonest-PKG Game] The model for defining the adaptively attribute-hiding and predicate-
hiding security of IPE-CC against malicious-PKG A is given as follows:

1. The challenger runs Setup to generate keys pk, ck and sk, and pk and sk are given to A.
The challenger picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query is one of two
types:

• On the �-th ciphertext query, A outputs two attribute vectors (�x(0)
� , �x

(1)
� ). The chal-

lenger responds with ct�
R← Enc(pk, �x

(b)
� ).

• On the h-th token query, A outputs two predicate vectors, (�v(0)
h , �v

(1)
h ). The challenger

responds with tkh
R← TokenGen(pk, sk, �v

(b)
h ).

A’s queries are subject to no restrictions.

3. A outputs a guess b′ of b.

9



The success experiment in the above, i.e., b′ = b, is denoted by SuccDisPKG
A (λ), and the advantage

of A is defined as AdvDisPKG
A (λ) := Pr[ SuccDisPKG

A (λ) ]− 1/2 for any security parameter λ.

Since a converted ciphertext is not publicly available, it is not given to the adversary in the
above Dishonest-PKG game.

2.4 Symmetric-Key Inner Product Encryption (SIPE)

This section defines symmetric-key inner product encryption (SIPE) and its security.
An attribute (or plaintext) of inner product predicates is expressed as a vector �x ∈ F

n
q \ {�0}

and a predicate f�v is associated with a vector �v, where f�v(�x) = 1 iff �v ·�x = 0. Let Σ := F
n
q \{�0},

i.e., the set of the attributes, and F := {f�v|�v ∈ F
n
q \ {�0}} i.e., the set of the predicates.

Definition 6 A symmetric-key inner product encryption scheme (SIPE) for predicates F and
attributes Σ consists of probabilistic polynomial-time algorithms Setup,TokenGen,Enc and Query.
They are given as follows:

• Setup takes as input security parameter 1λ, and it outputs a secret key sk.

• TokenGen takes as input a secret key sk, and a predicate vector �v. It outputs a correspond-
ing token tk�v.

• Enc takes as input a secret key sk and an attribute (or plaintext) vector �x. It returns a
ciphertext ct�x.

• Query takes as input a token tk�v and a ciphertext ct�x. It outputs either 0 or 1, indicating
the value of the predicate f�v evaluated on the underlying attribute �x.

An SIPE scheme should have the following correctness property: for all sk
R← Setup(1λ, n),

all f�v ∈ F and �x ∈ Σ, all tk�v
R← TokenGen(sk, �v), all ciphertext ct�x

R← Enc(sk, �x), it holds that
1 = Query(tk�v, ct�x) if f�v(�x) = 1. Otherwise, it holds with negligible probability.

We then define the full security notion of SIPE, which is the same as that given by Shen,
Shi, and Waters [24].

Definition 7 (Full Security of SIPE) The model for defining the full security of SIPE
against adversary A is given as follows:

1. The challenger runs Setup to generate secret key sk, and picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query is one of two
types:

• On the �-th ciphertext query, A outputs two attribute vectors (�x(0)
� , �x

(1)
� ). The chal-

lenger responds with ct�
R← Enc(sk, �x(b)

� ).

• On the h-th token query, A outputs two predicate vectors, (�v(0)
h , �v

(1)
h ). The challenger

responds with tkh
R← TokenGen(sk, �v(b)

h ).

A’s queries are subject to the restriction that, for all ciphertext queries (�x(0)
� , �x

(1)
� ) and all

token queries (�v(0)
h , �v

(1)
h ), f

�v
(0)
h

(�x(0)
� ) = f

�v
(1)
h

(�x(1)
� ).

3. A outputs a guess b′ of b.

10



The success experiment in the above game, i.e., b′ = b, is denoted by SuccA(λ), and the advantage
of A is defined as AdvSIPE

A (λ) := Pr[ SuccA(λ) ] − 1/2 for any security parameter λ. An SIPE
scheme is fully secure if all probabilistic polynomial-time adversaries A have at most negligible
advantage in the above game.

3 Proposed (Basic) IPE-CC Scheme

3.1 Construction

We describe random dual orthonormal basis generator GIPE
ob below, which is used as a subroutine

in the proposed IPE-CC and SIPE schemes.

GIPE
ob (1λ, N) : param′

V := (q,V,GT ,A, e)
R← Gdpvs(1λ, N), ψ U← F

×
q , gT := e(G,G)ψ,

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := ψ · (XT)−1, paramV := (param′

V, gT ),

bi :=
∑N

j=1 χi,jaj ,B := (b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,jaj ,B
∗ := (b∗1, . . . , b∗N ),

return (paramV,B,B
∗).

We refer to Section 1.4 for notations on DPVS. For matrix W := (wi,j)i,j=1,...,N ∈ F
N×N
q and

element g := (G1, . . . , GN ) in N -dimensional V, gW denotes (
∑N

i=1Giwi,1, . . . ,
∑N

i=1Giwi,N ) =
(
∑N

i=1wi,1Gi, . . . ,
∑N

i=1wi,NGi) by a natural multiplication of a N -dim. row vector and a N×N
matrix. Thus it holds an associative law like (gW )W−1 = g(WW−1) = g. The proposed scheme
is given as:

Setup(1λ, n) : (paramV,B := (b1, .., b6n),B∗ := (b∗1, .., b
∗
6n))

R← GIPE
ob (1λ, N := 6n),

W
U← GL(N,Fq), di := biW for i = 1, . . . , 6n, D := (d1, . . . ,d6n),

D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n), B̂
∗ := (b∗1, . . . , b

∗
n, b

∗
4n+1, . . . , b

∗
5n),

return pk := (1λ, paramV, D̂), ck := W, sk := B̂
∗.

TokenGen(pk, sk, �v ∈ F
n
q \ {�0}) : σ

U← Fq, �η
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗ := ( σ�v, 03n, �η, 0n )B∗ , return tk�v := k∗.

Enc(pk, �x ∈ F
n
q \ {�0}) : τ

U← Fq, �ξ
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
f := ( τ�x, 03n, 0n, �ξ )D, return ct�x := f .

Conv(pk, ck := W, ct�x := f) : ρ
U← Fq, y

U← span〈d5n+1, . . . ,d6n〉,
c := (ρf + y)W−1, return CT�x := c.

Query(pk, tk�v := k∗, CT�x := c) :
if e(c,k∗) = 1, output 1, otherwise, output 0.

Remark 2 To realize a delegation from tk�v to tk�v ∧ �w(:= tk(�v,�w)) given in the introduction, we
can construct a natural delegation algorithm in a similar manner to [17, 18, 19, 20]. We give
the 2-level hierarchical IPE-CC (HIPE-CC) scheme in Section 3.3.

[Correctness] Since D ·W−1 := (d1W
−1, . . . ,d6nW

−1) is equal to B := (b1, . . . , b6n), c :=
(ρf + u)W−1 = ( ω�x, 03n, 0n, �ϕ )D ·W−1 = ( ω�x, 03n, 0n, �ϕ )D·W−1 = ( ω�x, 03n, 0n, �ϕ )B,
where ω ∈ Fq and �ϕ ∈ F

n
q are uniformly and independently distributed. Therefore, if �v · �x = 0,

then e(c,k∗) = gωσ�v·�xT = 1.

11



3.2 Security

The DLIN assumption is standard [18, 19, 20] and given in Definition 3.

Theorem 1 The proposed IPE-CC scheme is fully secure under the DLIN assumption, i.e., for
any adversary A, all AdvDisU

A (λ), AdvDisH
A (λ) and AdvDisPKG

A (λ) are negligible under the DLIN
assumption.

Proof. The proof of Theorem 1 is reduced to those of Lemmas 1–3. ��
Lemma 1 For any adversary A, AdvDisU

A (λ) is negligible under the DLIN assumption.

Lemma 2 For any adversary A, AdvDisH
A (λ) is negligible under the DLIN assumption.

Lemma 3 For any adversary A, AdvDisPKG
A (λ) is negligible under the DLIN assumption.

The proofs of Lemmas 1–3 are given in Appendix B.

3.3 Proposed (Basic 2-Level) Hierarchical IPE-CC Scheme

We refer to Section 1.4 for notations on DPVS. For matrix W := (wi,j)i,j=1,...,N ∈ F
N×N
q and

element g := (G1, . . . , GN ) in N -dimensional V, for notation gW , refer to Section 3.1. The
hierarchical IPE-CC (HIPE-CC) below is based on the (basic) construction idea given in [16],
however, since the scheme has enough hidden subspace and randomness spaces, the security is
proven from the DLIN assumption.

Setup(1λ, (n1, n2) ) : n := n1 + n2,

(paramV,B := (b1, . . . , b6n),B∗ := (b∗1, . . . , b
∗
6n))

R← GIPE
ob (1λ, N := 6n),

W
U← GL(N,Fq), di := biW for i = 1, . . . , 6n, D := (d1, . . . ,d6n),

D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n), B̂
∗ := (b∗1, . . . , b

∗
n, b

∗
4n+1, . . . , b

∗
5n),

return pk := (1λ, paramV, D̂), ck := W, sk := B̂
∗.

TokenGen(pk, sk, �v1 ∈ F
n1
q \ {�0}) : σ, ψ

U← Fq, �η0, �η1, . . . , �ηn2

U← F
n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗

0 := ( σ�v1, 0n2 , 03n, �η0, 0n )B∗ ,
k∗
i := ( σ�v1, ψ�ei, 03n, �ηi, 0n )B∗ for i = 1, . . . , n2,

where �ei := ( 0i−1, 1, 0n2−i ),
return tk�v1 := ( k∗

0, k∗
1, . . . ,k

∗
n2

).

Enc(pk, �x1 ∈ F
n1
q \ {�0}, �x2 ∈ F

n2
q ) : τ1, τ2

U← Fq, �ξ
U← F

n
q ,

if �x2 = �0, �x ′
2

U← F
n2
q , else �x ′

2 := �x2,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
f := ( τ1�x1, τ2�x

′
2, 03n, 0n, �ξ )D, return ct�x := f .

Conv(pk, ck := W, ct�x := f) : ρ
U← Fq, y

U← span〈d5n+1, . . . ,d6n〉,
c := (ρf + y)W−1, return CT�x := c.

Query(pk, tk := tk�v1 or tk(�v1,�v2), CT�x := c) :
if tk = tk�v1 = ( k∗

0, k∗
1, . . . ,k

∗
n2

),
if e(c,k∗

0) = 1, output 1, otherwise, output 0.
if tk = tk(�v1,�v2) = k̃∗, if e(c, k̃∗) = 1, output 1, otherwise, output 0.
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Delegate(pk, tk�v1 := ( k∗
0, k∗

1, . . . ,k
∗
n2

), �v2 := (v2,1, . . . , v2,n2) ∈ F
n2
q \ {�0}) :

ξ, δ
U← Fq, �η

′ := (η′1, . . . , η
′
n)

U← F
n
q ,

k̃∗ := ξk∗
0 + δ(

∑n2
i=1 v2,ik

∗
i ) +

∑n
i=1 η

′
ib

∗
4n+i,

return tk(�v1,�v2)(= tk�v1 ∧�v2) := k̃∗.

The full security notion of IPE-CC is extended to that for (2-level) HIPE-CC schemes in a
usual way.

Theorem 2 The proposed (2-level) HIPE-CC scheme is fully secure under the DLIN assump-
tion.

Theorem 2 is proven in a similar manner to Theorem 1.

Remark:

1. While we present a 2-level HIPE-CC scheme here, clearly, the construction can be extended
to an arbitrary level HIPE-CC scheme.

2. While the above basic HIPE-CC scheme is built based on [16], if we apply several tech-
niques given in [18, 19], efficiency of the HIPE scheme is greatly improved.

4 Proposed SIPE Scheme (Conversion from IPE-CC to SIPE)

The definitions of symmetric-key IPE (SIPE) and full security of SIPE are given in Section 2.4.
From the above IPE-CC scheme, we obtain the first fully secure SIPE scheme. Namely, using

the IPE-CC scheme, ΠIPE-CC := (Setup,TokenGen,Enc, Conv,Query), a modified setup algorithm
Setup′(1λ, n) outputs a (master) secret key sk′ := (pk, ck, sk), where (pk, ck, sk) R← Setup(1λ, n),
and a modified encryption algorithm Enc′(sk′, �x) outputs a ciphertext CT′

�x
R← Conv(pk, ck, ct�x),

where ct�x
R← Enc(pk, �x), and the rest of algorithms, TokenGen and Query are the same as those

of the IPE-CC scheme since an input sk′ of TokenGen includes (pk, sk). Hence, we obtain a
(converted) SIPE, ΠSIPE := (Setup′,TokenGen,Enc′,Query).

Theorem 3 The proposed SIPE scheme is fully secure under the DLIN assumption.

Proof. By the construction, the full security for SIPE ΠSIPE is reduced from the Dishonest-User
Game security for IPE-CC ΠIPE-CC, i.e., for any adversary A, we can construct A′ from A s.t.
AdvSIPE

A (λ) for ΠSIPE in Def. 7 is less than or equal to AdvDisU
A′ (λ) for ΠIPE-CC in Def. 5. Hence,

Lemma 1 implies Theorem 3. ��

5 A Variant for Achieving Shorter Public and Secret Keys

A variant of the proposed (basic) IPE-CC scheme with the same security, that achieves a shorter
(O(n)-size) public key and secret key, can be constructed by combining with the techniques in
[19], where n is the dimension of vectors of the IPE-CC scheme. Here, we show this variant.
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5.1 Construction and Security

Let N := 6n and

H(n,Fq) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
μ′′1 μ′′2 . . . μ′′n−1 μ′′′

μ μ′2
. . .

...
μ μ′n−1

μ′n

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
μ, μ′2, . . . , μ′n,
μ′′1, . . . , μ′′n−1, μ

′′′ ∈ Fq,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

L(6, n,Fq) :=

⎧⎪⎨⎪⎩X :=

⎛⎜⎝ X1,1 · · · X1,6
...

...
X6,1 · · · X6,6

⎞⎟⎠
∣∣∣∣∣∣∣
Xi,j ∈ H(n,Fq)
for i, j = 1, . . . , 6

⎫⎪⎬⎪⎭
⋂

GL(N,Fq).

We note that L(6, n,Fq) is a subgroup of GL(N,Fq) (Lemma 4). For X ∈ L(6, n,Fq), we denote
(ψ-times) its adjoint matrix (X−1)T as a sparse form

(X−1)T :=

⎛⎜⎝ Y1,1 · · · Y1,6
...

...
Y6,1 · · · Y6,6

⎞⎟⎠ , where Yi,j :=

⎛⎜⎜⎜⎜⎜⎝
ϑ′′i,j,1
ϑ′′i,j,2 ϑi,j

...
. . .

ϑ′′i,j,n−1 ϑi,j
ϑ′′′i,j ϑ′i,j,2 . . . ϑ′i,j,n

⎞⎟⎟⎟⎟⎟⎠
for i, j = 1, . . . , 6. Here, a blank element in the above matrix denotes 0 ∈ Fq. That is, X ∈
L(6, n,Fq) is represented by 72n non-zero entries {μi,j , μ′i,j,2, . . . , μ′i,j,n, μ′′i,j,1, . . . , μ′′i,j,n−1, μ

′′′
i,j}i,j=1,...6,

and ψ(X−1)T is represented by 72n non-zero entries {ϑi,j , ϑ′i,j,2, . . . , ϑ′i,j,n, ϑ′′i,j,1, . . . , ϑ′′i,j,n−1, ϑ
′′′
i,j}i,j=1,...6.

Random dual orthonormal basis generator GZIPE,SK
ob with sparse matrices below is used as a

subroutine in the proposed variants of IPE-CC and SIPE schemes.

GZIPE,SK
ob (1λ, 6, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N := 6n,

ψ
U← F

×
q , gT := e(G,G)ψ, param′

V := (q,V,GT ,A, e) := Gdpvs(1λ, N, paramG),

paramV := (param′
V, gT ), X U← L(6, n,Fq),

hereafter, {μi,j , μ′i,j,2, .., μ′i,j,n, μ′′i,j,1, .., μ′′i,j,n−1, μ
′′′
i,j}i,j=1,...6 denotes

non-zero entries of X, and {ϑi,j , ϑ′i,j,2, .., ϑ′i,j,n, ϑ′′i,j,1, .., ϑ′′i,j,n−1, ϑ
′′′
i,j}i,j=1,...6

denotes non-zero entries of ψ(X−1)T,
{Bi,j := μi,jG,B

′
i,j,2 := μ′i,j,2G, . . . , B

′
i,j,n := μ′i,j,nG,

B′′
i,j,1 := μ′′i,j,1G, . . . , B

′′
i,j,n−1 := μ′′i,j,n−1G,B

′′′
i,j := μ′′′i,jG}i,j=1,...6,

{B∗
i,j := ϑi,jG,B

′∗
i,j,2 := ϑ′i,j,2G, . . . , B

′∗
i,j,n := ϑ′i,j,nG,

B′′∗
i,j,1 := ϑ′′i,j,1G, . . . , B

′′∗
i,j,n−1 := ϑ′′i,j,n−1G,B

′′′∗
i,j := ϑ′′′i,jG}i,j=1,...6,

return (paramV, {Bi,j , B′
i,j,2, . . . , B

′
i,j,n, B

′′
i,j,1, . . . , B

′′
i,j,n−1, B

′′′
i,j}i,j=1,...6,

{B∗
i,j , B

′∗
i,j,2, . . . , B

′∗
i,j,n, B

′′∗
i,j,1, . . . , B

′′∗
i,j,n−1, B

′′′∗
i,j }i,j=1,...6).

Remark 3 Let⎛⎜⎝ b(i−1)n+1
...

bin

⎞⎟⎠ :=

⎛⎜⎜⎜⎝
B′′
i,1,1 B′′

i,1,2 . . . B′′′
i,1

Bi,1 B′
i,1,2

. . .
...

B′
i,1,n

· · ·

B′′
i,6,1 B′′

i,6,2 . . . B′′′
i,6

Bi,6 B′
i,6,2

. . .
...

B′
i,6,n

⎞⎟⎟⎟⎠ (1)
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⎛⎜⎜⎝
b∗(i−1)n+1

...
b∗in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎝
B′′∗
i,1,1

B′′∗
i,1,2 B∗

i,1
...

. . .

B′′′∗
i,1 B′∗

i,1,2 . . . B′∗
i,1,n

· · ·

B′′∗
i,6,1

B′′∗
i,6,2 B∗

i,6
...

. . .

B′′′∗
i,6 B′∗

i,6,2 . . . B′∗
i,6,n

⎞⎟⎟⎟⎟⎠
for i = 1, . . . , 6, and B := (b1, . . . , b6n),B∗ := (b∗1, . . . , b∗6n), where a blank element in the
matrices denotes 0 ∈ G. (B,B∗) are the dual orthonormal bases, i.e., e(bi, b∗i ) = gT and
e(bi, b∗j ) = 1 for 1 ≤ i 	= j ≤ 6n.

Here, we assume that input vectors, �x := (x1, . . . , xn) and �v := (v1, . . . , vn), satisfies x1 	= 0
and vn 	= 0. The proposed scheme is given as:

Setup(1λ, n) :
(paramV, {Bi,j , B′

i,j,2, . . . , B
′
i,j,n, B

′′
i,j,1, . . . , B

′′
i,j,n−1, B

′′′
i,j}i,j=1,...6,

{B∗
i,j , B

′∗
i,j,2, . . . , B

′∗
i,j,n, B

′′∗
i,j,1, . . . , B

′′∗
i,j,n−1, B

′′′∗
i,j }i,j=1,...6)

R← GZIPE,SK
ob (1λ, 6, n),

W
U← L(6, n,Fq),

⎛⎜⎝ d1
...

d6n

⎞⎟⎠ :=

⎛⎜⎝ b1
...

b6n

⎞⎟⎠ ·W,
where (bi)i=1,...,6n is given
in Eq. (1), and (di)i=1,...,6n

is represented as in Eq. (1)
using

{Di,j , D
′
i,j,2, . . . , D

′
i,j,n, D

′′
i,j,1, . . . , D

′′
i,j,n−1, D

′′′
i,j}i,j=1,...6,

return pk :=(1λ, paramV, {Di,j , D
′
i,j,2, .., D

′
i,j,n, D

′′
i,j,1, .., D

′′
i,j,n−1, D

′′′
i,j}i=1,6; j=1,..,6),

ck := W, sk := {B∗
i,j , B

′∗
i,j,2, .., B

′∗
i,j,n, B

′′∗
i,j,1, .., B

′′∗
i,j,n−1, B

′′′∗
i,j }i=1,5; j=1,..,6.

TokenGen(pk, sk, �v) : σ, η1, . . . , ηn
U← Fq,

for j = 1, .., 6, K∗
j,1 :=

∑n−1
l=1 (σvlB′′∗

1,j,l + ηlB
′′∗
5,j,l) + σvnB

′′′∗
1,j + ηnB

′′′∗
5,j ,

K∗
j,l := σ(vlB∗

1,j + vnB
′∗
1,j,l) + ηlB

∗
5,j + ηnB

′∗
5,j,l for l = 2, . . . , n− 1,

K∗
j,n := σvnB

′∗
1,j,n + ηnB

′∗
5,j,n,

k∗ := (K∗
1,1, . . . ,K

∗
1,n, . . . ,K∗

6,1, . . . ,K
∗
6,n) ∈ G

6n, return tk�v := k∗.

Enc(pk, �x) : ω, ϕ1, . . . , ϕn
U← Fq,

for j = 1, .., 6, Fj,1 := ωx1D
′′
1,j,1 + ϕ1D

′′
6,j,1,

Fj,l := ω(x1D
′′
1,j,l + xlD1,j) + ϕ1D

′′
6,j,l + ϕlD6,j for l = 2, . . . , n− 1,

Fj,n := ωx1D
′′′
1,j + ϕ1D

′′′
6,j +

∑n
l=2(ωxlD

′′
1,j,l + ϕlD

′′
6,j,l),

f := (F1,1, . . . , F1,n, . . . , F6,1, . . . , F6,n) ∈ G
6n, return ct�x := f .

Conv(pk, ck := W, ct�x := f) : ρ
U← Fq, y

U← span〈d5n+1, . . . ,d6n〉,
c := (ρf + y)W−1, return CT�x := c.

Query(pk, tk�v := k∗, CT�x := c) :
if e(c,k∗) = 1, return 1, otherwise, return 0.

Remark 4 A part of output of Setup(1λ, n), {Di,j , D
′
i,j,2, . . . , D

′
i,j,n, D

′′
i,j,1, . . . , D

′′
i,j,n−1, D

′′′
i,j}i=1,6; j=1,...6,

can be identified with D̂ := (d1, . . . ,dn,d5n+1, . . . , d6n), while D := (d1, . . . ,d6n) is identified
with {Di,j , D

′
i,j,2, . . . , D

′
i,j,n, D

′′
i,j,1, . . . , D

′′
i,j,n−1, D

′′′
i,j}i,j=1,...6 as in Remark 3. Also, {B∗

i,j , B
′∗
i,j,2,

. . . , B′∗
i,j,n, B

′′∗
i,j,1, . . . , B

′′∗
i,j,n−1, B

′′′∗
i,j }i=1,5; j=1,...6 can be identified with B̂

∗ := (b∗1, . . . , b∗n, b∗4n+1,
. . . , b∗5n), while B

∗ := (b∗1, . . . , b∗6n) is identified with {B∗
i,j , B

′∗
i,j,2, . . . , B

′∗
i,j,n, B

′′∗
i,j,1, . . . , B

′′∗
i,j,n−1,

B′′′∗
i,j }i,j=1,...6 in Remark 3. In Query, c and k∗ can be alternatively described as
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Table 1: Comparison with pairing-based IPE schemes in [14, 20, 24], where |G| represents size
of an element of G. PH, AH, PK, SK, TK, CT, GSD, and C3DH stand for predicate-hiding,
attribute-hiding, public key, secret key, token, ciphertext, general subgroup decision [1], and
composite 3-party (decisional) Diffie-Hellman [24], respectively.

KSW08 OT12 IPE [20] Proposed IPE-CC SSW09 Proposed SIPE
IPE [14] (basic) (variant) (basic) (variant) SIPE [24] (basic) (variant)

Setting public key public key public key secret key secret key

Security
selective &
fully-AH

adaptive &
fully-AH

adaptive &
fully-secure
(PH & AH)

selective &
single-chal.
PH & AH

adaptive &
fully-secure
(PH & AH)

Order
of G

composite prime prime composite prime

Assump.
2 variants
of GSD

DLIN DLIN
A variant
of GSD,

C3DH,DLIN
DLIN

PK size O(n)|G| O(n2)|G| O(n)|G| O(n2)|G| O(n)|G| – – –
SK size O(n)|G| O(n2)|G| O(n)|G| O(n2)|G| O(n)|G| O(n)|G| O(n2)|G| O(n)|G|
TK size (2n+1)|G| (4n+1)|G| 10|G| 6n|G| (2n+ 2)|G| 6n|G|
CT size (2n+1)|G| (4n+1)|G| 5n|G| 6n|G| (2n+ 2)|G| 6n|G|

c = (

n︷ ︸︸ ︷
ω�x,

3n︷ ︸︸ ︷
03n,

n︷︸︸︷
0n,

n︷︸︸︷
�ϕ )B, k∗ = (

n︷ ︸︸ ︷
σ�v,

3n︷ ︸︸ ︷
03n,

n︷︸︸︷
�η,

n︷︸︸︷
0n )B∗ , where �ϕ := (ϕ1, . . . , ϕn), �η :=

(η1, . . . , ηn) ∈ F
n
q .

Theorem 4 The proposed IPE-CC scheme (with short public and secret keys) is fully secure
under the DLIN assumption.

Theorem 4 is proven in a similar manner to Theorem 3 (and 4) in [19]. For achieving dual
system encryption proof for IPE-CC with employing a sparse matrix, X U← L(6, n,Fq), for base
change, the matrix set L(6, n,Fq) should form a (matrix) group. (For the reason, refer to [19].)
Therefore, proofs of Theorem 1 and Theorem 4 have the same high-level structure using the
full matrix group GL(6n,Fq) and a subgroup L(6, n,Fq) based on Lemma 4, respectively.

Lemma 4 L(6, n,Fq) is a subgroup of GL(6n,Fq).

Lemma 4 is proven in a similar manner to Lemma 2 in the full version of [19].

6 Efficiency Comparisons

Table 1 compares the proposed IPE-CC schemes in Sections 3 and 5 with pairing-based attribute-
hiding IPE schemes in [14, 20], and compares the proposed SIPE schemes in Sections 4 (and 5)
with pairing-based predicate- and attribute-hiding SIPE scheme in [24].

Acknowledgments. The authors would like to thank anonymous reviewers for their valuable
comments.
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Figure 3: Structure of Reductions in the proof of Lemma 2

A Multi-System Proof Technique

A.1 Structural Comparison of our IPE-CC Scheme with the IPE in [20]

Since our security proofs (in particular, for Lemma 1) are extensions of the proof given in
[20], we begin to compare our predicate-hiding IPE-CC with the existing attribute-hiding (not
predicate-hiding) IPE [20].

Okamoto-Takashima [20] gave an attribute-hiding IPE scheme on DPVS framework. Cipher-
texts (CT) and (secret-key) token (TK) of the scheme have dimension 4n+2 = 1+n+2n+n+1,
where the first one dimension is for encryption of plaintext (not attribute), the second is the
real-encoding part (real part, for short) for CT and TK vectors, the third is the hidden part for
achieving various forms of CT and TK, the fourth is the TK randomness part, and the fifth is
the CT randomness part. Here, because we do not treat a plaintext other than attribute, CT
and TK of the scheme are considered as composed of four parts, as indicated below, where the
dimension structure is given by 4n+ 1 = n+ 2n+ n+ 1. CT and TK of our IPE-CC have the
same form, but dimension of each part is different, with 6n = n + 3n + n + n inner-structure.
Particularly, 3n dimensional hidden part is crucial for our elaborated security proof of Lemma
1, where three blocks of n dimensional subspaces have different roles in the proof. We call it
the multi-system proof technique, and the details are explained in Appendix A.2.

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
CT & TK in [20] IPE : ( real hidden TK ran. CT ran. ),

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
CT & TK in our IPE-CC : ( real hidden TK ran. CT ran. ).

A.2 Intuitions for Proofs of Lemmas 1–3

First, we consider the proof of Lemma 2, where malicious helper A, i.e., adversary has the
conversion keyW . By computing B̂ := D̂·W−1, he knows B̂. Then, the view of the adversary and
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the security definition (for the malicious helper) are the equivalent to those given in [20] for fully-
attribute-hiding of IPE, except that multiple ciphertext challenges are considered in this paper,
while single challenge is treated in [20]. Therefore, we can take a standard hybrid argument to
achieve multiple challenge security from single challenge security, which is described in Figure
3. (In the figure, P1, P2, P3 stand for Problem 1, 2, 3, respectively.) Let ν1 be the maximum
number of A’s challenge ciphertext queries and ν2 the maximum number of A’s challenge token
queries. The reduction starts Game 0, and repeat Game � sequences for � = 1, . . . , ν1, where
each sequence transform the �-th queried ciphertext to an unbiased one for b ∈ {0, 1}. The �-th
sequence consists of four parts, Game �-1, Game �-2 sequence, Game �-3, Game �-4, where the
main �-2 sequence has another loop structure parametrized by h = 1, . . . , ν2. The Game �-2
sequence repeats four Games, Game �-2-h-1,. . ., Game �-2-h-4, for h = 1, . . . , ν2. In the last
�-2-ν2-4 in the sequence, coefficients of the 2n-dimensional hidden part, i.e., span〈dn+1, . . . ,d3n〉
(resp. span〈b∗n+1, . . . , b

∗
3n〉) of the ι-th queried fι for ι = 1, . . . , ν1 (resp. the j-th queried k∗

j for
j = 1, . . . , ν2) w.r.t. these bases vectors are given as:

Coefficients of the hidden part of fι
in Game �-2-ν2-4

Coefficients of the hidden part of k∗
j

in Game �-2-ν2-4
ι = 1

...
� �x

(∗)′
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h
...

ν2 σ′′
ν2
�vν2

where �x(∗)′
� := τ ′�,0�x

(0)
� + τ ′�,1�x

(1)
� , �x

(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form). In the second block

of the hidden part, an unbiased vector �x(∗)′′
� for the �-th query (and zero for the rest of the

ι(	= �)-th queries) in ciphertexts and (normal) �v-vectors, σ′′1�v1, . . . , σ′′ν2�vν2 , in tokens are placed.
Therefore, the unbiased coefficient �x(∗)′′

� is reflected to the real encoding part since the addition

of b-biased τ�x(b)
� and unbiased θ�x(∗)′′

� (θ U← Fq) is also unbiased, i.e., transforms f� to an unbiased
one. See [20] for the details.

Next, we consider the proof of Lemma 1, where malicious user has no secret keys, sk nor
W , but he can ask two types of challenges, (�x(0)

� , �x
(1)
� ) for � = 1, . . . , ν1 and (�v(0)

h , �v
(1)
h ) for

h = 1, . . . , ν2. The condition on the challenges is given by f
�v
(0)
h

(�x(0)
� ) = f

�v
(1)
h

(�x(1)
� ). In general,

an unbiased form �x
(∗)
� := ω0�x

(0)
� + ω1�x

(1)
� does not preserve the value of the predicate, e.g.,

neither f
�v
(0)
h

(�x(∗)
� ) nor f

�v
(1)
h

(�x(∗)
� ) is determined from the value of f

�v
(0)
h

(�x(0)
� ) = f

�v
(1)
h

(�x(1)
� ). Since

the unbiased form is not useful for reflecting the condition to the security proof, we must take
another strategy. Through several game hoppings, we change the view of the adversary with
challenge bit b to that with 1− b. The structure of the reduction is given in Figure 4. (In the
figure, P1,..., P6 stand for Problem 1,..., 6, respectively.) The reduction starts Game 0, and after
repeating Game 1-� sequences for � = 1, . . . , ν1, repeat Game 2-h sequences for h = 1, . . . , ν2,
where each sequence transform the h-th queried token to another kind of unbiased form for
b ∈ {0, 1} in the sense that forms of Eqs. (15) and (16) in Game 3 are equivalent: The h-th
sequence consists of three parts, Game 2-h-1, Game 2-h-2 sequence, and Game 2-h-3, where the
main 2-h-2 sequence has another loop structure parametrized by � = 1, . . . , ν1. The Game 2-h-2
sequence repeats four Games, Game 2-h-2-�-1,. . ., Game 2-h-2-�-4, for � = 1, . . . , ν1. In the last
2-h-2-�-4 in the sequence, coefficients of the 3n-dimensional hidden part, i.e., span〈bn+1, . . . , b4n〉
(resp. span〈b∗n+1, . . . , b

∗
4n〉) of the ι-th queried cι for ι = 1, . . . , ν1 (resp. the j-th queried k∗

j for
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Figure 4: Structure of Reductions in the proof of Lemma 1

j = 1, . . . , ν2) w.r.t. these bases vectors are given as:

Coefficients of the hidden part of cι
in Game 2-h-2-ν1-4

Coefficients of the hidden part of k∗
j

in Game 2-h-2-ν1-4

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
�
...

ν1 ω′′
ν1
�x

(1−b)
ν1 ω′′′

ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(1−b)
h σ′′

h�v
(1−b)
h

...
ν2

In the second block of the hidden part, an opposite vector σ′′h�v
(1−b)
h for the �-th query (and zero

for the rest of the j(	= h)-th queries) in tokens and opposite vectors, ω′′
1�x

(1−b)
1 , . . . , ω′′

ν1�x
(1−b)
ν1 , in ci-

phertexts are placed. Different from Lemma 2 case, the result (σ′′h�v
(1−b)
h ;ω′′

1�x
(1−b)
1 , . . . , ω′′

ν1�x
(1−b)
ν1 )
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cannot be added to the real encoding part coefficients (σh�v
(b)
h ;ω1�x

(b)
1 , . . . , ων1�x

(b)
ν1 ) by a concep-

tual change, since the unbiased form is not useful as mentioned above. Instead, we store the
result in the third block of the hidden part in the next Game 2-h-3 as:

Coefficients of the hidden part of cι
in Game 2-h-3

Coefficients of the hidden part of k∗
j

in Game 2-h-3

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′′′
h �v

(1−b)
h

...
ν2

where all the coefficients in the first and second blocks become zero vectors preparing for the
next Game 2-(h+ 1) sequence. At the end of Game 2 sequence, we have

Coefficients of the hidden part of cι
in Game 2-ν2-3

Coefficients of the hidden part of k∗
j

in Game 2-ν2-3

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h
...

ν2 σ′′′
ν2
�v

(1−b)
ν2

where the third block is filled with opposite vectors with bit 1 − b. We note that the view
of the adversary (malicious user) do not include (b1, . . . , bn) as well as (b∗1, . . . , b∗n). There-
fore, we can conceptually change between subspaces span〈b1, . . . , bn〉 and span〈b3n+1, . . . , b4n〉
(resp. span〈b∗1, . . . , b∗n〉 and span〈b∗3n+1, . . . , b

∗
4n〉), and tokens and ciphertexts are given as Eqs. (16)

and (17) in Game 3. In particular, coefficients in the hidden part are given as:

Coefficients of the hidden part of cι
in Game 3

Coefficients of the hidden part of k∗
j

in Game 3

ι = 1 ω′′′
1 �x

(b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(b)
ν1

j = 1 σ′′′
1 �v

(b)
1

...
...

h
...

ν2 σ′′′
ν2
�v

(b)
ν2

Through the reverse process, Game 4 and Game 5 sequences, we reach the final Game 5-ν1-3,
where all queried tokens and ciphertext are normal one for opposite bit 1− b. Thus, Lemma 1
is proven.

Therefore, essentially, the reduction in Figure 4 is a combination of that in Figure 3 and a
reverse of that in Figure 3, with a switch of subspace blocks in Game 3 for bit change from b to
1−b. However, since we cannot make use of unbiased coefficients in this case, we need one more
n-dimensional block in the hidden subspace. The total hidden subspace is 3n-dimensional. We
call it multi-system proof technique, which is an extension of the technique in [20] as we see in
the above.

Finally, we consider the proof of Lemma 3, where malicious PKG has a secret key sk := B̂
∗.

The adversary cannot derive (useful) information from original ciphertexts ct�x on D and tokens
tk�v on B

∗, since he has no D
∗ and B for checking them. The independent property of B and D

makes the security proof rather simple.
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B Proofs of Lemmas 1–3

B.1 Proof of Lemma 1

Lemma 1. For any adversary A, AdvDisU
A (λ) is negligible under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1-1, E1-2, E2-1, . . . , E2-4, whose run-
ning times are essentially the same as that of A, such that for any security parameter λ,

AdvDisU
A (λ) ≤

ν1∑
�=1

(
AdvDLIN

E1-�-1
(λ) + AdvDLIN

E1-�-2
(λ)
)

+

ν2∑
h=1

(
AdvDLIN

E2-h-1
(λ) +

ν1∑
�=1

(
AdvDLIN

E2-h-2-�
(λ) + AdvDLIN

E2-h-3-�
(λ)
)

+ AdvDLIN
E2-h-4

(λ)

)
+ ε,

where E1-�-1(·) := E1-1(�, ·), E1-�-2(·) := E1-2(�, ·), E2-h-1(·) := E2-1(h, ·), E2-h-2-�(·) := E2-2(h, �, ·),
E2-h-3-�(·) := E2-3(h, �, ·), E2-h-4(·) := E2-4(h, ·), ν1 (resp. ν2) is the maximum number of A’s
challenge ciphertext (resp. key) queries and ε := (23ν1ν2 + (n+ 17)ν1 + 18ν2)/q.

We give (intermediate) games for the proof of Lemma 1 below.

B.1.1 Games for the proof of Lemma 1

Let ν1 be the maximum number of A’s challenge ciphertext queries and ν2 the maximum number
of A’s challenge token queries. To prove Lemma 1, we consider the following 8ν1ν2+6ν1+4ν2+2
games. In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent
game. In the other games, a part framed by a box indicates coefficients which were changed in
a game from the previous game.

Game 0 : For j = 1, . . . , ν2, the reply to the j-th token query for (�v(0)
j , �v

(1)
j ) is:

k∗
j := ( σj�v

(b)
j , 0n , 0n , 0n , �ηj , 0n )B∗ , (2)

where b U← {0, 1}, σj U← Fq and �ηj
U← F

n
q . For ι = 1, . . . , ν1, the reply to the ι-th ciphertext

query for vectors (�x(0)
ι , �x

(1)
ι ) is:

fι := ( τι�x
(b)
ι , 0n, 0n , 0n , 0n, �ξι )D, (3)

cι := ( ωι�x
(b)
ι , 0n , 0n , 0n , 0n, �ϕι )B, (4)

where τι, ωι
U← Fq and �ξι, �ϕι

U← F
n
q .

Below, we describe coefficients of the hidden part, i.e., span〈bn+1, . . . , b4n〉 (resp. span〈b∗n+1,
. . . , b∗4n〉) of the ι-th queried cι for ι = 1, . . . , ν1 (resp. the j-th queried k∗

j for j = 1, . . . , ν2)
w.r.t. these bases vectors. Non-zero coefficients are colored by light gray, and those which were
changed from the previous game are colored by dark gray.

Coefficients of the hidden part of cι
in Game 0

Coefficients of the hidden part of k∗
j

in Game 0
ι = 1

...
�
...

ν1

j = 1
...
h
...

ν2
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Game 1-�-1 (� = 1, . . . , ν1) : Game 1-0-3 is Game 0. Game 1-�-1 is the same as Game
1-(�− 1)-3 except that the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( τ��x
(b)
� , 0n, τ ′′� �x

(b)
� , 0n, 0n, �ξ� )D,

c� := ( ω�x(b)
� , 0n, ω′′

� �x
(b)
� , 0n, 0n, �ϕ� )B, (5)

where τ ′′� , ω
′′
�

U← Fq and all the other variables are generated as in Game 1-(�− 1)-3.

Game 1-�-2 (� = 1, . . . , ν1) : Game 1-�-2 is the same as Game 1-�-1 except that the reply
to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( �rf,� )D with �rf,�
U← F

6n
q , i.e., f�

U← V, (6)

c� := ( ω�x(b)
� , 0n, ω′′

� �x
(1−b)
� , 0n, 0n, �ϕ� )B, (7)

where all the variables are generated as in Game 1-�-1.

Game 1-�-3 (� = 1, . . . , ν1) : Game 1-�-3 is the same as Game 1-�-2 except that the reply
to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

c� := ( ω��x
(b)
� , 0n, 0n , ω′′′

� �x
(1−b)
� , 0n, �ϕ� )B, (8)

where τ ′′′� , ω
′′′
�

U← Fq and all the other variables are generated as in Game 1-�-2.

Coefficients of the hidden part of cι
in Game 1-�-3

Coefficients of the hidden part of k∗
j

in Game 1-�-3

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

� ω′′′
� �x

(1−b)
�

...
ν1

j = 1
...
h
...

ν2

Coefficients of the hidden part of cι
in Game 1-ν1-3 (= Game 2-0-3)

Coefficients of the hidden part of k∗
j

in Game 1-ν1-3 (= Game 2-0-3)

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1
...
h
...

ν2

Game 2-h-1 (h = 1, . . . , ν2) : Game 2-0-3 is Game 1-ν1-3. Game 2-h-1 is the same as Game
2-(h− 1)-3 except that the reply to the h-th token query for (�v(0)

h , �v
(1)
h ) is:

k∗
h := ( σh�v

(b)
h , σ′h�v

(b)
h , σ′′h�v

(b)
h , 0n, �ηh, 0n )B∗ , (9)
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where σ′h, σ
′′
h

U← Fq and all the other variables are generated as in Game 2-(h− 1)-3.

Coefficients of the hidden part of cι
in Game 2-(h− 1)-3

Coefficients of the hidden part of k∗
j

in Game 2-(h− 1)-3

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h
...

ν2

Coefficients of the hidden part of cι
in Game 2-h-1 (= Game 2-h-2-0-4)

Coefficients of the hidden part of k∗
j

in Game 2-h-1 (= Game 2-h-2-0-4)

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(b)
h σ′′

h�v
(b)
h

...
ν2

Game 2-h-2-�-1 (h = 1, . . . , ν2; � = 1, . . . , ν1) : Game 2-h-2-0-4 is Game 2-h-1. Game
2-h-2-�-1 is the same as Game 2-h-2-(�− 1)-4 except that the reply to the h-th token query for
(�v(0)
h , �v

(1)
h ) is:

k∗
h := ( σh�v

(b)
h , σ′h�v

(b)
h , σ′′h�v

(1−b)
h , 0n, �ηh, 0n )B∗ , (10)

where all the variables are generated as in Game 2-h-2-(�− 1)-4. Here, a part framed by a box
(resp. dashed box) indicates coefficients which were changed from the previous game when � ≥ 2
(resp. � = 1).

Coefficients of the hidden part of cι
in Game 2-h-2-(�− 1)-4 for � ≥ 2

Coefficients of the hidden part of k∗
j

in Game 2-h-2-(�− 1)-4 for � ≥ 2

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(1−b)
h σ′′

h�v
(1−b)
h

...
ν2

Coefficients of the hidden part of cι
in Game 2-h-2-�-1

Coefficients of the hidden part of k∗
j

in Game 2-h-2-�-1

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(b)
h σ′′

h�v
(1−b)
h

...
ν2
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Game 2-h-2-�-2 (h = 1, . . . , ν2; � = 1, . . . , ν1) : Game 2-h-2-�-2 is the same as Game
2-h-2-�-1 except that the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

c� := ( ω��x
(b)
� , ω′

��x
(b)
� , 0n, ω′′′

� �x
(1−b)
� , 0n, �ϕ� )B, (11)

where ω′
�

U← Fq and all the other variables are generated as in Game 2-h-2-�-1.

Coefficients of the hidden part of cι
in Game 2-h-2-�-2

Coefficients of the hidden part of k∗
j

in Game 2-h-2-�-2

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
� ω′

��x
(b)
�

...
ν1 ω′′′

ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(b)
h σ′′

h�v
(1−b)
h

...
ν2

Game 2-h-2-�-3 (h = 1, . . . , ν2; � = 1, . . . , ν1) : Game 2-h-2-�-3 is the same as Game
2-h-2-�-2 except the reply to the h-th token query for (�v(0)

h , �v
(1)
h ) is:

k∗
h := ( σh�v

(b)
h , σ′h�v

(1−b)
h , σ′′h�v

(1−b)
h , 0n, �ηh, 0n )B∗ , (12)

and the reply to the �-th ciphertext query for vectors (�x(0)
� , �x

(1)
� ) is:

c� := ( ω��x
(b)
� , ω′

��x
(1−b)
� , 0n, ω′′′

� �x
(1−b)
� , 0n, �ϕ� )B, (13)

where all the variables are generated as in Game 2-h-2-�-2.

Coefficients of the hidden part of cι
in Game 2-h-2-�-3

Coefficients of the hidden part of k∗
j

in Game 2-h-2-�-3

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
� ω′

��x
(1−b)
�

...
ν1 ω′′′

ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(1−b)
h σ′′

h�v
(1−b)
h

...
ν2

Game 2-h-2-�-4 (h = 1, . . . , ν2; � = 1, . . . , ν1) : Game 2-h-2-�-4 is the same as Game
2-h-2-�-3 except that the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

c� := ( ω��x
(b)
� , 0n , ω′′

� �x
(1−b)
� , ω′′′

� �x
(1−b)
� , 0n, �ϕ� )B, (14)

where ω′′
�

U← Fq and all the other variables are generated as in Game 2-h-2-�-3.

Coefficients of the hidden part of cι
in Game 2-h-2-�-4

Coefficients of the hidden part of k∗
j

in Game 2-h-2-�-4

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
� ω′′

� �x
(1−b)
�

...
ν1 ω′′′

ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(1−b)
h σ′′

h�v
(1−b)
h

...
ν2
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Coefficients of the hidden part of cι
in Game 2-h-2-ν1-4

Coefficients of the hidden part of k∗
j

in Game 2-h-2-ν1-4

ι = 1 ω′′
1�x

(1−b)
1 ω′′′

1 �x
(1−b)
1

...
...

...
�
...

ν1 ω′′
ν1
�x

(1−b)
ν1 ω′′′

ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′
h�v

(1−b)
h σ′′

h�v
(1−b)
h

...
ν2

Game 2-h-3 (h = 1, . . . , ν2) : Game 2-h-3 is the same as Game 2-h-2-ν1-4 except that the
reply to the h-th token query for (�v(0)

h , �v
(1)
h ) is:

k∗
h := ( σh�v

(b)
h , 0n , 0n , σ′′′h �v

(1−b)
h , �ηh, 0n )B∗ , (15)

where σ′′′h
U← Fq, and for all ι = 1, . . . , ν1, the reply to the ι-th ciphertext query for vectors

(�x(0)
ι , �x

(1)
ι ) is:

cι := ( ωι�x(b)
ι , 0n, 0n , ω′′′

ι �x
(1−b)
ι , 0n, �ϕι )B for ι = 1, . . . , ν1,

where ωι, ω′′′
ι

U← Fq, �ϕι
U← F

n
q and all the other variables are generated as in Game 2-h-2-ν1-4.

Coefficients of the hidden part of cι
in Game 2-h-3

Coefficients of the hidden part of k∗
j

in Game 2-h-3

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h σ′′′
h �v

(1−b)
h

...
ν2

Coefficients of the hidden part of cι
in Game 2-ν2-3

Coefficients of the hidden part of k∗
j

in Game 2-ν2-3

ι = 1 ω′′′
1 �x

(1−b)
1

...
...

�
...

ν1 ω′′′
ν1
�x

(1−b)
ν1

j = 1 σ′′′
1 �v

(1−b)
1

...
...

h
...

ν2 σ′′′
ν2
�v

(1−b)
ν2

Game 3 : Game 3 is the same as Game 2-ν2-3 except that, for all j = 1, . . . , ν2, the reply to
the j-th token query for (�v(0)

j , �v
(1)
j ) is:

k∗
j := ( σj�v

(1−b)
j , 0n, 0n, σ′′′j �v

(b)
j , �ηj , 0n )B∗ for j = 1, . . . , ν2, (16)

where σj , σ′′′j
U← Fq and �ηj

U← F
n
q , and, for all ι = 1, . . . , ν1, the reply to the ι-th ciphertext query

for vectors (�x(0)
ι , �x

(1)
ι ) is:

cι := ( ωι�x
(1−b)
ι , 0n, 0n, ω′′′

ι �x
(b)
ι , 0n, �ϕι )B for ι = 1, . . . , ν1, (17)
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where all the variables are generated as in Game 2-ν2-3.

From here on, the reverse game transformations proceed, i.e., Game 4-h-1; Game 4-h-2-�-i
for i=1,. . . ,4; Game 4-h-3; and Game 5-�-i for i=1,2,3.

The final game, Game 5-ν1-3 is given as below.

Game 5-ν1-3 : Game 5-ν1-3 is the same as Game 3 except that, for all j = 1, . . . , ν2, the
reply to the j-th token query for (�v(0)

j , �v
(1)
j ) is:

k∗
j := ( σj�v

(1−b)
j , 0n, 0n, 0n , �ηj , 0n )B∗ for j = 1, . . . , ν2,

where all the variables are generated as in Game 3, and, for all ι = 1, . . . , ν1, the reply to the
ι-th ciphertext query for vectors (�x(0)

ι , �x
(1)
ι ) is:

fι := ( τι�x(1−b)
ι , 0n, 0n, 0n , 0n, �ξι )D for ι = 1, . . . , ν1,

cι := ( ωι�x(1−b)
ι , 0n, 0n, 0n , 0n, �ϕι )B for ι = 1, . . . , ν1,

where all the variables are generated as in Game 3. Note that all k∗
j and (cι,fι) are normal

tokens and ciphertexts for the opposite bit 1 − b to the challenge bit b. The game hopping

structure is described by Figure 4.
Let Adv

(0)
A (λ),Adv

(1-�-i)
A (λ) for i = 1, 2, 3; Adv

(2-h-i)
A (λ) for i = 1, 3; Adv

(2-h-2-�-κ)
A (λ) for

κ = 1, . . . , 4 and Adv
(3)
A (λ) be the advantage of A in Game 0, 1-�-i(i = 1, 2, 3), 2-h-i(i =

1, 3), 2-h-2-�-κ (κ = 1, . . . , 4) and 3, respectively. We will show ten lemmas (Lemmas 12–21) that
evaluate the gaps between pairs of neighboring games. From these lemmas and Lemmas 5–10, we
obtain Adv

(0)
A (λ) ≤ Adv

(5-ν1-3)
A (λ) + δ, where δ = 2

(∑ν1
�=1

(∣∣∣Adv
(1-(�−1)-3)
A (λ)− Adv

(1-�-1)
A (λ)

∣∣∣+∑3
i=2

∣∣∣Adv
(1-�-(i−1))
A (λ)− Adv

(1-�-i)
A (λ)

∣∣∣)+
∑ν2

h=1

(∣∣∣Adv
(2-(h−1)-3)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣+∑ν1
�=1

(∣∣∣Adv
(2-h-2-(�−1)-4)
A (λ)− Adv

(2-h-2-�-1)
A (λ)

∣∣∣+∑4
i=2

∣∣∣Adv
(2-h-2-�-(i−1))
A (λ)− Adv

(2-h-2-�-i)
A (λ)

∣∣∣)
+
∣∣∣Adv

(2-h-2-�-4)
A (λ)− Adv

(2-h-3)
A (λ)

∣∣∣) ≤ 2
(∑ν1

�=1

(
AdvP1

B1-�-1
(λ) + AdvP2

B1-�-2
(λ)
)

+
∑ν2

h=1

(
AdvP3

B2-h-1
(λ)

+
∑ν1

�=1

(
AdvP4

B2-h-2-�
(λ) + AdvP5

B2-h-3-�
(λ)
)

+ AdvP6
B2-h-4

(λ)
)

+ 10ν1ν2 + (n+ 6)ν1

) ≤
2
(∑ν1

�=1

(
AdvDLIN

E1-�-1
(λ) + AdvDLIN

E1-�-2
(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E2-h-1
(λ) +

∑ν1
�=1

(
AdvDLIN

E2-h-2-�
(λ) + AdvDLIN

E2-h-3-�
(λ)
)

+AdvDLIN
E2-h-4

(λ)
)

+ 23ν1ν2 + (n+ 17)ν1 + 18ν2

)
. From Lemma 22, Adv

(0)
A (λ) ≤ δ/2. This com-

pletes the proof of Lemma 1. ��

B.1.2 Lemmas 5–22

Definition 8 (Problem 1) Problem 1 is to guess β, given (paramV,B, B̂
∗, {eβ,i}i=1,...,n)

R←
GP1
β (1λ, n), where

GP1
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 6n),

B̂
∗ := (b∗1, . . . , b

∗
2n, b

∗
3n+1, . . . , b

∗
6n), ω, ω′′ U← Fq,

for i = 1, . . . , n; �γi
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
e0,i := ( ω�ei, 03n, 0n, �γi )B,
e1,i := ( ω�ei, 0n, ω′′�ei, 0n, 0n, �γi )B,

return (paramV,B, B̂
∗, {eβ,i}i=1,...,n),
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for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 1 as: AdvP1
B (λ) :=∣∣∣Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1
0 (1λ, n)

]
−Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1
1 (1λ, n)

]∣∣∣ .
Lemma 5 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ)+

6/q.

Proof. Problem 1 is essentially the same as Basic Problem 1 in [18], where the intractability
of the problem is reduced to that of DLIN. Therefore, Lemma 5 is proven in a similar manner
as the reduction lemmas in [18]. ��

Definition 9 (Problem 2) Problem 2 is to guess β, given (paramV,B, B̂
∗, {eβ,i}i=1,...,n)

R←
GP2
β (1λ, n), where

GP2
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 6n),

B̂
∗ := (b∗1, . . . , b

∗
2n, b

∗
4n+1, . . . , b

∗
6n), ω′′, ω′′′ U← Fq,

for i = 1, . . . , n; �γi
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
e0,i := ( 0n, 0n, ω′′�ei, 0n, 0n, �γi )B,
e1,i := ( 0n, 02n, ω′′′�ei, 0n, �γi )B,

return (paramV,B, B̂
∗, {eβ,i}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 8.

Lemma 6 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤ AdvDLIN
E (λ)+

5/q.

Proof. Problem 2 is reduced from Problem 1 in [18], where the intractability of the problem is
reduced to that of DLIN. Therefore, Lemma 6 is proven in a similar manner as the reduction
lemmas in [18]. ��

Definition 10 (Problem 3) Problem 3 is to guess β, given (paramV, B̂,B
∗, {h∗

β,i}i=1,...,n)
R←

GP3
β (1λ, n), where

GP3
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 6n),

B̂ := (b1, . . . , bn, b3n+1, . . . , b6n), σ, σ′, σ′′ U← Fq,

for i = 1, . . . , n; �η
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( σ�ei, 03n, �ηi, 0n )B∗ ,

h∗
1,i := ( σ�ei, σ′�ei, σ′′�ei, 0n, �ηi, 0n )B∗ ,

return (paramV, B̂,B
∗, {h∗

β,i}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 3, AdvP3
B (λ), is

similarly defined as in Definition 8.
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Lemma 7 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤ AdvDLIN
E (λ)+

5/q.

Proof. Problem 3 is essentially the same as Basic Problem 1 in [18], where the intractability
of the problem is reduced to that of DLIN. Therefore, Lemma 7 is proven in a similar manner
as the reduction lemmas in [18]. ��

Definition 11 (Problem 4) Problem 4 is to guess β, given (paramV,B, B̂
∗, {h∗

i , eβ,i}i=1,...,n)
R←

GP4
β (1λ, n), where

GP4
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 6n),

B̂
∗ := (b∗1, . . . , b

∗
n, b

∗
2n+1, . . . , b

∗
6n), σ, σ′, ω, ω′ U← Fq,

for i = 1, . . . , n; �ηi, �γi
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
i := ( σ�ei, σ′�ei, 02n, �ηi, 0n )B∗

e0,i := ( ω�ei, 03n, 0n, �γi )B,
e1,i := ( ω�ei, ω′�ei, 02n, 0n, �γi )B,

return (paramV,B, B̂
∗, {h∗

i , eβ,i}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 4, AdvP4
B (λ), is

similarly defined as in Definition 8.

Lemma 8 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP4

B (λ) ≤ AdvDLIN
E (λ)+

5/q.

Proof. Problem 4 is essentially the same as Basic Problem 2 in [18], where the intractability
of the problem is reduced to that of DLIN. Therefore, Lemma 8 is proven in a similar manner
as the reduction lemmas in [18]. ��

Definition 12 (Problem 5) Problem 5 is to guess β, given (paramV,B, B̂
∗, {h∗

i , eβ,i}i=1,...,n)
R←

GP5
β (1λ, n), where

GP5
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 6n),

B̂
∗ := (b∗1, . . . , b

∗
n, b

∗
3n+1, . . . , b

∗
6n), σ′, σ′′, ω′, ω′′ U← Fq,

for i = 1, . . . , n; �ηi, �γi
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
i := ( 0n, σ′�ei, σ′′�ei, 0n, �ηi, 0n )B∗

e0,i := ( 0n, ω′�ei, 02n, 0n, �γi )B,
e1,i := ( 0n, 0n, ω′′�ei, 0n, 0n, �γi )B,

return (paramV,B, B̂
∗, {h∗

i , eβ,i}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 5, AdvP5
B (λ), is

similarly defined as in Definition 8.
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Lemma 9 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP5

B (λ) ≤ AdvDLIN
E (λ)+

8/q.

Proof. Problem 5 is essentially the same as Problem 3 in [20], where the intractability of the
problem is reduced to that of DLIN. Therefore, Lemma 9 is proven in a similar manner as the
reduction lemmas in [18] and [20]. ��

Definition 13 (Problem 6) Problem 6 is to guess β, given
(paramV, B̂, B̂

∗, {h∗
β,i, h̃

∗
β,i, eβ,i,j}i=1,...,n; j=1,2)

R← GP6
β (1λ, n), where

GP6
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 6n),

B̂ := (b1, . . . , bn, b4n+1, . . . , b6n), B̂
∗ := (b∗1, . . . , b

∗
2n, b

∗
3n+1, . . . , b

∗
6n),

σ′, σ′′, σ′′′, ω′′
j , ω

′′′
j

U← Fq for j = 1, 2,

for i = 1, . . . , n; j = 1, 2; �ηi, �̃ηi, �γi,j
U← F

n
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, σ′�ei, σ′′�ei, 0n, �ηi, 0n )B∗

h∗
1,i := ( 0n, 02n, σ′′′�ei, �ηi, 0n )B∗

e0,i,j := ( 0n, 0n, ω′′
j �ei, ω

′′′
j �ei, 0n, �γi,j )B,

e1,i,j := ( 0n, 02n, ω′′′
j �ei, 0n, �γi,j )B,

return (paramV, B̂, B̂
∗, {h∗

β,i, h̃
∗
β,i, eβ,i,j}i=1,...,n; j=1,2),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 6, AdvP6
B (λ), is

similarly defined as in Definition 8.

Lemma 10 For any adversary B, there is a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP6

B (λ) ≤
AdvDLIN

E1
(λ) + AdvDLIN

E2
(λ) + 13/q.

Proof. Problem 6 is essentially the same as a combination of Problem 3 in [20] and Problem 2
in [18], where the intractability of the problem is reduced to that of DLIN. Therefore, Lemma
10 is proven in a similar manner as the reduction lemmas in [18] and [20]. ��

Lemma 11 (Lemma 3 in [18]) For p ∈ Fq, let Cp := {(�x,�v)|�x · �v = p} ⊂ V × V ∗ where
V is n-dimensional vector space F

n
q , and V ∗ its dual. For all (�x,�v) ∈ Cp, for all (�r, �w) ∈

Cp, Pr [�xU = �r ∧ �vZ = �w] = Pr [�xZ = �r ∧ �vU = �w] = 1
/
� Cp, where Z U← GL(n,Fq), U :=

(Z−1)T.

Lemma 12 For any adversary A, there exists a probabilistic machine B1-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-(�−1)-3)
A (λ)−

Adv
(1-�-1)
A (λ)| ≤ AdvP1

B1-�-1
(λ), where B1-�-1(·) := B1-1(�, ·).

Proof. In order to prove Lemma 12, we construct a probabilistic machine B1-1 against Problem
1 using an adversary A in a security game (Game 1-(�− 1)-3 or 1-�-1) as a black box as follows:

1. B1-1 is given an integer � and a Problem 1 instance, (paramV,B, B̂
∗, {eβ,i}i=1,...,n).

2. B1-1 plays a role of the challenger in the security game against adversary A.
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3. At the first step of the game, B1-1 picks a challenge bit b U← {0, 1}, and generates a random
matrix W U← GL(6n,Fq). B1-1 calculates di := biW for i = 1, . . . , 6n, D := (d1, . . . ,d6n)
and D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n). B1-1 provides A a public key pk := (1λ, paramV, D̂).

4. When the ι-th ciphertext query is issued for vectors (�x(0)
ι := (x(0)

ι,1 , . . . , x
(0)
ι,n), �x(1)

ι :=

(x(1)
ι,1 , . . . , x

(1)
ι,n)), B1-1 answers as follows:

(a) When ι < �, B1-1 answers ciphertexts of the form Eqs. (6) and (8), that are computed
using B of the Problem 1 instance and D calculated above.

(b) When ι = �, B1-1 answers ciphertexts c� :=
∑n

i=1 x
(b)
�,i eβ,i and f� := (ρ′

∑n
i=1 x

(b)
�,i bi +

ρ′′c� + z)W where ρ′, ρ′′ U← Fq and z
U← span〈b5n+1, . . . , b6n〉, that are computed

using B, {eβ,i}i=1,...,n of the Problem 1 instance and matrix W .

(c) When ι > �, B1-1 answers ciphertexts of the form Eqs. (3) and (4), that are computed
using B of the Problem 1 instance and D calculated above.

5. When a token query is issued for vectors (�v(0), �v(1)), B1-1 answers normal token k∗ with
Eq. (2) for �v(b), that is computed using B̂

∗ of the Problem 1 instance.

6. A finally outputs bit b′. If b = b′, B1-1 outputs β′ := 1. Otherwise, B1-1 outputs β′ := 0.

Since the �-th answered ciphertext is of the form (4) (resp. of the form (5)) if β = 0 (resp.β =
1), the view of A given by B1-1 is distributed as in Game 1-(� − 1)-3 (resp. 1-�-1) if β = 0
(resp.β = 1). Then,

∣∣∣Adv
(1-(�−1)-3)
A (λ)− Adv

(1-�-1)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B1-1(1λ, �)→1

∣∣∣ � R←GP1
0 (1λ, n)

]
−

Pr
[
B1-1(1λ, �)→1

∣∣∣ � R←GP1
1 (1λ, n)

]∣∣∣ = AdvP1
B1-1

(λ). This completes the proof of Lemma 12. ��

Lemma 13 For any adversary A, |Adv
(1-�-1)
A (λ)− Adv

(1-�-2)
A (λ)| ≤ (n+ 6)/q.

Proof. In order to prove Lemma 13, we define an intermediate game, Game 1-�-1’, and will
show the equivalence of the distribution of the views of A in Game 1-�-1 and that in Game
1-�-1’ (Claim 1) and those in Game 1-�-2 and in Game 1-�-1’ (Claim 2).

Game 1-�-1’ : Game 1-�-1’ is the same as Game 1-�-1 except that the reply to the �-th
ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( �rf,� )D with �rf,�
U← F

6n
q , i.e., f�

U← V,

c� := ( ω��x
(b)
� , 0n, �rc,� , 0n, 0n, �ϕ� )B,

⎫⎬⎭ (18)

where �rc,�
U← F

n
q \ {�0}, and all the other variables are generated as in Game 1-�-1.

Claim 1 The distribution of the view of adversary A in Game 1-�-1 and that in Game 1-�-1’
are equivalent except with negligible probability (n+ 3)/q.

Proof. We will consider the distribution in Game 1-�-1. We define new (dual orthonormal)
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bases (U,U∗) and a basis W of DPVS V below. First, we generate F U← GL(n,Fq), and set⎛⎜⎜⎝
u2n+1

...

u3n

⎞⎟⎟⎠ := F−1 ·

⎛⎜⎜⎝
b2n+1

...

b3n

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
u∗

2n+1
...

u∗
3n

⎞⎟⎟⎠ := FT ·

⎛⎜⎜⎝
b∗2n+1

...

b∗3n

⎞⎟⎟⎠ ,

w2n+i
U← V = span〈d1, . . . ,d6n〉 for i = 1, . . . , n,

U := (b1, . . . , b2n,u2n+1, . . . ,u3n, b3n+1, . . . , b6n),

U
∗ := (b∗1, . . . , b∗2n,u∗

2n+1, . . . ,u
∗
3n, b

∗
3n+1, . . . , b

∗
6n).

W := (d1, . . . ,d2n,w2n+1, . . . ,w3n,d3n+1, . . . ,d6n),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

except for negligible probability n/q. Then, U and U
∗ are dual orthonormal bases. The �-th

queried ciphertexts (f�, c�) are expressed as

f� = ( τ��x
(b)
� , 0n, τ ′′� �x

(b)
� , 0n, 0n, �ξ� )D = ( �rf,� )W with �rf,�

U← F
6n
q , i.e., f�

U← V,

c� = ( ω��x
(b)
� , 0n, ω′′

� �x
(b)
� , 0n, 0n, �ϕ� )B = ( ω��x

(b)
� , 0n, �rc,�, 0n, 0n, �ϕ� )U,

}
(20)

where τ�, τ ′′� , ω�, ω
′′
�

U← Fq, �ξ�, �ϕ�
U← F

n
q , and �rc,� := ω′′�x(b)

� · F . Since �x(b)
� 	= �0, coefficient vectors

τ ′′� �x
(b)
� 	= �0, ω′′

� �x
(b)
� 	= �0 except for probability 2/q, i.e., except that τ ′′� 	= 0 or ω′′

� 	= 0. Then,
vectors �rf,� and �rc,� are uniformly distributed in F

6n
q and F

n
q \ {�0}, respectively, except for

probability 1/q, and they are independent from all the other variables.
Any other (ι-th) queried ciphertexts f , c and queried token k∗ in Game 1-�-1 are:

if ι < �, fι
U← V,

cι = ( ωι�x(b)
ι , 0n, 0n, ω′′′

ι �x
(1−b)
ι , 0n, �ϕι )B = ( ωι�x(b)

ι , 0n, 0n, ω′′′
ι �x

(1−b)
ι , 0n, �ϕι )U,

if ι > �, fι = ( τι�x(b)
ι , 0n, 0n, 0n, 0n, �ξι )D = ( τι�x(b)

ι , 0n, 0n, 0n, 0n, �ξι )W,

cι = ( ωι�x(b)
ι , 0n, 0n, 0n, 0n, �ϕι )B = ( ωι�x(b)

ι , 0n, 0n, 0n, 0n, �ϕι )U,

k∗ = ( σ�v(b), 0n, 0n, 0n, �η, 0n )B∗ = ( σ�v(b), 0n, 0n, 0n, �η, 0n )U∗ ,

where all the variables are generated as in Game 1-�-1.
In the light of the adversary’s view, (U,U∗,W) are consistent with public key pk := (1λ,

paramV, D̂). Moreover, since the RHS of Eq. (20) and that of Eq. (18) are the same form, the
challenge ciphertexts f , c in Game 1-�-1 can be conceptually changed to that in Game 1-�-1’
except with probability (n+ 3)/q. ��

Claim 2 The distribution of the view of adversary A in Game 1-�-2 and that in Game 1-�-1’
are equivalent except with probability 3/q.

Proof. Claim 2 is proven in a similar manner to Claim 1, using new orthonormal bases (U,U∗)
as in Eq. (19). ��

From Claims 1 and 2, adversary A’s view in Game 1-�-1 can be conceptually changed to that
in Game 1-�-2 except with probability (n+ 6)/q. This completes the proof of Lemma 13. ��

Lemma 14 For any adversary A, there exists a probabilistic machine B1-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-�-2)
A (λ) −

Adv
(1-�-3)
A (λ)| ≤ AdvP2

B1-�-2
(λ), where B1-�-2(·) := B1-2(�, ·).
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Proof. In order to prove Lemma 14, we construct a probabilistic machine B1-2 against Problem
2 using an adversary A in a security game (Game 1-�-2 or 1-�-3) as a black box as follows:

1. B1-2 is given an integer � and a Problem 2 instance, (paramV,B, B̂
∗, {eβ,i}i=1,...,n).

2. B1-2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1-2 picks a challenge bit b U← {0, 1}, and generates a random
basis D := (di)i=1,...,6n and set D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n). B1-2 provides A a public
key pk := (1λ, paramV, D̂).

4. When the ι-th ciphertext query is issued for vectors (�x(0)
ι := (x(0)

ι,1 , . . . , x
(0)
ι,n), �x(1)

ι :=

(x(1)
ι,1 , . . . , x

(1)
ι,n)), B1-2 answers as follows:

(a) When ι < �, B1-2 answers ciphertexts of the form Eqs. (6) and (8), that are computed
using B of the Problem 2 instance and D generated above.

(b) When ι = �, B1-2 answers ciphertexts c� :=
∑n

i=1(ωx
(b)
ι,i bi+x

(1−b)
ι,i eβ,i),f�

U← V where

ω
U← Fq that are computed using B and {eβ,i}i=1,...,n of the Problem 2 instance.

(c) When ι > �, B1-2 answers ciphertexts of the form Eqs. (3) and (4), that are computed
using B of the Problem 2 instance and D generated above.

5. When a token query is issued for vectors (�v(0), �v(1)), B1-2 answers normal token k∗ with
Eq. (2) for �v(b), that is computed using B̂

∗ of the Problem 2 instance.

6. A finally outputs bit b′. If b = b′, B1-2 outputs β′ := 1. Otherwise, B1-2 outputs β′ := 0.

Since the �-th answered ciphertext is of the form Eqs. (6) and (7) (resp. of the form Eqs. (6)
and (8)) if β = 0 (resp.β = 1), the view of A given by B1-2 is distributed as in Game 1-�-2
(resp. 1-�-3) if β = 0 (resp.β = 1). Then,

∣∣∣Adv
(1-�-2)
A (λ)− Adv

(1-�-3)
A (λ)

∣∣∣ =∣∣∣Pr
[
B1-2(1λ, �)→1

∣∣∣ � R←GP2
0 (1λ, n)

]
− Pr

[
B1-2(1λ, �)→1

∣∣∣ � R←GP2
1 (1λ, n)

]∣∣∣ = AdvP2
B1-2

(λ). This
completes the proof of Lemma 14. ��

Lemma 15 For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-3)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP3

B2-h-1
(λ), where B2-h-1(·) := B2-1(h, ·).

Proof. In order to prove Lemma 15, we construct a probabilistic machine B2-1 against Problem
3 using an adversary A in a security game (Game 2-(h−1)-3 or 2-h-1) as a black box as follows:

1. B2-1 is given an integer h and a Problem 3 instance, (paramV, B̂,B
∗, {h∗

β,i}i=1,...,n).

2. B2-1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-1 picks a challenge bit b U← {0, 1}, and generates a random
basis D := (di)i=1,...,6n and set D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n). B2-1 provides A a public
key pk := (1λ, paramV, D̂).

4. When a ciphertext query is issued for vectors (�x(0), �x(1)), B2-1 answers ciphertexts f , c with
the form Eq. (6) and (8) for �x(b), that are computed using B̂ of the Problem 3 instance
and D generated above.
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5. When the j-th token query is issued for vectors (�v(0)
j := (v(0)

j,1 , . . . , v
(0)
j,n), �v(1)

j := (v(1)
j,1 , . . . ,

v
(1)
j,n)), B2-1 answers as follows:

(a) When j < h, B2-1 answers a token of the form Eq. (15), that is computed using B
∗

of the Problem 3 instance.

(b) When j = h, B2-1 answers a token k∗
h :=

∑n
i=1 v

(b)
h,ih

∗
β,i that is computed using

{h∗
β,i}i=1,...,n of the Problem 3 instance.

(c) When j > h, B2-1 answers a token of the form Eq. (2), that is computed using B
∗ of

the Problem 3 instance.

6. A finally outputs bit b′. If b = b′, B2-1 outputs β′ := 1. Otherwise, B2-1 outputs β′ := 0.

Since the h-th answered token is of the form Eq. (2) (resp. of the form Eq. (9)) if β = 0
(resp.β = 1), the view of A given by B2-1 is distributed as in Game 2-(h−1)-3 (resp. 2-h-1) if β =
0 (resp.β = 1). Then,

∣∣∣Adv
(2-(h−1)-3)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B2-1(1λ, �)→1

∣∣∣ � R←GP3
0 (1λ, n)

]
−Pr

[
B2-1(1λ, �)→1

∣∣∣ � R←GP3
1 (1λ, n)

]∣∣∣ = AdvP3
B2-1

(λ). This completes the proof of Lemma 15.
��

Lemma 16 For any adversary A, |Adv
(2-h-2-(�−1)-4)
A (λ)− Adv

(2-h-2-�-1)
A (λ)| ≤ 2/q.

Proof. We first consider the case � = 1.
Then, Game 2-h-2-0-4 is Game 2-h-1. In order to prove Lemma 16, we define an intermediate

game, Game 2-h-1’, and will show the equivalence of the distribution of the views of A in Game
2-h-1 and that in Game 2-h-1’ (Claim 3) and those in Game 2-h-2-1-1 and in Game 2-h-1’
(Claim 4).

Game 2-h-1’ : Game 2-h-1’ is the same as Game 2-h-1 except that the reply to the h-th
token query for vectors (�v(0)

h , �v
(1)
h ) is:

k∗
h := ( σh�v

(b)
h , σ′h�v

(b)
h , �rh , 0n, �ηh, 0n )B∗ , (21)

where �rh
U← F

n
q \ {�0}, and all the other variables are generated as in Game 2-h-1.

Claim 3 The distribution of the view of adversary A in Game 2-h-1 and that in Game 2-h-1’
are equivalent except with probability 1/q.

Proof. We will consider the distribution in Game 2-h-1. We define new (dual orthonormal)
bases (U,U∗) of DPVS V below. First, we generate F U← GL(n,Fq), and set orthonormal bases
U := (b1, . . . , b2n,u2n+1, . . . ,u3n, b3n+1, . . . , b6n) and U

∗ := (b∗1, . . . , b∗2n,u∗
2n+1, . . . ,u

∗
3n, b

∗
3n+1,

. . . , b∗6n) as in Eq. (19). The h-th queried token k∗ is expressed as

k∗
h = ( σh�v

(b)
h , σ′h�v

(b)
h , σ′′h�v

(b)
h , 0n, �ηh, 0n )B∗ = ( σh�v

(b)
h , σ′h�v

(b)
h , �rh, 0n, �ηh, 0n )U∗ , (22)

where σh, σ′h, σ
′′
h

U← Fq, �ηh
U← F

n
q , and �rh := σ′′h�v

(b)
h · (F−1)T. Since �v(b)

h 	= �0, coefficient vector

σ′′h�v
(b)
h 	= �0 except for probability 1/q, i.e., except that σ′′h 	= 0. Then, vector �rh := σ′′h�v

(b)
h ·(F−1)T

is uniformly distributed in F
n
q \ {�0} except for probability 1/q and independent from all the

other variables.
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Any other (j-th) queried token k∗ and queried ciphertext c in Game 2-h-1 are:

if j < h, k∗
j = ( σj�v

(b)
j , 0n, 0n, σ′′′j �v

(1−b)
j , �ηj , 0n )B∗

= ( σj�v
(b)
j , 0n, 0n, σ′′′j �v

(1−b)
j , �ηj , 0n )U∗ ,

if j > h, k∗
j = ( σj�v

(b)
j , 0n, 0n, 0n, �ηj , 0n )B∗ = ( σj�v

(b)
j , 0n, 0n, 0n, �ηj , 0n )U∗ ,

c = ( ω�x(b), 0n, 0n, ω′′′�x(1−b), 0n, �ϕ )B = ( ω�x(b), 0n, 0n, ω′′′�x(1−b), 0n, �ϕ )U,

where all the variables are generated as in Game 2-h-1.
In the light of the adversary’s view, (U,U∗) is consistent with public key pk := (1λ, paramV, D̂).

Moreover, since the RHS of Eq. (22) and that of Eq. (21) are the same form, the view of A in
Game 2-h-1 can be conceptually changed to that in Game 2-h-1’ except with probability 1/q.

��
Claim 4 The distribution of the view of adversary A in Game 2-h-2-1-1 and that in Game
2-h-1’ are equivalent except with probability 1/q.

Proof. Claim 4 is proven in a similar manner to Claim 3, using new orthonormal bases (U,U∗)
and W as in Eq. (19). ��

From Claims 3 and 4, adversary A’s view in Game 2-h-1 can be conceptually changed to
that in Game 2-h-2-1-1 except with probability 2/q.

When � ≥ 2, the above proof can be applied to the the first block of the hidden part instead
of the second block of the hidden part. Therefore, when � ≥ 2, Lemma 16 is proven in a similar
way to the case � = 1.

This completes the proof of Lemma 16. ��
Lemma 17 For any adversary A, there exists a probabilistic machine B2-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2-�-1)
A (λ)−

Adv
(2-h-2-�-2)
A (λ)| ≤ AdvP4

B2-h-2-�
(λ), where B2-h-2-�(·) := B2-2(h, �, ·).

Proof. In order to prove Lemma 17, we construct a probabilistic machine B2-2 against Problem
4 using an adversary A in a security game (Game 2-h-2-�-1 or 2-h-2-�-2) as a black box as
follows:

1. B2-2 is given integers h, � and a Problem 4 instance, (paramV,B, B̂
∗, {h∗

i , eβ,i}i=1,...,n).

2. B2-2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-2 picks a challenge bit b U← {0, 1}, and generates a random
basis D := (di)i=1,...,6n and set D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n). B2-2 provides A a public
key pk := (1λ, paramV, D̂).

4. When the ι-th ciphertext query is issued for vectors (�x(0)
ι := (x(0)

ι,1 , . . . , x
(0)
ι,n), �x(1)

ι :=

(x(1)
ι,1 , . . . , x

(1)
ι,n)), B2-2 calculates a ciphertext fι of the form Eq. (6), and answers as fol-

lows:

(a) When ι < �, B2-2 calculates a ciphertext cι of the form Eq. (14) that is computed
using B of the Problem 4 instance, and answers fι and cι.

(b) When ι = �, B2-2 calculates a ciphertext c� :=
∑n

i=1(x
(b)
�,i eβ,i +ω′′′x(1−b)

�,i b3n+i) where

ω′′′ U← Fq that is computed using {eβ,i}i=1,...,n and B of the Problem 4 instance. B2-2

answers f� and c�.
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(c) When ι > �, B2-2 calculates a ciphertext of the form Eq. (8), that is computed using
B of the Problem 4 instance. B2-2 answers f and c.

5. When the j-th token query is issued for vectors (�v(0)
j := (v(0)

j,1 , . . . , v
(0)
j,n), �v(1)

j := (v(1)
j,1 , . . . ,

v
(1)
j,n)), B2-2 answers as follows:

(a) When j < h, B2-2 answers a token of the form Eq. (15), that is computed using B̂
∗

of the Problem 4 instance.
(b) When j = h, B2-2 answers a token k∗

h :=
∑n

i=1(v
(b)
h,ih

∗
i +σ

′′v(1−b)
h,i b∗2n+i) where σ′′ U← Fq

that is computed using {h∗
i }i=1,...,n and B̂

∗ of the Problem 4 instance.

(c) When j > h, B2-2 answers a token of the form Eq. (2), that is computed using B̂
∗ of

the Problem 4 instance.

6. A finally outputs bit b′. If b = b′, B2-2 outputs β′ := 1. Otherwise, B2-2 outputs β′ := 0.

The h-th answered token is of the form Eq. (10). Since the �-th answered ciphertext is
of the form Eq. (8) (resp. of the form Eq. (11)) if β = 0 (resp.β = 1), the view of A given
by B2-2 is distributed as in Game 2-h-2-�-1 (resp. 2-h-2-�-2) if β = 0 (resp.β = 1). Then,∣∣∣Adv

(2-h-2-�-1)
A (λ)− Adv

(2-h-2-�-2)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B2-2(1λ, �)→1

∣∣∣ � R←GP4
0 (1λ, n)

]
−

Pr
[
B2-2(1λ, �)→1

∣∣∣ � R←GP4
1 (1λ, n)

]∣∣∣ = AdvP4
B2-2

(λ). This completes the proof of Lemma 17. ��

Lemma 18 For any adversary A, |Adv
(2-h-2-�-2)
A (λ)− Adv

(2-h-2-�-3)
A (λ)| ≤ 8/q.

Proof. In order to prove Lemma 18, we define an intermediate game, Game 2-h-2-�-2’, and
will show the equivalence of the distribution of the views of A in Game 2-h-2-�-2 and that in
Game 2-h-2-�-2’ (Claim 5) and those in Game 2-h-2-�-3 and in Game 2-h-2-�-2’ (Claim 6).

Game 2-h-2-�-2’ : Game 2-h-2-�-2’ is the same as Game 2-h-2-�-2 except the reply to the
h-th token query for (�v(0)

h , �v
(1)
h ) is:

k∗
h := ( σh�v

(b)
h , �wh , σ

′′
h�v

(1−b)
h , 0n, �ηh, 0n )B∗ , (23)

and the reply to the �-th ciphertext query for vectors (�x(0)
� , �x

(1)
� ) is:

c� := ( ω��x
(b)
� , �r� , 0n, ω′′′

� �x
(1−b)
� , 0n, �ϕ� )B, (24)

where, if �x(b)
� ·�v(b)

h = 0 (and �x(1−b)
� ·�v(1−b)

h = 0), then (�r�, �wh)
U←W0 := {(�r, �w) ∈ F

n
q ×F

n
q |�r·�w = 0},

and if �x(b)
� ·�v(b)

h 	= 0 (and �x(1−b)
� ·�v(1−b)

h 	= 0), then (�r�, �wh)
U← F

n
q ×F

n
q \W0, and all the variables

are generated as in Game 2-h-2-�-2.

Claim 5 The distribution of the view of adversary A in Game 2-h-2-�-2 and that in Game
2-h-2-�-2’ are equivalent except with probability 4/q.

Proof. We will consider the distribution in Game 2-h-2-�-2. We define new (dual orthonormal)
bases (U,U∗) of DPVS V below. First, we generate U U← GL(n,Fq), and set⎛⎜⎜⎝

un+1

...

u2n

⎞⎟⎟⎠ := U−1 ·

⎛⎜⎜⎝
bn+1

...

b2n

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
u∗
n+1
...

u∗
2n

⎞⎟⎟⎠ := UT ·

⎛⎜⎜⎝
b∗n+1

...

b∗2n

⎞⎟⎟⎠ ,

U := (b1, . . . , bn,un+1, . . . ,u2n, b2n+1, . . . , b6n),

U
∗ := (b∗1, . . . , b∗n,u∗

n+1, . . . ,u
∗
2n, b

∗
2n+1, . . . , b

∗
6n).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(25)
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Then, U and U
∗ are dual orthonormal bases. The �-th queried ciphertext c� and the h-th queried

token k∗
h are expressed as

c� = ( ω��x
(b)
� , ω′

��x
(b)
� , 0n, ω′′′

� �x
(1−b)
� , 0n, �ϕ� )B = ( ω��x

(b)
� , �r�, 0n, ω′′′

� �x
(1−b)
� , 0n, �ϕ� )U, (26)

k∗
h = ( σh�v

(b)
h , σ′h�v

(b)
h , σ′′h�v

(1−b)
h , 0n, �ηh, 0n )B∗ = ( σh�v

(b)
h , �wh, σ

′′
h�v

(1−b)
h , 0n, �ηh, 0n )U∗ , (27)

where ω�, ω′
�, ω

′′′
� , σh, σ

′
h, σ

′′
h

U← Fq, �ϕ�, �ηh
U← F

n
q , and �r� := ω′

��x
(b)
� · U, �wh := σ′�v(b)

h · (U−1)T.

From Lemma 11, if �x(b)
� ·�v(b)

h 	= 0, the pair of coefficients (ω′
��x

(b)
� U, σ′h�vh(U

−1)T) are uniformly
distributed in F

n
q × F

n
q \W0 and independent from all the other variables except for the case

ω′
� = 0 or σ′h = 0, i.e., except with probability 2/q.

Also, from Lemma 11, if �x(b)
� · �v(b)

h = 0, the pair of coefficients (ω′
��x

(b)
� U, σ′h�vh(U

−1)T) are
uniformly distributed in W0 and independent from all the other variables except for the case
ω′
� = 0 or σ′h = 0, i.e., except with probability 2/q.

Any other (ι-th) queried ciphertext cι and (j-th) queried token k∗
j in Game 2-h-2-�-2 are:

if ι < �, cι = ( ωι�x(b)
ι , 0n, ω′′

ι �x
(1−b)
ι , ω′′′

ι �x
(1−b)
ι , 0n, �ϕι )B

= ( ωι�x(b)
ι , 0n, ω′′

ι �x
(1−b)
ι , ω′′′

ι �x
(1−b)
ι , 0n, �ϕι )U,

if ι > �, c = ( ωι�x(b)
ι , 0n, 0n, ω′′′

ι �x
(1−b)
ι , 0n, �ϕι )B = ( ωι�x(b)

ι , 0n, 0n, ω′′′
ι �x

(1−b)
ι , 0n, �ϕι )U,

if j < h, k∗
j = ( σj�v

(b)
j , 0n, 0n, σ′′′j �v

(b)
j , �ηj , 0n )B∗ = ( σj�v

(b)
j , 0n, 0n, σ′′′j �v

(b)
j , �ηj , 0n )U∗ ,

if j > h, k∗
j = ( σj�v

(b)
j , 0n, 0n, 0n, �ηj , 0n )B∗ = ( σj�v

(b)
j , 0n, 0n, 0n, �ηj , 0n )U∗ ,

where all the variables are generated as in Game 2-h-2-�-2.
In the light of the adversary’s view, (U,U∗) is consistent with public key pk := (1λ, paramV, B̂).

Moreover, since the RHS of Eq. (26) (resp. the RHS of Eq. (27)) and that of Eq. (24) (resp. that
of Eq. (23) are the same form, the view of A in Game 2-h-2-�-2 can be conceptually changed to
that in Game 2-h-2-�-2’ except with probability 4/q. ��

Claim 6 The distribution of the view of adversary A in Game 2-h-2-�-3 and that in Game
2-h-2-�-2’ are equivalent except with probability 4/q.

Proof. Claim 6 is proven in a similar manner to Claim 5, using new orthonormal bases (U,U∗)
as in Eq. (25). ��

From Claims 5 and 6, adversary A’s view in Game 2-h-2-�-2 can be conceptually changed to
that in Game 2-h-2-�-3 except with probability 8/q. This completes the proof of Lemma 18. ��

Lemma 19 For any adversary A, there exists a probabilistic machine B2-3, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2-�-3)
A (λ)−

Adv
(2-h-2-�-4)
A (λ)| ≤ AdvP5

B2-h-3-�
(λ), where B2-h-3-�(·) := B2-3(h, �, ·).

Proof. In order to prove Lemma 19, we construct a probabilistic machine B2-3 against Problem
5 using an adversary A in a security game (Game 2-h-2-�-3 or 2-h-2-�-4) as a black box as
follows:

1. B2-3 is given integers h, � and a Problem 5 instance, (paramV,B, B̂
∗, {h∗

i , eβ,i}i=1,...,n).

2. B2-3 plays a role of the challenger in the security game against adversary A.
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3. At the first step of the game, B2-3 picks a challenge bit b U← {0, 1}, and generates a random
basis D := (d1, . . . ,d6n), and calculates D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n). B2-3 provides
A a public key pk := (1λ, paramV, D̂).

4. When the ι-th ciphertext query is issued for vectors (�x(0)
ι := (x(0)

ι,1 , . . . , x
(0)
ι,n), �x(1)

ι :=

(x(1)
ι,1 , . . . , x

(1)
ι,n)), B2-3 calculates a ciphertext fι of the form Eq. (6), and answers as fol-

lows:

(a) When ι < �, B2-3 calculates a ciphertext cι of the form Eq. (14), that is computed
using B of the Problem 5 instance. B2-3 answers fι and cι.

(b) When ι = �, B2-3 calculates a ciphertext c� :=
∑n

i=1(ωx
(b)
�,i bi+x

(1−b)
�,i eβ,i+ω′′′x(1−b)

�,i b3n+i)

where ω, ω′′′ U← Fq that is computed using {eβ,i}i=1,...,n and B of the Problem 5 in-
stance. B2-3 answers f� and c�.

(c) When ι > �, B2-3 calculates a ciphertext cι of the form Eq. (8), that is computed
using B of the Problem 5 instance. B2-3 answers fι and cι.

5. When the j-th token query is issued for vectors (�v(0)
j := (v(0)

j,1 , . . . , v
(0)
j,n), �v(1)

j := (v(1)
j,1 , . . . ,

v
(1)
j,n)), B2-3 answers as follows:

(a) When j < h, B2-3 answers a token of the form Eq. (15), that is computed using B̂
∗

of the Problem 5 instance.

(b) When j = h, B2-3 answers a token k∗
j :=

∑n
i=1(σv

(b)
j,i b

∗
i + v

(1−b)
j,i h∗

i ) where σ U← Fq

that is computed using {h∗
i }i=1,...,n and B̂

∗ of the Problem 5 instance.

(c) When j > h, B2-3 answers a token of the form Eq. (2), that is computed using B̂
∗ of

the Problem 5 instance.

6. A finally outputs bit b′. If b = b′, B2-3 outputs β′ := 1. Otherwise, B2-3 outputs β′ := 0.

The h-th answered token is of the form Eq. (12). Since the �-th answered ciphertext is
of the form Eq. (13) (resp. of the form Eq. (14)) if β = 0 (resp.β = 1), the view of A given
by B2-3 is distributed as in Game 2-h-2-�-3 (resp. 2-h-2-�-4) if β = 0 (resp.β = 1). Then,∣∣∣Adv

(2-h-2-�-3)
A (λ)− Adv

(2-h-2-�-4)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B2-3(1λ, �)→1

∣∣∣ � R←GP5
0 (1λ, n)

]
−

Pr
[
B2-3(1λ, �)→1

∣∣∣ � R←GP5
1 (1λ, n)

]∣∣∣ = AdvP5
B2-3

(λ). This completes the proof of Lemma 19. ��

Lemma 20 For any adversary A, there exists a probabilistic machine B2-4, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2-ν1-4)
A (λ)−

Adv
(2-h-3)
A (λ)| ≤ AdvP6

B2-h-4
(λ), where B2-h-4(·) := B2-4(h, ·).

Proof. In order to prove Lemma 20, we construct a probabilistic machine B2-4 against Problem
6 using an adversary A in a security game (Game 2-h-2-ν1-4 or 2-h-3) as a black box as follows:

1. B2-4 is given integers h and a Problem 6 instance, (paramV, B̂, B̂
∗, {h∗

β,i, eβ,i,κ}i=1,...,n; κ=1,2).

2. B2-4 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-4 picks a challenge bit b U← {0, 1}, and generates a random
basis D := (d1, . . . ,d6n), and calculates D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n). B2-4 provides
A a public key pk := (1λ, paramV, D̂).
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4. When the ι-th ciphertext query is issued for vectors (�x(0)
ι := (x(0)

ι,1 , . . . , x
(0)
ι,n), �x(1)

ι :=

(x(1)
ι,1 , . . . , x

(1)
ι,n)), B2-4 answers a ciphertext f of the form Eq. (6), and cι :=

∑n
i=1(ωιx

(b)
ι,i bi+

x
(1−b)
ι,i (δι,1eβ,i,1 + δι,2eβ,i,2)+ γ̃ι,ib5n+i) where ωι, δι,1, δι,2, γ̃ι,i

U← Fq that is computed using
{eβ,i,κ}i=1,...,n; κ=1,2 and B̂ of the Problem 6 instance.

5. When the j-th token query is issued for vectors (�v(0)
j := (v(0)

j,1 , . . . , v
(0)
j,n), �v(1)

j := (v(1)
j,1 , . . . ,

v
(1)
j,n)), B2-4 answers as follows:

(a) When j < h, B2-4 answers a token of the form Eq. (15), that is computed using B̂
∗

of the Problem 6 instance.

(b) When j = h, B2-4 answers a token k∗
h :=

∑n
i=1(σv

(b)
h,ib

∗
i + v

(1−b)
h,i h∗

β,i) where σ U← Fq

that is computed using {h∗
β,i}i=1,...,n and B̂

∗ of the Problem 6 instance.

(c) When j > h, B2-4 answers a token of the form Eq. (2), that is computed using B̂
∗ of

the Problem 6 instance.

6. A finally outputs bit b′. If b = b′, B2-4 outputs β′ := 1. Otherwise, B2-4 outputs β′ := 0.

Claim 7 The distribution of the view of adversary A in the above-mentioned game simulated
by B2-4 given a Problem 6 instance with β ∈ {0, 1} is the same as that in Game 2-h-2-ν1-4
(resp. Game 2-h-3) if β = 0 (resp. β = 1).

Proof. We will consider the joint distribution of {cι}ν1ι=1 and {k∗
j}ν2j=1. We note that if j 	= h,

each secret key k∗
j is generated independently from other queries. Therefore, we only consider

the distribution of the h-th token k∗
h below.

When β = 0, ciphertext cι generated in step 4 is

cι :=
∑n

i=1(ωιx
(b)
ι,i bi + x

(1−b)
ι,i (δι,1e0,i,1 + δι,2e0,i,2) + γ̃ι,ib5n+i)

= ( ωι�x
(b)
ι , 0n, (δι,1ω′′

1 + δι,2ω
′′
2)�x(1−b)

ι , (δι,1ω′′′
1 + δι,2ω

′′′
2 )�x(1−b)

ι , 0n, �γ′ι )B

where ωι, δι,1ω′′
1 + δι,2ω

′′
2 , δι,1ω

′′′
1 + δι,2ω

′′′
2 ∈ Fq and �γ′ι ∈ F

n
q for ι = 1, . . . , ν1 are uniformly and

independently distributed.
When β = 1, ciphertext cι generated in step 4 is

cι :=
∑n

i=1(ωιx
(b)
ι,i bi + x

(1−b)
ι,i (δι,1e1,i,1 + δι,2e1,i,2) + γ̃ι,ib5n+i)

= ( ωι�x
(b)
ι , 0n, 0n, (δι,1ω′′′

1 + δι,2ω
′′′
2 )�x(1−b)

ι , 0n, �γ′ι )B

where ωι, δι,1ω′′′
1 + δι,2ω

′′′
2 ∈ Fq and �γ′ι ∈ F

n
q for ι = 1, . . . , ν1 are uniformly and independently

distributed.
When β = 0, the h-th token k∗

h generated in step (b) is

k∗
h :=

∑n
i=1(σv

(b)
h,ib

∗
i + v

(1−b)
h,i h∗

0,i) = ( σ�v(b)
h , σ′�v(1−b)

h , σ′′�v(1−b)
h , 0n, �η′, 0n )B∗ ,

where σ, σ′, σ′′ ∈ Fq and �η′ ∈ F
n
q are uniformly and independently distributed.

When β = 1, the h-th token k∗
h generated in step (b) is

k∗
h :=

∑n
i=1(σv

(b)
h,ib

∗
i + v

(1−b)
h,i h∗

1,i) = ( σ�v(b)
h , 0n, 0n, σ′′′�v(1−b)

h , �η′, 0n )B∗ ,

where σ, σ′′′ ∈ Fq and �η′ ∈ F
n
q are uniformly and independently distributed.
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Therefore, generated {cι}ν1ι=1 and {k∗
j}ν2j=1 have the same joint distribution as in Game 2-h-

2-ν1-4 (resp. Game 2-h-3) if β = 0 (resp. β = 1). ��
From Claim 7,

∣∣∣Adv
(2-h-2-ν1-4)
A (λ)− Adv

(2-h-3)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B2-4(1λ, �)→1

∣∣∣ � R←GP6
0 (1λ, n)

]
−

Pr
[
B2-4(1λ, �)→1

∣∣∣ � R←GP6
1 (1λ, n)

]∣∣∣ = AdvP6
B2-4

(λ). This completes the proof of Lemma 20. ��

Lemma 21 For any adversary A, Adv
(2-ν2-3)
A (λ) = Adv

(3)
A (λ).

Proof. In Game 2-ν2-3, for j = 1, . . . , ν2, the reply to the j-th token query for (�v(0)
j , �v

(1)
j ) are

given as

k∗
j := ( σj�v

(b)
j , 0n, 0n, σ′′′j �v

(1−b)
j , �ηj , 0n )B∗ for j = 1, . . . , ν2,

where σj , σ′′′j
U← Fq and �ηj

U← F
n
q , and for j = 1, . . . , ν2, the ι-th reply to a ciphertext query for

vectors (�x(0)
ι , �x

(1)
ι ) are given as

fι
U← V for ι = 1, . . . , ν1,

cι := ( ωι�x(b)
ι , 0n, 0n, ω′′′

ι �x
(1−b)
ι , 0n, �ϕι )B for ι = 1, . . . , ν1,

where ωι, ω′′′
ι

U← Fq and �ϕι
U← F

n
q .

Therefore, by swapping basis vectors in the first block and the fourth block, we obtain the
distribution in Game 3. That is, we define new dual orthonormal bases (U,U∗) of DPVS V as

ui := b3n+i, u3n+i := bi, u∗
i := b∗3n+i, u∗

3n+i := b∗i for i = 1, . . . , n,
U := (u1, . . . ,un, bn+1, . . . , b3n,u3n+1, . . . ,u4n, b4n+1, . . . , b6n),
U
∗ := (u∗

1, . . . ,u
∗
n, b

∗
n+1, . . . , b

∗
3n,u

∗
3n+1, . . . ,u

∗
4n, b

∗
4n+1, . . . , b

∗
6n).

We then easily verify that U and U
∗ are dual orthonormal, and are distributed the same as

the original bases, B and B
∗. Tokens and ciphertexts in Game 2-ν2-3 over bases (B,B∗) are

expressed those in Game 3 over bases (U,U∗). This completes the proof of Lemma 21. ��

Lemma 22 For any adversary A, Adv
(5-ν1-3)
A (λ) = −Adv

(0)
A (λ).

Proof. All k∗
j and cι are normal tokens and ciphertexts for the opposite bit 1 − b to the

challenge bit b in Game 5-ν1-3. Hence, success probability Pr[ Succ
(5-ν1-3)
A (λ) ] in Game 5-ν1-3 is

1− Pr[ Succ
(0)
A (λ) ], where Pr[ Succ

(0)
A (λ) ] is success probability in Game 0. Therefore, we have

Adv
(5-ν1-3)
A (λ) = −Adv

(0)
A (λ). ��

B.2 Proof of Lemma 2

Lemma 2. For any adversary A, AdvDisH
A (λ) is negligible under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1, E2-1, E2-2, E3-1, E3-2, whose running
times are essentially the same as that of A, such that for any security parameter λ,

AdvDisH
A (λ) ≤

ν1∑
�=1

(
AdvDLIN

E�-1
(λ) +

ν2∑
h=1

(
AdvDLIN

E�-2-h-1
(λ) + AdvDLIN

E�-2-h-2
(λ)
)

+AdvDLIN
E�-3-1

(λ) + AdvDLIN
E�-3-2

(λ)
)

+ ε,
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where E�-1(·) := E1(�, ·), E�-2-h-1(·) := E2-1(�, h, ·), E�-2-h-2(·) := E2-2(�, h, ·), E�-3-h-1(·) := E3-1(�, h, ·),
E�-3-h-2(·) := E3-2(�, h, ·), ν1 (resp. ν2) is the maximum number of A’s challenge ciphertext
(resp. key) queries and ε := ν1(23ν2 + 22)/q.

Note that Lemma 2 is proven in a similar manner to the basic IPE scheme in [20]. For
completeness, we give game transformations for the proof of Lemma 2.

Let ν1 be the maximum number of A’s challenge ciphertext queries and ν2 the maximum
number of A’s challenge token queries. To prove Lemma 2, we consider the following 4ν1ν2 +
3ν1 + 1 games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients which were
changed in a game from the previous game.

Game 0 : For j = 1, . . . , ν2, the reply to the j-th token query for �vj is:

k∗
j := ( σj�vj , 0n , 0n , 0n, �ηj , 0n )B∗ ,

where σj
U← Fq and �ηj

U← F
n
q . For ι = 1, . . . , ν1, the reply to the ι-th ciphertext query for vectors

(�x(0)
ι , �x

(1)
ι ) is:

fι := ( τι�x
(b)
ι , 0n , 0n , 0n, 0n, �ξι )D,

where b U← {0, 1} and τι
U← Fq, �ξι

U← F
n
q .

Below, we describe coefficients of the hidden part, i.e., span〈dn+1, . . . ,d3n〉 (resp. span〈b∗n+1,
. . . , b∗3n〉) of the ι-th queried fι for ι = 1, . . . , ν1 (resp. the j-th queried k∗

j for j = 1, . . . , ν2)
w.r.t. these bases vectors. Non-zero coefficients are colored by light gray, and those which were
changed from the previous game are colored by dark gray.

Coefficients of the hidden part of fι
in Game 0

Coefficients of the hidden part of k∗
j

in Game 0
ι = 1

...
�
...

ν1

j = 1
...
h
...

ν2

Game �-1 (� = 1, . . . , ν1) : Game 0-4 is Game 0. Game �-1 is the same as Game (� − 1)-4
except that the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( τ��x
(b)
� , τ ′��x

(b)
� , τ ′′� �x

(b)
� , 0n, 0n, �ξ� )D,

where τ ′�, τ
′′
�

U← Fq and all the other variables are generated as in Game (�− 1)-4.

Coefficients of the hidden part of fι
in Game (�− 1)-4

Coefficients of the hidden part of k∗
j

in Game (�− 1)-4
ι = 1

...
�
...

ν1

j = 1
...
h
...

ν2
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Coefficients of the hidden part of fι
in Game �-1 (= Game �-2-0-4)

Coefficients of the hidden part of k∗
j

in Game �-1 (= Game �-2-0-4)
ι = 1

...
� τ ′��x

(b)
� τ ′′� �x

(b)
�

...
ν1

j = 1
...
h
...

ν2

Game �-2-h-1 (� = 1, . . . , ν1; h = 1, . . . , ν2) : Game �-2-0-4 is Game �-1. Game �-2-h-1 is
the same as Game �-2-(h − 1)-4 except that the reply to the �-th ciphertext query for vectors
(�x(0)
� , �x

(1)
� ) is:

f� := ( τ��x
(b)
� , τ ′��x

(b)
� , τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� , 0n, 0n, �ξ� )D,

where τ ′′�,0, τ
′′
�,1

U← Fq and all the other variables are generated as in Game �-2-(h − 1)-4. Here,
a part framed by a box (resp. dashed box) indicates coefficients which were changed from the
previous game when h ≥ 2 (resp.h = 1).

Coefficients of the hidden part of fι
in Game �-2-(h− 1)-4 for h ≥ 2

Coefficients of the hidden part of k∗
j

in Game �-2-(h− 1)-4 for h ≥ 2
ι = 1

...
� �x

(∗)′
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h
...

ν2

where �x(∗)′
� := τ ′�,0�x

(0)
� + τ ′�,1�x

(1)
� , �x

(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form).

Coefficients of the hidden part of fι
in Game �-2-h-1

Coefficients of the hidden part of k∗
j

in Game �-2-h-1
ι = 1

...
� τ ′��x

(b)
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h
...

ν2

where �x(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form).

Game �-2-h-2 (� = 1, . . . , ν1; h = 1, . . . , ν2) : Game �-2-h-2 is the same as Game �-2-h-1
except that the reply to the h-th token query for �vh is:

k∗
h := ( σh�vh, σ′h�vh , 0n, 0n, �ηh, 0n )B∗ ,
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where σ′h
U← Fq and all the other variables are generated as in Game �-2-h-1.

Coefficients of the hidden part of fι
in Game �-2-h-2

Coefficients of the hidden part of k∗
j

in Game �-2-h-2
ι = 1

...
� τ ′��x

(b)
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h σ′
h�vh

...
ν2

where �x(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form).

Game �-2-h-3 (� = 1, . . . , ν1; h = 1, . . . , ν2) : Game �-2-h-3 is the same as Game �-2-h-2
except that the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( τ��x
(b)
� , τ ′�,0�x

(0)
� + τ ′�,1�x

(1)
� , τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� , 0n, 0n, �ξ� )D,

where τ ′�,0, τ
′
�,1

U← Fq and all the other variables are generated as in Game �-2-h-2.

Coefficients of the hidden part of fι
in Game �-2-h-3

Coefficients of the hidden part of k∗
j

in Game �-2-h-3
ι = 1

...
� �x

(∗)′
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h σ′
h�vh

...
ν2

where �x(∗)′
� := τ ′�,0�x

(0)
� + τ ′�,1�x

(1)
� , �x

(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form).

Game �-2-h-4 (� = 1, . . . , ν1; h = 1, . . . , ν2) : Game �-2-h-4 is the same as Game �-2-h-3
except that the reply to the h-th token query for �vh is:

k∗
h := ( σh�vh, 0n , σ′′h�vh , 0n, �ηh, 0n )B∗ ,

where σ′′h
U← Fq and all the other variables are generated as in Game �-2-h-3.

Coefficients of the hidden part of fι
in Game �-2-h-4

Coefficients of the hidden part of k∗
j

in Game �-2-h-4
ι = 1

...
� �x

(∗)′
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h σ′′
h�vh

...
ν2
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where �x(∗)′
� := τ ′�,0�x

(0)
� + τ ′�,1�x

(1)
� , �x

(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form).

Coefficients of the hidden part of fι
in Game �-2-ν2-4

Coefficients of the hidden part of k∗
j

in Game �-2-ν2-4
ι = 1

...
� �x

(∗)′
� �x

(∗)′′
�

...
ν1

j = 1 σ′′
1�v1

...
...

h
...

ν2 σ′′
ν2
�vν2

where �x(∗)′
� := τ ′�,0�x

(0)
� + τ ′�,1�x

(1)
� , �x

(∗)′′
� := τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� (unbiased form).

Game �-3 (� = 1, . . . , ν1) : Game �-3 is the same as Game �-2-ν2-4 except that except that
the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( τ�,0�x
(0) + τ�,1�x

(1) , τ ′�,0�x
(0) + τ ′�,1�x

(1)
� , τ ′′�,0�x

(0)
� + τ ′′�,1�x

(1)
� , 0n, 0n, �ξ� )D,

where τ�,0, τ�,1
U← Fq and all the other variables are generated as in Game �-2-ν2-4.

Game �-4 (� = 1, . . . , ν1) : Game �-4 is the same as Game �-3 except that, for all j = 1, . . . , ν2,
the j-th token query for �vj is:

k∗
j := ( σj�vj , 0n, 0n , 0n, �ηj , 0n )B∗ for j = 1, . . . , ν2,

The reply to the �-th ciphertext query for vectors (�x(0)
� , �x

(1)
� ) is:

f� := ( τ�,0�x
(0)
� + τ�,1�x

(1)
� , 0n , 0n , 0n, 0n, �ξ� )D,

where all the variables are generated as in Game �-3.

Note that at the final game, Game ν1-4, all challenge ciphertexts are independent from bit
b

U← {0, 1}.
We note This game hopping is very similar to that used in [20] for the basic IPE scheme.

Therefore, we can evaluate the gaps between pairs of neighboring games in a similar way to
that in [20]. ��

B.3 Proof of Lemma 3

Lemma 3. For any adversary A, AdvDisPKG
A (λ) is negligible under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1, E2, whose running times are
essentially the same as that of A, such that for any security parameter λ,

AdvDisPKG
A (λ) ≤

ν1∑
�=1

AdvDLIN
E1-�

(λ) +
ν2∑
h=1

AdvDLIN
E2-h

(λ) + ε,

where E1-�(·) := E1(�, ·), E2-h(·) := E2(h, ·), ν1 (resp. ν2) is the maximum number of A’s challenge
ciphertext (resp. key) queries and ε := 6(ν1 + ν2)/q.

Let ν1 be the maximum number of A’s challenge ciphertext queries and ν2 the maximum
number of A’s challenge token queries. To prove Lemma 3, we consider the following 2ν1+2ν2+1
games. In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent
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game. In the other games, a part framed by a box indicates coefficients which were changed in
a game from the previous game.

Game 0 : For all j = 1, . . . , ν2, the reply to the j-th token query for vectors (�v(0)
j , �v

(1)
j ) is:

k∗
j := ( σj�v

(b)
j , 0n , 0n, 0n, �ηj , 0n )B∗ ,

where b U← {0, 1}, σj U← Fq and �ηj
U← F

n
q . For all ι = 1, . . . , ν1, the reply to the ι-th ciphertext

query for vectors (�x(0)
ι , �x

(1)
ι ) is:

fι := ( τι�x
(b)
ι , 0n , 0n, 0n, 0n, �ξι )D,

where τι
U← Fq and �ξι

U← F
n
q .

Game 1-�-1 (� = 1, . . . , ν1) : Game 1-0-2 is Game 0. Game 1-�-1 is the same as Game
1-(�− 1)-2 except that the reply to the �-th ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( τ��x
(b)
� , τ ′��x

(b)
� , 0n, 0n, 0n, �ξ� )D,

where τ ′�
U← Fq and all the other variables are generated as in Game 1-(�− 1)-2.

Game 1-�-2 (� = 1, . . . , ν1) : Game 1-�-2 is the same as Game 1-�-1 except that the reply
to a ciphertext query for vectors (�x(0)

� , �x
(1)
� ) is:

f� := ( �r�,1 , �r�,2 , 0n, 0n, 0n, �ξ� )D,

where �r�,1, �r�,2
U← F

n
q and all the other variables are generated as in Game 1-�-1.

Game 2-h-1 (h = 1, . . . , ν2) : Game 2-0-2 is Game 1-ν1-2. Game 2-h-1 is the same as Game
2-(h− 1)-2 except that the reply to the h-th token query for (�v(0)

h , �v
(1)
h ) is:

k∗
h := ( σh�v

(b)
h , σ′h�v

(b)
h , 0n, 0n, �ηh, 0n )B∗ ,

where σ′h
U← Fq and all the other variables are generated as in Game 2-(h− 1)-2.

Game 2-h-2 (h = 1, . . . , ν2) : Game 2-h-2 is the same as Game 2-h-1 except that the reply
to the h-th token query for (�v(0)

h , �v
(1)
h ) is:

k∗ := ( �wh,1 , �wh,2 , 0n, 0n, �η, 0n )B∗ ,

where �wh,1, �wh,2
U← F

n
q and all the other variables are generated as in Game 2-h-1.

Note that at the final game, Game 2-ν2-2, all challenge ciphertexts and keys are independent
from bit b U← {0, 1}.

Let Adv
(0)
A (λ),Adv

(1-�-ι)
A (λ),Adv

(2-h-ι)
A (λ) for ι = 1, 2 be the advantage ofA in Game 0, 1-�-ι, 2-h-ι,

respectively. We will show four lemmas that evaluate the gaps between pairs of neighboring
games. From these lemmas and Lemma 5, we obtain Adv

(0)
A (λ) ≤ ∑ν1

�=1

(∣∣∣Adv
(1-(�−1)-2)
A (λ)−

Adv
(1-�-1)
A (λ)

∣∣∣+ ∣∣∣Adv
(1-�-1)
A (λ)− Adv

(1-�-2)
A (λ)

∣∣∣)+
∑ν2

h=1

(∣∣∣Adv
(2-(h−1)-2)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣+∣∣∣Adv
(2-h-1)
A (λ)− Adv

(2-h-2)
A (λ)

∣∣∣) ≤ ∑ν1
�=1 AdvP1

B1-�
(λ) +

∑ν2
h=1 AdvP1

B2-h
(λ) ≤ ∑ν1

�=1 AdvDLIN
E1-�

(λ) +∑ν2
h=1 AdvDLIN

E2-h
(λ) + 6(ν1 + ν2)/q. ��
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Lemma 23 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-(�−1)-2)
A (λ)−

Adv
(1-�-1)
A (λ)| ≤ AdvP1

B1-�
(λ), where B1-�(·) := B1(�, ·).

Proof. Lemma 23 is proven in a simillar manner to Lemma 12 since D and B
∗ are independent

from malicious PKG not in possesion of a conversion matrix W . ��

Lemma 24 For any adversary A, Adv
(1-�-1)
A (λ) = Adv

(1-�-2)
A (λ).

Proof. We will consider the distribution in Game 1-�-1.
First, we note that since public key D̂ and (master) secret key B̂

∗ are independent from
malicious PKG not in possesion of a conversion matrix W , we only consider vector elements
over basis D, here.

We define new (dual orthonormal) bases (W,W∗) of DPVS V below. First, we generate
U1, U2

U← GL(n,Fq), and set⎛⎜⎜⎝
w1

...

w2n

⎞⎟⎟⎠ :=

(
In 0n
U1 U2

)
·

⎛⎜⎜⎝
d1

...

d2n

⎞⎟⎟⎠ , i.e.,
wi := di, wn+i

U← span〈d1, . . . ,d2n〉
for i = 1, . . . , n,

except for negligible probability,

W := (d1, . . . ,dn,wn+1, . . . ,w2n,d2n+1, . . . ,d6n).

Since �-th queried �x(b)
� 	= �0 and wn+i

U← span〈d1, . . . ,d2n〉 for i = 1, . . . , n,

f� := ( τ��x
(b)
� , τ ′��x

(b)
� , 0n, 0n, 0n, �ξ� )D = ( �r�,1, �r�,2, 0n, 0n, 0n, �ξ� )W,

where �r�,1, �r�,2
U← F

n
q .

In the light of the adversary’s view, W is consistent with public key pk := (1λ, paramV, B̂).
Therefore, the view of A in Game 1-�-1 can be conceptually changed to that in Game 1-�-2. ��

Lemma 25 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-2)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP1

B2-h
(λ), where B2-h(·) := B2(h, ·).

Proof. Lemma 25 is proven in a simillar manner to Lemma 12 since D and B
∗ are independent

from malicious PKG not in possesion of a conversion matrix W . ��

Lemma 26 For any adversary A, Adv
(2-h-1)
A (λ) = Adv

(2-h-2)
A (λ).

Lemma 26 is proven in a similar manner to Lemma 24.
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