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Abstract. How is it possible to prevent the sharing of cryptographic functions? This question appears
to be fundamentally hard to address since in this setting the owner of the key is the adversary: she
wishes to share a program or device that (potentially only partly) implements her main cryptographic
functionality. Given that she possesses the cryptographic key, it is impossible for her to be prevented
from writing code or building a device that uses that key. She may though be deterred from doing so.
We introduce leakage-deterring public-key cryptographic primitives to address this problem. Such prim-
itives have the feature of enabling the embedding of owner-specific private data into the owner’s public-
key so that given access to any (even partially functional) implementation of the primitive, the recovery
of the data can be facilitated. We formalize the notion of leakage-deterring in the context of encryption,
signature, and identification and we provide efficient generic constructions that facilitate the recover-
ability of the hidden data while retaining privacy as long as no sharing takes place.

1 Introduction

Consider any organization that maintains a PKI supporting various cryptographic functions includ-
ing public-key encryption, signatures and identification. How is it possible to prevent individuals
from sharing their cryptographic functions? Certified PKI members, out of convenience or even
malice, can delegate their private keys to each other (or even to outsiders), thus violating account-
ability and organizational policy. Even worse, delegation can be partial: for instance, a public-key
encryption user can share (or, in fact, even sell) an implementation that only decrypts messages
of a certain form (e.g., only e-mails from a specific source). Seemingly, very little can be done to
prevent this as the adversary in this case is the owner of the cryptographic key and hence she may
freely choose to share it with others either directly or by incorporating its functionality within a
larger system that is shared.

The above scenario puts forth the central problem our work aims to solve: how is it possible to
prevent the sharing of cryptographic functions? The main challenge here is that the owner of the
key is adversarial: she wishes to share a program or hardware device that (potentially only partly)
implements her main cryptographic functionality. Given that she possesses the cryptographic key
(either in software or hardware), it is impossible for her to be prevented from delegating it. However,
as we highlight, there can be ways for her to be deterred from doing so. A straightforward deterrence
mechanism would be to identify and penalize the sharing behavior. However, the enforcement of
a penalty mechanism is contingent to detecting the act of sharing — something that limits the
effectiveness of penalties: a cautious adversary can keep itself “below the radar” and thus remain
penalty-free. To address this we put forth and explore a more proactive approach.

* Preliminary version of this paper appeared at ACM CCS 2013. This research was supported by ERC project
CODAMODA.



A cryptographic scheme will be called leakage-deterring if the release of any implementation
of the cryptographic function (e.g, decryption, signing), leads to the recovery of some private
information (that the owner prefers to keep hidden) by anyone that possesses the implementation.
Leakage deterrence is thus achieved in the sense that sharing the cryptographic function in any form
incurs the penalty of revealing the private information (while non-sharing maintains its privacy).

Note that a leakage-deterring primitive should retain its original functionality (e.g., encryption,
signing, identification) but it also offers two additional operations: first, it is possible to embed
private data into the public-key of the primitive in a way that they are (at least) semantically secure.
The embedding operation is facilitated through an interaction with an authority that vouches for
the integrity of the private data and is akin to a PKI certification of the owner’s public-key. In
this fashion, the primitive’s public-key becomes “enhanced” and is a carrier of private information
itself (i.e., a ciphertext) — otherwise the intended functionality of the primitive should remain
unchanged. The second operation that is offered by a leakage-deterring primitive comes into play
when the owner of the secret key produces an implementation of the main operation in the form of
a “box” and shares it with other entities (in software or hardware). Given such a box, any entity
that receives it can utilize a public recovering algorithm that will interact with the box and produce
the private data that are embedded into the owner’s enhanced public-key.

In a nutshell, designing a leakage-deterring scheme requires the transformation of the public-key
of the primitive into a (one-time) ciphertext that can be decrypted by any working implementation
of the cryptographic functionality. The main challenge comes precisely from this latter requirement:
any working implementation of the cryptographic functionality should be usable as a decryption
key that unlocks the private data embedded into the public-key, even if the adversarial implementor
takes into account the recoverability algorithm and the enhanced public-key that carries the private
data when implementing the functionality.

To appreciate the complexity of the problem, consider a naive attempt to produce a leakage-
deterring public-key encryption (PKE): the authority certifies as the enhanced public key the pair
(pk,1) where ¥ = Enc(pk, s) and s is the private data related to the owner. Recoverability can be
attempted by feeding v into a decryption box. It is apparent that this construction can be defeated
by an adversarial implementation of decryption that given input ¢, it decrypts it only in the case
¢ # 1 (or even Dec(c) # s). The constructions we seek should facilitate recoverability even if the
adversarial box implementor releases implementations that work for arbitrary input distributions
of her choice.

The applications of leakage-deterring cryptographic primitives are in any context where the
intentional leakage of a cryptographic functionality should be deterred or restricted in some fashion
or in a context where the leakage of an implementation should enable the computation of a value
that is otherwise hidden. In the most simple scenario, the enhanced public-key contains some piece
of information that the owner prefers to keep secret (e.g., her credit-card number or similar piece
of private information as suggested by Dwork, Lotspiech and Naor [13] that introduced the concept
of self-enforcement — in a related but different context — see below). It follows that the system
setup “self-enforces” the owner to keep the cryptographic functionality to herself. Depending on
the deployment environment, different types of secret-information can be used. We describe more
application scenarios of leakage deterring cryptographic primitives in section 7.

Our Contributions. We introduce, formalize and implement leakage-deterring cryptographic
primitives for public-key encryption, digital signatures, and identification schemes. The main tech-
nical contributions we provide are three different techniques for constructing leakage-deterring



cryptographic primitives. Our techniques enable the secure embedding of private information into
the public key of the primitive in a way that is recoverable given any (even partially) working
implementation. Our first method, applies to encryption that is partially homomorphic; given a
box that works only for some adversarially chosen distributions we show how to exploit the ho-
momorphic property to appropriately manipulate a target ciphertext and make it decryptable by
the adversarial decryption box. Our second method, which can rely on any encryption scheme,
hides the key that unlocks the private information into an exponentially large key space that is
encoded in the public-keys. By using appropriate redundancy in the public key space we enable
the tracing of the vector of keys that identify the private information, out of any (even partially
working) implementation. Achieving recoverability while maintaining small ciphertext size in this
setting requires an involved recoverability algorithm which is one of the highlights of our contri-
butions. Finally, our third method applies to signature and identification schemes. It uses the fact
that working implementations of suitably chosen such primitives can be used to build “knowledge
extractors.” These are algorithms that reveal information about the secret-key of the underlying
primitives which we use to hide the private information. We note that the idea of using extractors
for preventing the transfer of identification tokens has been used before [7,33,6,26] in the sense
that sharing a token implies sharing the key. Going beyond this we show here that secret key can
be of sufficient entropy so that it simultaneously hides the embedded owner information while still
maintaining the security of the underlying scheme. In fact we show that no additional intractability
assumptions are necessary for achieving leakage-deterring signature and identification schemes.

Our first construction for public-key encryption requires a standard homomorphic property
and achieves constant size ciphertexts while offering recoverability for any (non-trivial) adversarial
distribution. The second construction is generic and the size of ciphertexts is a parameter that
increases as the min-entropy of the allowed adversarial distributions becomes smaller. We analyze
our constructions in the IND-CPA setting and then present a generic transformation to obtain
IND-CCAZ2 security!. It is evident that there is a trade-off between privacy and recoverability. For
encryption schemes, we aim at maximizing the recoverability while privacy can only be achieved if
no decryption query is allowed. For the case of signatures, we present a construction that maintains
the privacy of the embedded information even if the adversary has arbitrary access to the signing
functionality (which is most desirable since digital signatures are typically publicly available). We
still manage to enable recoverability by exploiting the random oracle model and non-black-box
access to the implementation. Security properties of our identification schemes are shown in the
standard model. To attain privacy in the standard model we utilize strong extractors for random
variables with high conditional unpredictability.

Related work. The most relevant work to ours is [13] that introduced self-enforcement as a way
of avoiding illegal content redistribution in a multi-user setting. Self-enforcement was argued in
that paper by ensuring (under certain assumptions) that an owner has only two options when
implementing a decoder: either using her private key (that includes private personal information),
or encoding a derived key that is of size proportional to the data to be decrypted. In our termi-

! It may come as a surprise that recoverability and IND-CCAZ2 can actually coexist. Attaining IND-CCA2 intuitively
means that a decryption oracle basically leaks no useful information about manipulated ciphertexts. Thus, the re-
covering algorithm can seemingly do nothing useful with access to a decryption implementation beyond decrypting
valid ciphertexts, which if related to the enhanced public-key can be rejected. Still, the paradox can be resolved,
if one observes that the decryption oracle should be useless only with respect to breaking the security of regular
ciphertexts and not the security of the data that are somehow embedded into the enhanced public-key.



nology, this means that the schemes of [13] exhibit a leakage-deterrence/program-length tradeoff
and hence are not leakage-deterring per se. Furthermore, recoverability in [13] is only “white-box”
as opposed to the black-box type that our constructions achieve. On the other hand, our work
focuses on the single user setting — it is an interesting direction to design leakage-deterring primi-
tives in the multi-user setting. In another related line of work [7, 33, 6,26] it was discussed how to
deter a user from transferring her credentials (or the secret key directly) to others in the context
of identification systems. The techniques from these works — by nature — were restricted to only
identification schemes and digital signatures. In contrast, our work encompasses all major public
key cryptographic primitives (including public-key encryption). The primitive of circular encryp-
tion introduced in [6] might look promising at first sight, to achieve the leakage-deterrence in the
public-key encryption setting as well, however, no recovery mechanism which works for all partial
implementations is provided by this primitive. To resolve the main difficulty we explained in a
previous paragraph, new techniques other than circular encryption alone are needed. Furthermore,
for the case of identification and signature schemes, our method shows that leakage-deterrence can
be achieved without any assumptions beyond the one employed by the underlying primitive. Other
forms of leakage deterring techniques were considered in various settings, e.g., limited delegation
[18], data collection [19], e-payments [38] or designated verifier signatures in [31,39] in the form of
non-delegatability (which is a weaker notion than our leakage-deterring concept).

Another related notion, introduced in [34], dealt with the problem copyrighting a public-key
decryption function: a single public-key decryption functionality should be implemented in many
distinct ways so that if an implementation is derived from some of them, then it is possible to
discover the index of at least one of the implementations that was used. This notion was further
investigated in [28] and was related to traitor tracing schemes [10]. In the context of public-key
encryption, the objective of copyrighting a function or of a traitor tracing scheme is orthogonal to
ours. While in both cases we deal with adversarial implementations of cryptographic functionalities
(hence the similarities in terminology), the adversarial goal is different: in the case of traitor tracing,
the adversary has many different implementations of the same functionality and tries to produce
a new one that is hard to trace back to the ones she is given. In an attack against a leakage-
deterring scheme on the other hand, the adversary possesses an implementation of a cryptographic
functionality and tries to modify it in a way that it cannot be used to extract some information that
is hidden in the primitive’s public-key. Combining the two functionalities in one is an interesting
question and we leave it as open problem (a step towards this general direction but in a much
weaker model than ours was suggested in the work of [29] but the leakage-deterring aspect (in our
terminology) was found to be insecure in [27]).

Accountable authority identity based encryption (AIBE) [20, 21, 30, 37] considers the problem of
judging whether an implementation of decryption belongs to the owner or the PKG (in the context
of IBE). In this setting, both the owner and the PKG may be the potential adversary who try to
implicate the other. Hence, some property similar to our recoverability is needed. In any case, the
single bit decisional output required by AIBE is much weaker than our recoverability requirement
in leakage-deterring public-key encryption (even in the IBE setting) where by interacting with a
decryption box, one should recover the whole private data embedded in the enhanced public-key.

Finally we should point out that the notion of leakage deterrence is different from the notion
of leakage-resilience (see e.g., [25,14]). Our notion aims at constructing schemes with the property
that intensional leakage of the cryptographic functionality implies the revelation of some private
owner information (hence they are “leakage-deterring”), while the leakage-resilience notion aims at



ensuring that the unintentional leakage (as in the case of side channel attacks) provides no useful
information to an adversary.

2 Preliminaries

First, we recall some known primitives and results which we utilize in our constructions or security
analysis.

Proof of Knowledge: [1] A proof of knowledge protocol is one that a prover convinces the verifier
he knows a witness to a publicly known polynomial-time predicate. This is a protocol between two
parties P,V where P proves a statement x € L for a language L’s instance x with its witness w from
a witness set denoted by W(z). Suppose Oy [P(z,w) < V(x)] denotes the output of the verifier
V' after interacting in the protocol with the prover P, a proof of knowledge protocol satisfies the
following two properties:

— Completeness: Honest prover always convinces the verifier: if w € W (z), then Pr[Oy [(P(z, w) <
V(z)|=1]=1.

— Soundness: There exist an expected polynomial-time “knowledge extractor” E which interacts
with a malicious prover P*, and outputs a witness with overwhelming probability as long as
the success probability that P* convinces V' is non-negligible. Formally, for all x, w*, whenever
Pr[Oy[(P*(z,w*) « V(x)] = 1] is non-negligible it holds that Pr[EF” (z) € W (z)] happens with
overwhelming probability.

XY -Protocol: [12] One frequently used type of proof of knowledge protocols is the class of X-protocols,
which have a three move structure (a, e, z), starting with the prover sending a ‘commit’ message a,
then the verifier sending a ‘challenge’ message e, and finally the prover answering with a ‘response’
message z. Using the Fiat-Shamir transformation [15], one can construct a signature scheme based
on such protocol in the random oracle model [4]. Security of such signature schemes is compre-
hensively studied in [36], and it mainly relies on the existence of a knowledge extractor algorithm
(which is implied by the soundness of the protocol).

General Forking Lemma: [2] The general forking lemma states that that if an adversary, on in-
puts drawn from some distribution, produces an output, then the adversary will produce another
correlated output with different inputs from same distribution and same random tape. Rigorously,
let A be a probabilistic algorithm, with inputs (x,r1,...,74; p) that outputs a pair (J, o), where p
refers to the random tape of A (that is, the random coins A will make). Suppose further that x
is sampled from some distribution X, and R is a super-polynomially large set and r; is sampled
uniformly from R. Let acc be the probability that J > 1. We can then define a “forking algorithm”
as follows,

— on input x: pick a random tape p for A.

— rl,...,quR.

(Jyo) — A(z,11,...,7¢;p)

— If J =0, return (0,€,¢€).

—1),...th—R

= (J, o) = Az, r1,. .m0, p)

— If J/ = J and rj # 1/, then return (1, 0,0’), otherwise, return (0, €, €).



Let frk be the probability that A outputs (b,0,0’), and b = 1, then frk > acc(% — ﬁ)

Strong one-time signature [32] A signature scheme Sig=(KeyGen, Sign, Verify) is a strong one-
time signature scheme if the success probability of any PPT adversary A in the following game is
negligible:

— The challenger sends A a verification key vk.

— A asks one signing query on some message m chosen by her and the challenger returns a valid
signature o.

— A outputs a new signature (m*, o*).

We say the adversary succeeds if: Verify(vk, (m*,o*)) = 1 A (m*,0%) # (m, o).

3 Definitions and Security Modeling

3.1 Definitions of Leakage-deterring Cryptographic Primitives

A leakage-deterring cryptographic primitive includes two additional algorithms on top of the regular
algorithms the primitive should normally possess: EnKey(-), which embeds some (private) owner
related information into the public key, and Rec(-) which recovers the private information from
the public-key by interacting with any non-trivial implementation (or “box”) and can be executed
by anyone. While the concept of a leakage-deterring cryptographic primitive can be defined in
abstract terms for a wide class of primitives we find it more instructive to present it for three
main cryptographic primitives individually; we focus on public-key encryption first; definitions of
leakage-deterring signatures and identification are presented in the following part. With these three
examples at hand, it is relatively straightforward to derive leakage-deterring definitions for other
cryptographic primitives following the same general structure (see also remarks below).

Leakage-deterring Public Key Encryption:

— KeyGen(1"): On input security parameter A, this algorithm returns a key pair (pk, sk).

— EnKey(O, A): This is a protocol between two parties O (owner) and A (authority), with inputs
(pk, sk, s) and (pk, s) respectively that has the objective to embed the private owner’s data s
into his public-key; the protocol terminates with the owner O obtaining an enhanced key pair
(epk, esk) while A obtains simply the enhanced epk.

— Enc(epk,m): On input a message m, the user’s enhanced public key epk, this algorithm returns
a ciphertext c.

— Dec(esk, c¢): On input a ciphertext ¢ and enhanced secret key esk, this algorithm returns m or
fail L.

— RecB’D(epk, §):2 Using access to a decryption box B and a plaintext distribution D (which is
supposedly the one that B is suited for and is correct with probability §), as well as input the
enhanced public key epk for a certain user, this algorithm outputs s or fail L.

The definitions for other public-key primitives are similar and we present them below. They
share the same basic structure in terms of the syntax of the recovering algorithm but there is some

2 Having access to D is necessary; to see that, consider the following simple example: the box processes the input
only if the message encrypted is of the form sc||m for some secret string sc; otherwise it outputs L. It follows that
without knowledge of D, the box is useless. This counterexample applies to the other leakage-deterring primitives.



variability across primitives with respect to when this algorithm is supposed to operate. We tackle
this question in the following section.

Leakage-deterring Signature Scheme: The definition of a leakage-deterring signature scheme is de-
fined in a similar vein to the definition of leakage-deterring public-key encryption. Specifically,
algorithms KeyGen, EnKey are identical. The rest are defined as follows.

— Sign(esk, m): On input a message m, the user’s enhanced secret key esk this algorithm returns
a signature o.

— Verify(epk,m,o): On input message-signature pair (m, o), and enhanced public key epk, this
algorithm returns 1 if valid, or 0 otherwise.

— RecP(epk, B, §): Given a signing box B and a message distribution D, and on input an enhanced
public key epk, for a certain user, this algorithm outputs the private string s belongs to this
user or fail L.

Leakage-deterring Identification Scheme: The case of leakage-deterring identification schemes is
similar to digital signatures with the differentiation that the Sign and Verify algorithms are
substituted by a protocol between two parties, the prover P and the verifier V. Normally, the
owner is assumed to be the prover but the owner as it has access to the secret-key can issue
implementations of the prover interactive algorithm in the identification protocol. Specifically we
have the following. First KeyGen and EnKey are the same as in the previous case of leakage-
deterring signature schemes, for the other two,

— Identify(P,V): this is a protocol between the prover P with inputs epk, esk and the verifier
V on input epk that terminates with the verifier outputting 1 (accepting) or 0 (rejecting the
identification).

— Rec(epk, B,0): Given an implementation B of the prover P algorithm in the identification
protocol, and input the enhanced public key epk, this algorithm outputs s or fails L.

Remark 1. One can think of EnKey as an extension of a public-key certification operation by an
authority. The owner may still utilize (pk, sk) for the primitive’s operation (as in a PKI one may
still use an uncertified key) but epk is the key designated for public use.

Furthermore, we note that in the Rec algorithm, one may distinguish several ways that the
algorithm may have access to the main functionality box (which is assumed to be resettable, i.e., it
does not maintain state from one query to the next). Specifically, beyond black-box access we will
also consider a certain type of non-black-box access.

3.2 Correctness and Security Modelling

In this section we introduce the main security requirements for leakage-deterring cryptographic
primitives. In general any leakage-deterring primitive should offer privacy for the owner (as long as
no implementation of the primitive is leaked) and recoverability, i.e., that the recovering algorithm
will be able to produce the private data of the owner as long as it has access to a non-trivial
implementation of the cryptographic primitive. Finally, it is important that the introduction of the
additional functionality does not disturb the standard cryptographic properties of the primitive.
We examine these properties below.



Definition 1. Privacy (of Owner’s Data): For an honest owner who does not leak any non-trivial
box, the privacy of its data bound in the enhanced public key should be protected. To define the
property formally we introduce the following game between a challenger and an adversary A.

— The challenger runs KeyGen(-) and sends to the adversary A the public key pk.

— The adversary A chooses two private strings so,s1 and sends them to the challenger.

— The challenger chooses b and simulates EnKey(-) on sy and pk, sk; it sends epk to the adver-
sary.

— A returns his guess b/ about b.

If there is no efficient adversary A that can correctly guess b with non-negligible advantage, i.e.,
for all PPT A, | Pr[t/ = b] — %| < € where € is a negligible function, we say the leakage-deterring
cryptographic scheme achieves privacy (in the sense of indistinguishability).

Furthermore, in the above game, we may allow the adversary to observe the cryptographic
functionality on a certain input distribution. If the above definition holds even in the case that
the adversary has access to an oracle O(esk,-) (that is dependent on the enhanced secret-key of
the owner, e.g, decryption oracle or signing oracle w.r.t. some plaintext distribution D) we will say
that the scheme achieves privacy with respect to the secret-key oracle O(esk,-). Note that with
respect to privacy we consider both owner and authority honest. It is possible to extend the model
to the case of a dishonest authority but this goes beyond the scope of our current exposition (and
intended use cases).

Definition 2. Recoverability (of Owner’s Data): If a dishonest owner releases a functional box B,
anyone having access to B should be able to recover the owner’s private data from the enhanced
public key epk. Formally, consider the following game between a challenger and an adversary A:

— The adversary A on input 1\ generates a key pair (sk,pk) and submits it together with the
owner private data s to the challenger.

— The challenger acting as the authority runs EnKey with the adversary (playing the role of the
owner) to produce the enhanced key pair (epk,esk).

— A outputs an implementation B and a distribution D.

— The challenger outputs the value s' = RecPP (epk,d).

For a given 8, we will say that the leakage-deterring cryptographic primitive satisfies black-box
recoverability with respect to the class of input distributions 2, if for any efficient adversary A the
following event in the game above happens with negligible probability.

(B is §-correct w.r.t. D)A (D € 2) A (s # s)

Definition 3. J-correctness: The predicate “B is d-correct w.r.t. D” takes a different form depend-
ing on the cryptographic primitive and is intended to capture the fact that the box produced by the
adversary should have some minimum utility which is parameterized by §.

Consider the case of a public-key encryption scheme (KeyGen, Enc, Dec). The predicate for
d-correctness w.r.t. D in this case is as follows:

Pr[B(Enc(epk,m)) = m| > 6, where m < D



where the random variables epk, D, B are defined as in the game.
For a digital signature scheme (KeyGen, Sign, Verify), the notion of d-correctness of a box B
for a message distribution D is defined as follows:

Pr[ Verify(epk,m, B(m)) = 1] > §, where m «— D

For an identification scheme (KeyGen, Identify), we define §-correctness of an implementa-
tion B as follows:

Pr[Oy[B(epk, esk) « V(epk)] = 1] > 4,

where Oy [B(epk, esk) <« V(epk)] denotes the output of verifier V after interacting with box B in
an identification protocol.

It is worth noting that the largest class of distributions Z we can hope recoverability to work
for a leakage-deterring PKE is one that includes those distributions whose predicting probability®
is by a non-negligible amount smaller than ¢§; otherwise, one can implement a decryption box by
always returning the most probable sample from D.

Also, note that for a signature box to be “non-trivial”, § should be required to be non-negligible
w.r.t. distributions D with super-logarithmic min-entropy?. In the case of identification schemes
there is no general input passed in the identification box and hence the choice of distribution D is
immaterial.

We will also consider a form of the above definition where a non-black-box technique is used
for recovering the owner’s private data. In this case we can think of the Rec algorithm as a family
of algorithms parameterized by the box algorithm B (as opposed to being a single algorithm with
black-box access to B).

We next compare privacy and recoverability and observe a natural trade-off between the two
properties. Privacy w.r.t. a secret-key oracle O(esk,-) for a distribution D (i.e., when adversarial
access to the cryptographic primitive is allowed for input distribution D) can not be achieved if the
leakage-deterring cryptographic primitive satisfies black-box recoverability w.r.t. &, in case D € 2.
This easily follows from the fact that the privacy adversary can simulate the Rec algorithm with
the help of the secret key oracle.

Security Properties. We next consider how the individual security properties for leakage-deterring
primitives should be amended. In general, the original security property (e.g., IND-CPA or unforge-
ability) should be retained with respect to the enhanced public and secret-keys even in the presence
of a corrupted authority running the EnKey protocol.

e IND-CPA Security (for leakage-deterring PKE with a dishonest authority): Consider the following
game between the adversary and the challenger:

3 Denoted by p(D) is equal to 2 Hoo (D) \yhere H. (D) = —log max, Pr[x € D] is the min-entropy of D.

4 This entropy requirement for a non-trivial signing box is necessary. To see this consider the following example. The
key owner prepares a list containing a polynomial number of message-signature pairs, and implements a signing
box for a distribution D which has support of those messages only. The signing box works by simply checking
whether a queried message belongs to the list and if yes, it outputs the corresponding signature. Given that such
implementation can be produced from publicly collected signatures, the recoverability of the owner secret from such
implementation would imply that the privacy property collapses. To exclude this trivial implementation we require
that the min-entropy of the message distribution is super-polynomial (and hence this trivial implementation has
a super-polynomial description).



The challenger runs KeyGen(-) to get (pk, sk) and returns pk to the adversary A.

— The adversary A selects s and playing the role of the authority runs EnKey(-) with the chal-
lenger on input pk, s.

— The adversary A chooses two messages mg, m1, and sends them to the challenger.

— The challenger randomly picks a bit b € {0,1}, and gives A the encryption of m; under epk.

— Finally, A returns a guess b’ about b.

Suppose there is no efficient adversary A that can output a correct guess about b with non-negligible
advantage, i.e, |Pr[b) = b] — %| < ¢, where € is a negligible function. In this case, we say that the
leakage-deterring encryption is IND-CPA-secure (with a dishonest authority).

If we allow the adversary to ask decryption queries at anytime before outputting the guess (it
can be both before and after receiving the challenge ciphertext, with the only restriction being that
the challenge ciphertext cannot be queried), then we refer to this property as IND-CCA2 security.

We can also consider the security definition with an honest authority, in which case both the
algorithms KeyGen, EnKey are executed by the challenger.

e IND-CPA Security (for leakage-deterring PKE with an honest authority) Consider the following
game between an adversary and a challenger:

— The challenger runs KeyGen(-) to get (pk, sk) and returns pk to the adversary A.

— The adversary A selects s and playing the role of the owner runs EnKey(-) with the challenger
(as authority) to get epk.

— The adversary A chooses two messages mg, m1, and sends them to the challenger.

— The challenger randomly picks a bit b € {0,1}, and gives A the encryption of m; under epk.

— Finally, A returns a guess b’ about b.

Suppose there is no efficient adversary A that can output a correct guess about b with non-negligible
advantage, i.e, |[Pr[b’ = b] — 3| < ¢, where € is a negligible function. In this case, we say that the
leakage-deterring encryption is IND-CPA-secure (with honest authority). The only difference with
standard IND-CPA security is that here we have an extra second step.

Below, we will only give unforgeability /impersonation resistance with a dishonest authority, it
is straightforward to derive definitions in the setting of an honest authority by changing the roles
of challenger and adversary play during EnKey protocol.

e Unforgeability (for leakage-deterring digital signatures): Consider the following game between the
adversary and the challenger:

— The challenger runs KeyGen(-)to get pk and returns pk to the adversary A.

— The Adversary A selects s and playing the role of the authority runs EnKey(-) with the
challenger as a user on input pk, s to get epk;

— A is allowed to ask queries to a Sign(esk, -) oracle.

— The adversary A outputs a message-signature pair (m*, o).

The adversary wins the game if m* was never queried to the Sign oracle while it also holds that
Verify(epk, m*,o*) = 1. If for any efficient A the probability of winning the game is negligible, we
say the leakage-deterring signature is unforgeable under adaptively chosen message attacks.

e Impersonation Resistance (for leakage-deterring identification schemes): Consider the following
game between an adversary and a challenger:
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— The challenger runs KeyGen(+) to get pk and sends pk to the adversary A.

— The Adversary A selects s and playing the role of the authority, and runs the EnKey (-) protocol
with the challenger on input pk, s to get epk;

— The adversary is allowed to query the challenger for Identify(P, V') protocol transcripts.

— The adversary A engages in an Identify protocol execution with the challenger playing the role
of the prover.

The adversary wins the game if at the end the challenger playing the role of the verifier accepts
the interaction with the adversary. If it holds that for any efficient adversary A, the probability
of winning the above game is negligible, we say that the leakage-deterring identification protocol
is impersonation resistant against passive attacks. Impersonation resistance against active attacks
can be also expressed in a standard way (following e.g., [3]).

4 Leakage-deterring Public Key Encryption

In this section, we present constructions of leakage-deterring public key encryption schemes. We
start with a construction from any additive homomorphic encryption to demonstrate our first
technique for implementing recoverability, then, we show a generic construction of IND-CPA secure
leakage-deterring PKE from any IND-CPA secure encryption along with an improvement that
achieves constant size ciphertext, this generic construction can be easily extended to the identity
based setting as well. In section 5, we provide a general way to achieve IND-CCA2 security for all
leakage-deterring encryption schemes.

4.1 IND-CPA-secure Leakage-deterring PKE from Homomorphic Encryption

Recall the trivial solution presented in the introduction (encrypting the owner’s private data with
its public-key). It does not work because an adversarial decryption box is able to test whether the
queries fed by the recovering algorithm match the ciphertext stored in epk. A seeming fix is to
query via rerandomizing the ciphertext contained in the enhanced public key. However, given that
the private data are known to the attacker, the adversarial box can check for them and still reject.
So in some sense to go around the problem one has to re-randomize the plaintext as well! (so that
after re-randomization, the plaintexts should be distributed according to D but still somehow be
useful for decrypting the private data). We provide a solution along these lines in this section.

Informally, an encryption algorithm E(-) has a homomorphic property if E(mq+mz) = E(my)-
E(mg) for some operations (+,-) over plaintexts and ciphertexts respectively. For instance, we
can submit a ciphertext ¢* - E(r) to the decryption box B, and retrieve the message in ¢* from
the answer by subtracting r. This method would be effective for our purpose only if B satisfies
correctness w.r.t. to random distributions over the whole message space. However we would like a
solution that works even for adversarially chosen distributions that are unknown at the time of the
generation of epk. The recovering technique we introduce below achieves this goal.

First assume that we have an underlying encryption F : (KeyGen, Enc, Dec) that is an IND-
CPA secure PKE with a homomorphic property. Specifically, we assume that for any message m
and any a,b from the message space, Enc(m)® - Enc(b) is identically distributed to Enc(am + b).
We call the following construction Scheme-I.

— KeyGen(1"): Run the KeyGen algorithm of E, return (pk, sk).
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— EnKey(O, A): This is a protocol between O and A with input (pk, sk, s) and (pk, s) respectively.
A randomly chooses n = |s| messages w;, i = 1,...,n according to the uniform distribution over
{0,1}. Then A calculates s, = w; ® s;, {¢; = E(pk,w;)},s’ = s} ...s),. The protocol terminates
with O obtaining the enhanced key pair (epk, esk) where epk = (pk,{c;},s’), and esk = sk,
while A gets only the enhanced public key epk.

— Enc(epk,m): This algorithm runs the encryption algorithm Enc, returning ¢ = Enc(pk, m).

— Dec(esk, ¢): This algorithm runs the decryption algorithm Dec, returning m = Dec(sk, c).

— RecB’D(epk, 0): With access to a decryption box B and a distribution D, that B supposedly
works on with d-correctness, the objective of this algorithm is to transform the ciphertexts
c1,...,c, found in the epk to ciphertexts that look inconspicuous from the point of view of
the box B. For each ciphertext ¢; the algorithm will operate as follows. First it will calculate
a sufficiently long sequence of pairs (z,y) (the exact length N of the sequence depends on the
parameters of B and D and will be determined in our security analysis). For each pair, the
algorithm first independently samples two plaintexts mg, m1 according to D. Then it calculates
x,1y by solving the following linear system:

0-z4+y=mgp
l-z+y=m

Let (x7,y1)i=1,...,n be the pairs produced by running the above procedure N times and mg, m1
be the pair of plaintexts used as constant terms of the linear system for the [-th sample. Having
calculated those, the algorithm computes ¢, , = ¢;' - E(pk, y;) for I =1,..., N, and feeds B with
those ciphertexts (whose corresponding plaintexts follow D). Let aq,...,an, be the answers of
the box B where a; = L if the box does not provide an answer for the [-th ciphertext. Now
consider the modified answer sequence to be a string over {0, 1, L} defined as follows:

a; = (e —yo)/xr ar € {mog,mig)} Nar # 0
t 1 otherwise

Note that a; € {0,1, L}. If the majority symbol among the non-L symbols of (af,...,a})
is defined the recovering algorithm calculates it as v; and proposes it as the decryption of ¢;
(otherwise the algorithm fails). This procedure is repeated for all ciphertexts c¢q,...,¢, thus
forming v = wvy...v,. Finally, the recovering algorithm proposes as the private data of the
owner the string s’ @ v where s’ is parsed from the epk.

Security Analysis: We will first sketch correctness and three security properties, i.e, security,
privacy, recoverability. First observe that correctness is trivial, according to the correctness of
the underlying encryption scheme E while IND-CPA security is also relatively obvious since the
extra information exposed due to our extension are some independent values (wi...wp,s). Now
regarding the privacy property, we can see that the EnKey algorithm in Scheme-I is a KEM/DEM
mechanism [11], using a KEM which encrypts each bit of the key with a secure encryption. Given
{¢i}, the adversary is not able to predict the bit w; with a sufficient bias, thus every w; is random
conditioned on the adversary’s view. This proves privacy (assuming no secret-key oracle O(esk, -)
is given). Regarding recoverability we can prove it w.r.t. essentially any distribution D. The Rec
algorithm produces a sequence of ciphertexts with plaintexts following D whose correct decryption
reveals the bits w; by a majority argument. As long as the correctness of the box B is non-negligibly
larger than the collusion probability of D (which is a minimal characteristic of “box usefulness”)
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the recovering algorithm will produce the w; values with overwhelming certainty since it can do a
perfect simulation of ciphertexts with D distributed plaintexts. The formal proofs are as follows:

Theorem 1. Scheme-I achieves IND-CPA security (against dishonest authority) and privacy (with-
out secret-key oracle) if the underlying PKFE is IND-CPA secure. It also satisfies black-box recover-
ability w.r.t. any § > 0 and the class of distributions 2 = {D | Ja : « is non-negligible and Hoo (D) >

log ﬁ}

Proof. As explained above,the correctness and IND-CPA security is obvious. We will demonstrate
the proof for privacy and recoverability as follows:

— First we examine the privacy. Let us define E'(w) as E(w1)...E(w,) which is a bitwise en-
cryption using E. (w.l.o.g, we assume messages are bitstrings with length n, if not, challenger
can do a proper padding on them). It is straightforward to see that E’ is IND-CPA secure if
E is, otherwise, one can easily distinguish F(0), F(1) by distinguishing E’(my), E'(m1), where
mg, m1 are identical except at one bit.

Suppose C is the challenger of E’, A is the adversary who can break the privacy of scheme-I. We
will build a simulator algorithm S which uses A as an oracle to break the IND-CPA security of
£

S first forwards the public key pk from C to A, he then chooses two random messages mg, m1,
sends them to C and gets the challenge ¢, also he receives sg, s1 from A. S randomly select by, b1,
computes s’ = sp, ® my,, and sends (pk, ¢, s’) to A as epk. If A returns by correctly, S outputs
b1 as his answer, otherwise he outputs 1 — b;.

It is easy to see that the simulator’s advantage of breaking the semantic security of E’ is at
least half of the advantage that A has to break the privacy (denoted by A). If ¢ = E'(mq_y, ),
then s’ perfectly hides sp, since sp, @ myp, now is independent with epk, A can only guess by
correctly with probability 1/2. If ¢ = E’(my, ), the epk is in a valid form and this time A will
have advantage A. Thus, the simulator’s advantage is %(% + % +A)— % = %

— Next, we examine the recoverability. It is obvious that the KeyGen and EnKey procedures
can be easily simulated. Note that the way we sample (z,y) in the Rec algorithm, every query
is an encryption of a message independently sampled from D (the only exception is that D
almost always outputs only one message but in this case, any box becomes “trivial”). Thus,
the recovering query is identically distributed as normal decryption queries and B would have
d-correctness for every recovering query!

Now we analyze the number of repetitions needed(in terms of an asymptotic function of the
security parameter \) to guarantee we are almost certain that s will be returned in the Rec
algorithm.

First, we call the experiment a useful one if mg # mi, otherwise, we will always record a
1 for this query. The probability of having one useful experiment after sampling Ny pairs of
(mg, m1) will be 1 — Col(D)™0, where Col(D) is the collusion probability of distribution D
which denotes the probability of sampling a same element from two independent trials. Observe
that Col(D) < 1 — =, for some non-negligible v, if D is not a trivial distribution which has
probability almost 1 over one single element. If we repeat Ny = O(log2 A) times sampling, we
will get a useful experiment with probability almost 1.

Further, for one useful query, only two answers z, z+y (mg, m; respectively) would be considered
possibly correct, all other answers are simply ignored (denoted by ). The probability of getting
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at least one correct answer after repeating Nj times useful experiments is 1 — (1 — §)M1, if
N; = O(log? \), this probability is almost 1(with negligibly small difference).

Recall that 6 = p(D) + «, where p(D) = 27 H=(P) denotes the predicting probability of D . In
one useful experiment, the probability of returning an incorrect but non-L answer is at most
p(D), since this happens only when the box returns my while the correct answer is mq_y, for
b=0,1 (recall these two messages are independently sampled from D).

Now we focus on non-_|L answers only, the probability of an incorrect answer appearing among the
non-_ answers is at most ¢ = 2;{;% (This can be argued as follows: suppose p(D) = p+t,where
p is the probability of returning an incorrect but non-1 answer in one query and ¢ > 0; then,
the probability of obtaining an incorrect but non-_L answer among all non-_1 answers is at most
% < 5£;i ; = q). Suppose X is the random variable that denotes the number of appearances
of incorrect but non-1 answers after collecting Ny non-1 answers, u denotes the expectation
of X which is no bigger than Naq. The probability that correct answers do not constitute t2he
majority is Pr[X > 22]. Using the upper tail of the Chernoff bound:Pr[X > (1+ f)u)] < e%,
we can verify that this probability is bounded by exp(—N2a?/(24p(D)? + 6p(D)a)).

So if we collect more than Ny = O(a~2?1og? \) non-_L symbols, the majority will be occupied by
the correct answers with probability almost 1 (negligibly small difference), and hence we can

recover the bit.

Combining these procedures, if we repeat the recovering procedure Nox N1 x Ny = O(a 2 log® A)
times for each bit of s we will successfully recover s with probability almost 1. a

Remark 2. Note that the restriction for the class of distribution is optimal in the sense that other-
wise, the box would be “trivial”.

4.2 (Generic IND-CPA-secure Leakage-deterring PKE with Honest Authority

In this section, we relax further the requirements of leakage-deterring PKE to minimal by con-
structing a scheme based on any secure PKE. We will only consider IND-CPA security with honest
authority in this section and we will show how to go beyond this and achieve security against
dishonest authorities (and actually IND-CCAZ2) in the next section.

Linear-Size Construction. To make the exposition more accessible we present first a less effi-
cient construction (with linear size ciphertexts in the length of hidden information); then we show
our main generic construction which is constant size. Consider a semantically secure public key
encryption E. The main idea of the construction is as follows. For each bit of private data there
is a pair of public keys, and the owner has only one of the secret keys. The ambiguity of which
secret key the owner has offers the opportunity for the recovering algorithm to work. We call this
construction Scheme-II, details are as follows:

— KeyGen(1): This algorithm generates n = |s| key pairs (pki, sk1),.. ., (Dkn, skp).

— EnKey(0, A): (O, A) have inputs (pki,...,pkn,Ss,ski,...,sky), and (pk1,...,pkn,s) respec-
tively, where s € {0,1}". A randomly generates r € {0,1}" which we call indicating string, and
n new random public keys pk}, ..., pk],. The enhanced public key epk is n pairs of public keys
(pkY, pkl),. .., (P2, pkL), together with s’ = r & s, where for i = 1,...,n, pk}* = pki,pkik” =
pk}, and the enhanced secret key is esk = (sk,r), where sk = (sky, ..., sky).
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— Enc(epk,m):This algorithm first randomly picks my,...,m,—1, and computes m, = m —
E?:_ll m; (wlog we assume that additive secret-sharing works over the plaintext space). It out-
puts the ciphertext ¢ = [(¢},¢}), ..., (c),cl)], where ¢! = Enc(pk{, m;), c; = Enc(pk}, m;).

— Dec(esk, c¢): To decrypt ciphertext ¢, this algorithm chooses from ¢ the ciphertexts correspond-
ing to the indicating string r, and returns m = > ;" | Dec(sk;, c;").

— Rec® ’D(epk‘, 0): With access to a decryption box B and a plaintext distribution D for which the
box supposedly works with J-correctness, the algorithm recovers each bit s; of s by repeating
the following procedure N times (the exact value of N will be specified in the analysis):

It first samples m,m’ independently, according to D, randomly chooses my,...,m;_1, M1,
..., Mp, and computes m = m — > jzi My, and mb=m'— > i M-

Then it feeds B with [(c),cl), ..., (c¥,cl)], where for all j # i, c?, cjl- encrypts the same message
mj while ¢? = Enc(pk?, m?), ¢} = Enc(pk}, m}).

The algorithm records a 0, if the response from the box is m, 1 if the response is m’, and L in
any other case including the case m = m/. For each 7, the algorithm will propose r; to be the
majority of the recorded non-_L values (the algorithm fails if majority is not well-defined).
The above procedure is repeated for all ¢ € {1,...,n} to form a string r, and finally, the

algorithm outputs s = s’ @ r, where s’ is parsed from epk.

Security Analysis. We first sketch the security properties of Scheme-II. Let us call an encryption
using a single pair of keys as a “unit building block”. It is not hard to see that IND-CPA security
of the unit building block implies the IND-CPA of scheme-II (assuming authority is honest and
taking into account the security of additive secret-sharing). Regarding privacy, observe that s is
perfectly hidden within epk as a one-time pad ciphertext. Finally, regarding recoverability w.r.t
any distribution D, the recovering algorithm can attempt to query different encrypted messages
in any single unit location. Due to the secret-sharing throughout all pairs, any box (even partly
successful) has to include a key for each coordinate. Due to these facts, the recovering algorithm
can detect which secret key does the owner possess at each location something that leads to the
calculation of the indicating string and hence the recover of the private data. A detailed analysis
is as follows:

Theorem 2. Scheme-II achieves privacy (without secret-key oracle access). It also satisfies IND-
CPA security (with honest authority) and black-box recoverability w.r.t. any 6 > 0 and the class of
distributions 9 = {D | Ja : « is non-negligible and Ho (D) > log ﬁ , if the underlying encryp-
tion is a reqular IND-CPA secure PKE.

Proof. The privacy property is trivially achieved because the owner private data is hidden with a
one-time pad. Also it is easy to see correctness, owner has one key for each pair and can successfully
decrypt one of the ciphertext in each pair. We prove the IND-CPA security with honest authority,
and recoverability as follows.

— We first prove the IND-CPA security of a simplified version of Scheme-II, (recall that we named
it “unit building block”) in which there is only one pair of public keys (pk?, pki), the secret
information s will be one bit only, and during encryption, one directly encrypts message m
under both public key (without doing secret sharing of the message).

Claim. The unit building block E* of Scheme-II is IND-CPA secure if the underlying encryption
FE is IND-CPA secure.

15



Proof. of the claim: For any two message mg,m1, we define the pair E(pk?, m;), E(pki,m;) as
E;;. We would show that both Egg, E11 are indistinguishable from FEjp;, thus Epg is indistin-
guishable from Fy;.

Suppose A can distinguish Eyg from Eg; with advantage A, one can use A to break the semantic
security of F as follows:

Assume C is the challenger of F/, when the simulator receives pk from C and a private bit s from
A, he randomly selects another public key pk’, and sends A (pk’,pk,s @ 1) as epk. Then, the
simulator forwards mg, m1 from A to C. Whenever the simulator gets a challenge ciphertext c
from C, he computes ¢ = E(pk’,myp), and sends (¢, ¢) to A as his challenge. The simulator will
outputs A’s guess directly to C (suppose that A outputs 0 for Eyg, and 1 for Ep;).

It is easy to see that, (¢/,c¢) is exactly Egg if ¢ = E(myg), or Ep if ¢ = E(my), so simulator
breaks semantic security of E/ with the same advantage A as A distinguishes Fyg, Eo1.
Similarly, we can prove Ey1, F11 are indistinguishable. Thus Fog = E*(my), and E11 = E*(mq)
are indistinguishable. a

With the above claim, we will reduce the security of the unit building block E* to the security
of Scheme-II. Suppose C is the challenger of E*, A is the adversary who successfully breaks
the semantic security of Scheme-II with advantage A, we will build a simulator to break the
security of F* using A.

After receiving a private string s from A, the simulator forwards the first bit s; to C. After
receiving (pk{, pki,b1) from C, the simulator generates another n — 1 pairs of public keys and
secret keys {(pk?, sk?)}iz2. n—14-01, and sends [(pk?, pki), ..., (pk, pkl), s'] to A as epk, where
s; = bi, and by ... b;s| are random bits.

After getting mg, my from A, the simulator randomly selects n — 1 messages ma, ..., My, com-
putes m = mo — y - omi, m’ =my — > - ,m;, and forwards m,m’ to C. When the simulator
receives a challenge ¢ = (c{,ci) from C, then, for all i € {2,...,n}, b € {0,1}, he computes
{c? = Enc(pk?, ms)}, and sends A his challenge [(c},c}),..., (%, cL)].

Simulator directly outputs A’s guess as his own guess to C assumes that A outputs 0 for myg
and 1 for my. It is easy to see that the simulator’s advantage of breaking the IND-CPA security
of Scheme-IT is exactly A. a
Next we prove the recoverability holds. First we argue that adversarial box can not distinguish
recovering queries (for some pair, two ciphertext contain different messages) from normal ci-
phertext. Essentially, we will argue that the box will have similar performance in both cases.
Note that when a box gets a normal ciphertext and the message is sampled according to D, it
will return a correct answer with probability at least 6 due to the d-correctness, and in such
cases, the box will return an incorrect but non- L answer with probability at most p(D) because
of the fact that no information about the incorrect answer is contained in the decryption query.

Claim. Suppose the underlying encryption scheme E satisfies e-semantic security (i.e, no effi-
cient adversary can distinguish E(mg) and E(mq) with advantage e for any pair of different
messages (mg, m1)), then any box with d-correctness created by an efficient adversary will re-
turn a correct answer with probability at least § — 2¢ and will return a incorrect but non-_L
answer with probability at most p(D) + 2¢, when fed with a recovering query.

Proof. of the claim: We prove for probability of returning a correct answer only, for the case
of incorrect but non- 1, it follows straightforwardly. First note that, in a recovering query, the
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messages are also sampled independently from D. Suppose there is an adversary A producing
a box B with d-correctness when queried with normal ciphertext and with (§ — A)-correctness
for a non-negligible A when queried with recovering ciphertext, one can use A to distinguish
two ciphertexts F(mg), E(mq) in the IND-CPA game of E as follows:

First, the simulator receives public key pk from the challenger C of FE, also it receives n public
keys (pki,...,pkyn) and s from the adversary A.

The simulator randomly chooses a position i € {1,...,n}, a random bitstring » € {0,1}",
and chooses n — 1 random public keys pki,...,pk;_i,pkj ,,...,pk;,. The simulator sends A
the enhanced public key epk = [(pk}, pki), ..., (pkQ,pkl),r & s] , where for all j # i, pk;j =
pkj,pk;frj = pkj, and pk;* = pki,pkil_” = pk.

A then produces a decryption box B and a distribution D. To create a challenge ciphertext for
B, the simulator first randomly chooses two messages m, m’ according to D, then he randomly

0 _
chooses n — 1 messages m1,...,M;—1, Miy1, ..., My,. Further, he computes m; = m — Z#i mgj,
and m} =m'->) i M then sends m?, m} to C, and receives a challenge ¢ from C. The simulator
then randomly selects m? from m?, m?, and feeds B with ciphertext [(c}, 1), ..., (2, cl)], where

for all j # i, both c?, c} contain the same message m;, and c;* = E(pk;, m?), cil_” =c.

If B returns the right message (if b = 0, it is m, if b = 1, it is m/), then the simulator returns b
as his guess, otherwise, he returns 1 — b.

It is obvious that if the simulator guesses Correctly(mi-’ is the message C encrypts in c¢), the
challenge for A is a normal ciphertext, otherwise, it is a recovering query. Thus, simulator will
break the semantic security of E(return a correct b) with probability 26+ 2(1—6+A) = 2 + %,
thus A < 2e.

Similarly, we can show the probability of returning an incorrect but non-1 answer will be 2¢
close to p(D), too. O

The rest parts are very similar to the analysis of theorem 1. For each bit of the owner data, in
each query there are only two potentially correct answers (m, m’ as we used in the Rec algorithm
in scheme-II). Since for each query, we have the probability of returning a correct answer is
almost ¢, and the probability of returning an incorrect but non-_L answer is almost p(D), we only
need to proceed to estimate the number of repetitions needed. The analysis is also composed of
three main steps, we first estimate the number of samples needed for getting a useful experiment,
and then estimate the number of repetition needed for collecting at least one correct answer, then
we estimate the number of correct answers needs to be collected to ensure that the majority
will be the correct answer. With the above claim, the performance of the adversarial box is
negligibly close to that in scheme-I, thus the number of repetitions needed is also O(a 2 log® A).
For details of the calculation, we refer to the proof of theorem 1. O

Main Generic Construction. In the previous construction, the sender splits the message into
n pieces. This makes the ciphertext size (number of ciphertext units) linear in the length of the
owner’s private data. We now improve the generic construction to achieve a ciphertext size O(log %)
by using an error correcting code to create the indicating string, where ¢ is a specified minimum
correct decryption probability that is assumed to be constant and is a parameter of the construction.
We call this construction Scheme-III.

— KeyGen(1): Same as in Scheme II.
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— EnKey(0O, A): (O, A) have inputs (pki, ..., pkm, s, sk), and (pki, ..., pkm, s) respectively where
s € {0,1}"; the parameter m is selected based on n according to an ECC (e.g., from [22]) that
corrects up to % errors. A randomly generates 7 € {0,1}", computes the indicating string
r = ECC(7). Also, A selects m random public keys pk}, ..., pk,,. The protocol terminates with
O obtaining (epk, esk) and A obtaining epk, where epk is (pk{,pki), ..., (pk%,, pkl,), together
with s =7 @ s, and for i =1,...,m, pk;* = pki,pk‘il_” = pk,, and esk = (sk,r).

— Enc(epk,m): To encrypt a message m, the algorithm first chooses a random subset S C
{1,...,m} with size t = 51n %. Then it randomly picks mq, ..., ms_1, and computes my = m —
S = m,. The ciphertext ¢ = [S, (), ¢}), ..., (¢}, )], where ¢2 = Enc(pk:gi,mi) for b € {0,1}.

— Dec(esk, c¢): To decrypt ciphertext ¢, this algorithm chooses from ¢ the ciphertexts correspond-
ing to the indicating string r projected on .S, and returns m = 25:1 Dec(sks;, czsi).

— Rec? ’D(epk, 0): With access to a decryption box B and a plaintext distribution D, the algorithm
recovers each bit s; of s by repeating the following procedure N times (the exact number will
be specified in the analysis):

It first randomly selects a subset S C {1,...,m} with size ¢.
If i € S, and 7 is the k-th element of S, the algorithm randomly chooses m,m’ independently

according to D as well as random values myq, ..., mg_1, Mk+1, ..., M. Then, it computes mg =
m — 3 my, and mp = m — > jzimy. It feeds B with [(V,cel), ..., (Y, ct)] where, for all

j # k, the pair c?,cjl» encrypts the same message m; using pk?,pkil respectively, while cz =
Enc(pk?, mb) for b € {0,1}.

If ¢ € S, the algorithm proceeds by performing a regular encryption of a plaintext from D.

If © € S and the response of the decryption box is m, the algorithm records 0; if ¢ € S and
the response is m/, this algorithm records a 1; Otherwise (in any other case including i € S or
m = m/), it records L. For each i the majority of the non-L recorded values is proposed as the
value of r;. If no majority is defined, a random bit is produced as r;.

The above procedure is repeated for all i € {1,...,m}, and a string r is formed. The decoding
algorithm of ECC is now executed on r to obtain 7. The algorithm terminates by returning

s = s’ @7, where s’ is parsed from epk.

Security Analysis: The IND-CPA and privacy properties are essentially the same as in scheme
II. We only discuss recoverability which is significantly more complex. The intuition is that because
of the error correcting code, the Rec algorithm would work as long as a linear fraction of bits of
r can be recovered. As we will prove in the appendix, suppose that ¢ is the number of positions
among the m for which our recoverability procedure fails. We will show that the probability of
correct decryption will become roughly smaller than e~*/™ = §°¢/™_ From this we derive that any
decryption box operating with probability at least § (as postulated) can make our algorithm fail
in at most m/5 of the m secret keys which is sufficient for correct decoding. The full analysis is
presented as follows:

Theorem 3. Scheme-III parameterized by any 6 > 0, achieves privacy (without secret-key oracle
access). Further, if the underlying public key encryption scheme is IND-CPA secure, it satisfies IND-
CPA security (with honest authority) and black-box recoverability w.r.t. the class of distributions
95 = {D | Hy(D) > log|s| +log 5 — c}, where ¢ is a constant (depending on the ECC) and |s| the
length of the embedded private information.

Proof. All properties except recoverability are the same as Scheme-II. We only analyze recoverabil-
ity below. The major difference in this analysis is that we need to examine the maximum number of
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positions for which the recoverability algorithm can fail while still maintaining that the decryption
box B has more than d-correctness.

First we set the number of experiments executed for each index i, denoted by IV to be calculated
as in the proof of theorem 1 with the following modifications: First, we use a probability ag in
place of a, which is defined as (§ — x)/m? where k = p(D) = 2~ H=(P) denoting the predicting
probability. Second, we need to repeat more times due to the fact that randomly selecting S will
not always contain i to be a “useful query” for recovering. But sampling S randomly instead of
always containing some ¢ aims at producing the recovering queries indistinguishable from normal
ciphertext. Suppose now the target of the recovering algorithm is the i-th bit, in one selection, the
probability Pr[i € S] is C% 1, /Ot = t/m. From the lower tail of Chernoff bound, the probability of

Ngt
selecting N3 times without hitting ¢ once is smaller than e~ (a1, After randomly sample 4m/t

times, one will be sure that one of the subsets will contain ¢, and one useful query is created. In
total, The recovering procedure repeats for Ng x N; x No x N3 times, where Ny, N1, No are as in
the analysis of theorem 1 where « is substituted with ag (note that if we can reset the box across
experiments the ciphertexts for which ¢ ¢ S can be just omitted).

The main challenge in the proof of the theorem is the fact that the box B might behave
differently depending on i and thus force us to err in a number of locations i. We will prove that
we can bound this number and hence our error-correction layer will be sufficient for recovering the
hidden information in the epk. Let §; = Pr[B decrypts correctly | ¢ € S]. We divide the indices
i€ {1,...,m} in two sets, Bad and Good, according to the rule i € Good if and only if §; > x + ayp.
Based on our choice of N, if i € Good the recoverability will return the proper bit in the i-th
coordinate with overwhelming probability. In order to upper bound the size of Bad consider the
following. Let D be the event of correct decryption. We have that,

Pr[D] = Pr[D | 5" Bad = 0] - Pr[S N Bad = ] + Pr[D | SN Bad # ()] - Pr[S N Bad # (]

Regarding Pr[S N Bad = ()] observe that if k = |Bad|, the probability is bounded by p(k,t) =
Ct /0t =TIZo(1 — =) < (1 — &)t From inequality e® > 1+ z, we can get p(k,t) < e */™.
Regarding Pr[D | S N Bad # 0] note that it is bounded by >,cg.q0i < m(x + ag) (This bound
follows directly from the fact that Pr[F| Ul A;] < > ", Pr[F|A;], for any event F, A;). We now
derive the following,

§ < Pr[D] < e /™ 4 m(k 4+ ag)

From which we obtain the upper bound k < 2 - In(§ — m(k + ag))~". Now observe that due to
the condition for the min-entropy, we derive a bound on k < 2°4/|s| = /d/|s|, for some constant ¢'.
From the choice of ag we can prove that § — m(k + o) > 0/4 as long as c is selected appropriately
(taking into account the error-correcting rate which is constant). We plug this condition and the
fact that ¢ = 51n(46~!) we conclude that k < mIn(46~1)/5In(46~1) = m/5.

The rest is similar to the proof of theorem 2, whenever the i-th secret key is contained in the
decryption box, as argued in the analysis of theorem 2, adversary will have similar performance
when fed with a recovering query, and from the estimation of number of repetitions, if one repeat
O(ag?mlog® \) = O(a™2X°log® \) times(given that the length of the codeword m = O()), and
a =0 — p(D)), one can recover r; correctly as long as i € Good with overwhelming probability. So
the number of errors in recovering r is at most k, while the ECC is able to correct up to % errors,
and 2 > k, thus o will be recovered correctly with overwhelming probability and hence also s. O
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Remark 3. In this construction, the ciphertext size is parameterized by the correctness § which
is influenced by the min-entropy of the distribution the box works on. Essentially, if the desired
min-entropy that the scheme should be leakage deterring against gets smaller, then the ciphertext
size should increase.

Remark 4. The generic construction can also be easily adapted to the identity based setting. To
accomplish this, observe that we can replace pk? with (ID|i,b), instantiate the IBE system with
a hierarchical IBE scheme and apply the above generic construction to derive an identity based
leakage-deterring encryption. We omit the detailed construction of identity based leakage-deterring
encryption, but for the sake of completeness, we present the definitions needed in the appendix.

5 Generic CCA2 Secure Construction with Dishonest Authority

In this section, we introduce a general method to construct an IND-CCA2 secure leakage-deterring
encryption with dishonest authority from any leakage-deterring PKE which satisfies IND-CPA
security with honest authority, and any IND-CCA2 secure standard PKE. The main idea is to
compose these two encryptions to form a nested encryption with the outer layer encryption to be
the IND-CCAZ2 secure one. Recoverability could be maintained because the Rec algorithm can run
the Rec algorithm of the inner leakage-deterring encryption to collect queries, and encrypt them
using the outer layer public key to form its own recovering queries.

Construction Suppose F; is any IND-CPA secure leakage-deterring PKE (with an honest author-
ity), and E3 is any IND-CCA2 secure PKE. We call the following construction Scheme-IV.

— KeyGen(1): This algorithm first executes the KeyGen algorithm of both E1, E, and return
(pk1, sk1), (pka, ska).

— EnKey(O, A): This is a protocol between O, A with inputs (pki, sk1, s) and (pki, s) respectively;
it proceeds by executing the EnKey protocol of E; to get (epki,esk;) first, and this protocol
terminates with O obtaining enhanced key pair (epk,esk), and A obtaining epk only, where
(epk, esk) = ((epk1, pke), (eski, sk2)).

— Enc(epk,m): To encrypt a message m, this algorithm runs the encryption algorithms of both
of E1, Fa, and returns the ciphertext as ¢ = Enc(pks, Enc(epk;, m))

— Dec(esk, c): To decrypt a ciphertext ¢, this algorithm runs the decryption algorithms of both
E1, E5 and returns m = Dec(esk;, Dec(sks, c)).

— RecB’D(epk, 0): With access to a decryption box B and a plaintext distribution D, this algo-
rithm calls the Rec algorithm R; of Ej. For each query ¢ of Rj, this algorithm feeds B with
Enc(pks, c). It then passes the responses of the box to R; and returns whatever R; returns.

Security Analysis Correctness is obvious. Privacy, recoverability and IND-CCA2 security fol-
low easily from the security of the outer layer encryption and the properties of the inner-layer
encryption. The details are presented below:

Theorem 4. Scheme-1V is IND-CCAZ2 secure with dishonest authority if Es is a IND-CCAZ2 secure
PKE, and achieves same privacy and recoverability as the underlying leakage-deterring PKE Ej.

Proof. We will reduce the IND-CCA2 security of the outer layer encryption Fo to the security of
scheme-IV. Suppose the challenger of Fs is C, and the adversary of scheme-II is A. We can build a
simulator algorithm to attack the security of Ey by using A, the adversary on scheme-IV.
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After receiving the public key pk from C, the simulator randomly chooses a key pair (pki, ski)
for E7, the inner layer encryption. Also, he randomly chooses a secret string s. The simulator then
sends A (pki,pk, s) and receives the enhanced key pairs (epk, esk) = ((epk1, pka), (eski, sk2)).

When A asks a decryption query ¢;, the simulator forwards it to C and gets an answer of
¢1 = Dec(sk,¢;), and then he uses esk; to decrypt the inner layer ciphertext, and returns A the
answer. It is simple to see that the decryption query is answered correctly.

After receiving mg, m; from A, the simulator encrypts them using the enhanced public key of
the inner layer encryption Ej, sends (my,m}) = (Ei(epki,mg), E1(epki,m1)) to C and forwards
the challenge ¢ directly to A.

The simulator continues to answer A’s decryption queries as before. And sends A’s guess b
directly to C as his guess.

Since the challenge is exactly the encryption of mg or m1, so the simulator would have the same
advantage for A to distinguish encryption of m(, m| using scheme-IV.

As the EnKey protocol is the same as in E1, thus privacy of scheme-IV is the same as that of
FEq; with respect to recoverability, from the Rec algorithm we can see that the ciphertext queries
in scheme-IV and that in F; have a one-to-one correspondence, the algorithm will return a correct
value as long as the Rec algorithm in F; can return one. a

Remark 5. An alternative way to achieve IND-CCA2 security is to instantiate each PKE scheme
in the generic construction of section 4.2 with a lossy trapdoor function, and apply the Peikert-
Waters paradigm [35] to convert this IND-CPA secure scheme into an IND-CCA2 secure scheme
by utilizing a strong one time signature. We will use only a unit building block as an example to
demonstrate the idea, and the full construction can be derived straightforwardly. Using the notation
from [35], Fiqr(s,z) denotes a lossy trapdoor function F' evaluated at input x using public key
$; Gapo(s', vk, ) denotes an all-but-one trapdoor function evaluated at input x using public key s
and branch vk. For details of these two primitives, we refer to [35].

The public keys will be (so, s1, s(, s, ho, h1), and the secret key is t;, for a bit b, where ¢, is
the trapdoor corresponding to sp, and hg, hy are random universal hash functions [9]. For Enc,
the algorithm first generates a random key pair (sk,vk) for a strong one-time signature scheme,
randomly selects zg, 21, and output the ciphertext as ¢ = (vk, [Fiiar (S0, 0), Gabo(S(, VE, o), ho(zo)®
m], [Fiear(s1, 1), Gapo (8], vk, 1), h1(z1) @ m], o), where o is a signature signed using sk on all the
other components in the ciphertext. The Dec algorithm just selects the corresponding ciphertext,
and inverts Fyqr(sp, xp) using ¢, to get oy, and checks whether Gapo(sy, vk, p) is well-formed and
retrieves m by hy(xp) & m @ hy(xp). We can argue the IND-CCA2 security in a similar way to the
analysis in [35], with the minor difference in the indistinguishability between lossy keys and injective
keys where we use a pair of lossy trapdoor functions instead of one; similarly, for the hidden lossy
branch property we use a pair of all-but-one trapdoor functions instead of one. We omit the detailed
proof here. This alternative construction will yield a more efficient IND-CCA2 scheme when applied
over the generic construction compared to the one we presented above. Furthermore, we can use
the one-time signature paradigm [8] in the setting of identity based leakage-deterring encryption
as well.

To deal with the transformation from IND-CCA2 security with a honest authority to IND-
CCA2 security with a dishonest authority without using the nested encryption mechanism, we can
have the public keys in one of the pairs to be the same as the one generated by the user, and the
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encryption algorithm will always use this public key. It is easy to see that this “special” public key
guarantees the security in a model with a dishonest authority.

Note that the EnKey protocol and the Rec algorithm in the above alternative construction are
the same as those in the generic constructions and privacy and recoverability will not be affected.

6 Leakage-deterring Signature & Identification

In this section, we design leakage-deterring signatures and identification schemes. The main idea
is that we treat any functional box as an unforgeability or impersonation adversary, and then take
advantage of “witness extractability” used in the security arguments of the underlying primitive
to extract the secret-key which will unlock the private data. To achieve this type of extractabil-
ity we apply rewinding, and hence this means that a certain level of non-black-box access to the
adversarial implementation is needed that was unnecessary before. Specifically, in the case of dig-
ital signatures we assume the recoverability algorithm can “hook” the hash function calls of the
adversarial implementation while in the case of identification schemes the assumption is that the
adversarial identification can be rewound to a previous state (something that is true for software
adversarial implementations but not necessarily true in the case of a hardware adversarial im-
plementation). We stress that our leakage-deterring constructions do not employ any additional
intractability assumptions beyond the ones used in the underlying primitives.

6.1 Leakage-deterring Signature In the Random Oracle Model

We construct a leakage-deterring signature scheme based on a class of X-protocol-based signature
schemes as in [36]. The security proofs of these signatures rely on the fact that if the adversary can
forge one signature, then he could also forge another correlated signature for the same message with
the same random tape but a different random oracle. Using these two forgeries that are correlated,
one can extract the secret key of the owner.

Our construction of leakage-deterring signature is based on two independent digital signatures
instances Sig, and Sig; that are unforgeable under adaptively chosen message attacks. Further,
Sig, is required to be unforgeable in the random oracle(RO) model following [36]; specifically, the
signature has the form of (m, o1, h,o2) as in [36], and satisfies h = H(m, 01), and o2 only depends
on m, oy, h, where H is a RO. We call the following construction Scheme-V.

— KeyGen(1): This algorithm executes the KeyGen algorithm of Sigg, and returns the key
pair (pko, sko).

— EnKey(O, A): This protocol is executed between O, A with inputs (pko, sko, s), and (pko,s)
respectively. A runs KeyGen algorithm of Sig; to generate a key pair (pki, sk1). The protocol
terminates with O obtaining (epk, esk), and A obtaining epk, where epk = (pko, pk1, H(sk1)®s),
and esk = (sko, sk1).

— Sign(esk, m): On input a message m, this algorithm returns the signature o = (0¢, 01), where
oo = Signy(sko, m), and o1 = Sign, (sk1,m) = (o1, h1,0%).

— Verify(epk,m,o): On input a message-signature pair (m, o) and enhanced public key epk =
(pk, pk’), this algorithm returns 1 if both of the two signatures are valid, 0 otherwise.

— RecP(epk, B, §): The recovering algorithm follows the security proof argument of [36]: Whenever
the box B asks a random oracle query (suppose total number of such queries is bounded by ¢),
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the algorithm selects a uniform response from the range of the random oracle and feeds it to the
box; it also maintains a table of all these queries. The recovering algorithm samples a message
m according to D and simulates the box B on m. When the box outputs a valid signature og, o1,
where o1 = (01, h1,0?), algorithm checks the table and identifies the index i of the first query
from B on (m, O’%). Then, it rewinds B to the state prior to the i-th query, and continues the
simulation picking new random query responses.

The above procedure is repeated until the box outputs another valid signature (o, o}) on the
same message m, where of = (o1, k), %), and also the index i that (m,ci) was queried is the
same for both o7 and o7.

Now the algorithm can extract the second secret key sky from (m, o1, h1,0?), (m, o1, h, o) using
the X protocol properties of the scheme that define Sig;. The recovery of s follows immediately.

Security Analysis: We first give some brief intuition about the three properties. It is easy to see
that unforgeability against adaptively chosen message attacks can be derived from the property of
Sig, as any forgery will imply also a forgery of Sig,. Note that signing queries are easy to simulate
because the simulator has the secret key for Sig,;, and can ask signing queries to the challenger
for Sig,. Privacy w.r.t. a secret-key oracle for any distribution can be achieved because any suc-
cessful privacy attacker will have to eventually query skj to the random oracle hence violating
the unforgeability of Sig;. Note that recoverability cannot violate privacy w.r.t. an arbitrary secret
key oracle, since it is achieved now via a non-black-box technique. It uses the fact that rewinding
the signing box and controlling the random coins in an execution, one can always find a pair of
signatures that reveal the secret key, something that yields the private data. Note that we consider
only the “non-trivial” signing box works for super polynomially many messages, otherwise, it can
be produced without containing the secret key. Details of the analysis are as follows:

Theorem 5. Scheme-V is unforgeable under adaptively chosen message attacks if the underlying
signature Stig, ts unforgeable under adaptively chosen message attacks. It achieves privacy w.r.t.
any secret key(signing) oracle if Sign, is unforgeable under adaptively chosen message attacks.
Also, Scheme-V achieves non-black-box recoverability w.r.t any non-negligible 5 and any message
distribution D with super logarithmic min-entropy.

Proof. Correctness is relatively obvious, the validity of a secret key for a signature scheme can be
easily verified, owner would check the validity when receiving the additional key pairs from the
authority. We will only demonstrate the security properties as follows:

— We first examine the unforgeability. Suppose A is an adversary who breaks the unforgeability
of Scheme-V, and C is the challenger in the security game of Sigy,.
After receiving s, pko from A, C respectively, the simulator generates a random key pair (sk1, pk1),
and runs the EnKey protocol with 4 and terminates with .4 obtaining epk, and the challenger
obtaining epk, sk, where epk = (pko, pki1,s’) and ' = H(sk1) & s.
Whenever A asks a signing query on m, the simulator asks such signing query to C to get og,
signs with sk to get o1, and returns A with (o¢, 01).
If A outputs a forgery (o7, 07) on m* which is never asked for signing query, then the simulator
outputs m*, oy as his forgery to C.

— Next, we will show privacy (with secret key oracle access). We will reduce the unforgeability of
Sign,to the privacy property.
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First, the simulator S gets pk; from the unforgeability challenger C and creates another key pair
(pk, sk), and sends pk to the adversary A. After receiving sg, s1 from A, S randomly chooses r
and a bit b, and sends (pk, pk’,r @ sp) as epk.

S can always answer the signing queries since he can sign with sk to get the first half of a
signature, and asks C for the second half.

Note that only when one queries an input a to the random oracle, it is possible for him to
predict even one bit of the output H(a). If the adversary can predict at least one bit of s, that
means he can predict at least one bit of r, thus he has to ask a random oracle query about sk
(which is the input of the random oracle for r) at some point. The simulator simply collects
all the random oracle queries of A, and checks whether it is the secret key corresponding to
pk1, whenever sk is found, the simulator stops and outputs a signature using sk on a message
which C is never asked for a signing query.

Further, we examine the recoverability. According to the notations in the general forking
lemma [2], we can see that acc = Pr[J > 1] = Pr[Fy A Fy] = Pr[Fy] Pr[F|Fy], where Fy
denotes the event that B makes a call to the hash function for a query m, and F5 denotes the
event that B outputs a valid signature for m. First, all messages submitted to be signed by
Rec are sampled from D, thus B will output a valid signature for each query with probability
at least ; hence, we have Pr[Fy] > §. Second, an efficient B can only store polynomially many
hash values or message-signature pairs. This is seen as follows: let L be the list of messages
m for which it holds that B(m) outputs a signature with non-negligible probability without
querying the hash function on that message. We claim that the size of this list L is is bounded
by Q=poly(A). Indeed, if the list is super-polynomial one can execute B repeatedly and obtain
all valid signatures that form list L. The signatures determine a list of values of size @) from
the table of the hash function that B never queries to its hash oracle. It follows that this corre-
sponds to a superpolynomial amount of information that is encoded in the description of B. By
a standard information-theoretic argument one can show that this is impossible as it suggests
that the adversary that constructs the box can be used to encode a super-polynomial amount
of information in a polynomial size description (from which the encoded information can still
be recovered).

Now recall that Hy (D) is w(log A), thus for a random sample m from D the probability that
m is included in the list L is at most Q/2¢0°8N) Tt follows that Pr[F}|[Fy] > 1 — Q/2¢(0g) > o
for some non-negligible a.

Combining the above fact with Pr[Fy] > §, we obtain that acc > ad. Following the general
forking lemma, we can see that the probability of finding a successful pair of signatures on a
same message in one rewinding is no smaller than (ad)?/q — €, where € is a negligible function
so that 1/e is the size of the range of random oracle, and ¢ is the number of random oracle
queries. After repeating the rewinding procedure for some polynomial in A number of times,
where ) is the security parameter, one can find a successful pair with probability 1 — ¢ where
¢’ is a negligible function. With such a successful pair, one can extract the secret key ski as
the knowledge extractor does in the X-protocol (or as in the reduction in [36]), and outputs
s =5 & H(sky).
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6.2 Leakage-deterring Identification

We will construct a leakage-deterring identification scheme by using a similar approach as in the
signature case. However here we will show our construction secure in the standard model, and thus
we need a novel method to embed the owner private data into the enhanced public key. In fact we
will need no additional assumption beyond the one employed for the underlying scheme.

Our construction of a leakage-deterring identification scheme is based on the class of identifi-
cation schemes which are derived from zero-knowledge proofs of knowledge protocols that can be
parallelly composed. We utilize the fact that given access to the code of any box that implements
the identification functionality, one can rewind the box and implement the knowledge extractor as-
sured to exist due to the soundness property of the zero-knowledge proof (this idea was used before
to obtain the related notion of non-transferability of credentials in [7,33]). We call the following
construction Scheme-VI and is based on a parameter ¢ that we specify below.

— KeyGen(1): This algorithm executes the KeyGen algorithm of the underlying identification
scheme, and returns the key pair (pk, sk).

— EnKey(O, A): This is a protocol executed between O, A with inputs (pk, sk, s), and (pk, s) re-
spectively. A runs the KeyGen algorithm to generate ¢t new key pairs (pky, sk1), .. ., (pke, skt),
and further, A calculates s’ = r @ s, where r = FEuxt(ski||...||skt,p) and Ext is a strong
randomness extractor (see below for implementation remarks) while p is the random seed.
The protocol terminates with O obtaining (epk,esk), and A obtaining epk, where epk =
(pk,pki,...,pke, ', p), and esk = (sk, skq, ..., skt).

— Identify (P, V'): This protocol is executed between P,V with inputs (epk, esk), and epk respec-
tively. The protocol is the parallel composition of the ¢ + 1 underlying identification schemes.
The protocol terminates with V' outputting 1 if he accepts the proof of knowledge of all secret
keys, and 0 otherwise.

— Rec(epk, B): The algorithm given B, runs the knowledge extractor algorithm for the parallel
composition of the ¢ schemes until all the secret keys of {ski,...,sk:} are recovered. Then it
applies the extractor on p and returns s = s’ @ Ext(ski]|...||sks, p)

Security Analysis: We first sketch the security properties. Recoverability is essentially the same
as the recoverability of Scheme-V. Impersonation resistance is also similar to the wunforgeability
property of Scheme-V; this property mainly relies on the fact that nothing related to the original
secret key of the owner sk is added to the epk, therefore the security of identification using the
original (pk, sk) can be reduced to the impersonation resistance of Scheme-VI. Regarding privacy,
according to impersonation resistance, after seeing a polynomial number of transcripts of interaction
between P, V', there is still unpredicatability on the secret key, (otherwise, one can impersonate by
eavesdropping) then applying the strong extractor one can get pure randomness out of the secret-
keys, and thus the owner data is hidden computationally. Details are given as follows:

Theorem 6. Scheme-VI is impersonation resistant if the underlying identification schemes are
impersonation resistant under parallel composition. It achieves privacy w.r.t. the secret key oracle
that plays the role of the prover and performs with the adversary the identification protocol. Also,
Scheme-VI achieves non-black-box recoverability w.r.t any non-negligible 9.

Proof. Correctness follows straightforwardly from the correctness of the underlying identification
scheme. Also, as explained above, impersonation resistance and recoverability are very similar to
the unforgeability and recoverability of Scheme-V, thus we only focus on the proof for privacy here.
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We first show that every secret key sk; still has sufficient conditional unpredicatability given
that the adversary adaptively makes queries for transcripts during identification.

Claim. The conditional unpredicatability of each sk; is at least w(logA), where A is the security
parameter, if the underlying identification scheme is impersonation resistant against a passive ad-
versary.

Proof. of the claim: After seeing adaptively queried transcripts, if there exists an adversary A who
can predict one of the secret keys sk; with non-negligible probability (conditional unpredicata-
bility is asymptotically smaller than w(log\)), then one can build a simulator which breaks the
impersonation resistance of the underlying identification protocol. In more details:

Suppose C is the challenger in the impersonation resistance game, when the simulator receivers
pk from C, he generates t — 1 key pairs (pk1, ski1),. .., (pki—1, ski—1), (Pki+1, Ski+1, - - -, (Dke, skt), and
sends A (pkl, N ,pki—l,pk,pki+1, N ,pkt).

The simulator asks the identification transcripts for pk from C, and for other public keys, the
transcripts can be perfectly simulated since the simulator knows the secret keys.

When A outputs a guess for sk;, the simulator uses this sk; to execute Identify as a prover
with C as a verifier.

It is obvious that C will accept the identification attempt of the simulator on behalf of the
prover with the same probability that A correctly outputs sk;. O

Under the above claim, the unpredictability of all the sk;’s concatenated together is sufficiently
large, therefore after applying the randomness extractor, the output r is uniform, thus the owner’s
private data is hidden due to the fact that the embedding works as a one-time pad. O

Remark 6. The strong randomness extractor Ext should work on any source with sufficient condi-
tional unpredictability along the lines of [24]. For instance, we can use the extractor derived from
the Goldreich-Levin hard-core predicate [17]. Intuitively, one can think of the view (protocol tran-
scripts adaptively queried) of the adversary as the output of a one way function on input {sk;}.
Using this, [17] implies an extractor of log A bits per instance and thus ¢ should be as long as
|s|/ log A.

Remark 7. If one is willing to allow additional intractability assumptions, a more compact con-
struction for leakage-deterring signature (in the RO model) and leakage-deterring identification is
also possible®. The construction would utilize two key pairs (pko, sko), (pk1, sk1) and the secret in-
formation will be embedded as E(pki, s), thus only sk; will be used by the recoverability algorithm.
Observe now that privacy will rely on the security of the encryption scheme (and thus may require
assumptions going beyond the underlying identification scheme). Furthermore reusing the same key
for signing and decrypting may not always be secure and some specialized systems would need to
be employed, for instance cf. [23].

7 Leakage-Deterring Cryptography Applications

In this section we explore in more detail practical scenarios where leakage-deterring cryptosystems
can be used to provide novel solutions to security problems related to sharing and transferring
cryptographic functions.

5 We thank an anonymous reviewer for pointing this out.
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Let us start with a more detailed motivating scenario: consider a user that maintains all her
e-mail encrypted on a mailserver. The user is approached by someone wishing to buy all e-mails sent
by the e-mail address x@y in the past, present and future. Using a regular encryption, the user may
release to the attacker an implementation of her decryption function that works only if the plaintext
is an e-mail sent by xQy (and rejects all other input). If the user does not care about the secrecy of
the e-mails from x@y, she has no strong reason to be deterred from releasing the implementation (all
her other messages can still be relatively safe assuming the implementation is sufficiently obfuscated
or delivered in hardware). Using our encryption however, she is deterred: if she releases the above
implementation (even in the form of a hardware token) an adverse action is guaranteed to take
place (via the recoverability algorithm): her private information will be revealed. Obviously, a
determined secret-key owner can always decrypt and release the plaintexts corresponding to those
e-mails individually. But this has to be done one by one, at a potentially high cost. In this scenario,
leakage-deterring public-key encryption ensures there is no way to optimize this operation: if one
wants to provide access to his decryption he has to do it on a “per-ciphertext” basis. Within a PKI
this enforces secret-key owners to practice more responsible secret-key management.

Recall privacy w.r.t. to secret key oracles (that would be the CCA flavor of our privacy property)
and recoverability can not be achieved simultaneously in the general case: the two properties are
mutually exclusive. Thus, one needs to choose a proper trade-off if he wants to implement leakage-
deterring public key schemes. Regarding PKE, our objective in this work is to maximize the scope
of recoverability: it should work for all (even partially functional) implementations; this makes
our primitive most useful from a self-enforcement perspective and necessitates the restrictions
we have made in terms of the privacy property. If the user wishes the private information to
remain hidden, she should provide no access to her secret-key. In the case of signature/identification
schemes the situation is more tricky since by nature of the functionality, the user is expected
to release signatures/identification transcripts publicly (which in some cases they may even be
adaptively selected). Thus, we must compromise and weaken our recoverability property in some
way. We resolved this by adopting a non-black-box recoverability algorithm. As expected, if the
implementation becomes “obfuscated” then recoverability would be infeasible. We believe the trade-
offs we utilized are natural for the primitives studied, but of course different tradeoffs can be possible
between privacy and recoverability, and we leave them as future work.

Depending on different application scenarios, we can embed various types of private owner
information to deter the leakage of a cryptographic functionality. We list three relevant scenarios
below.

Self-enforcement. In the context of self-enforcement the owner of the cryptographic functionality
has embedded into her enhanced public-key some private information that she normally prefers
to keep secret. This can be e.g., her credit-card number or similar piece of private information as
suggested by Dwork, Lotspiech and Naor [13] that introduced self-enforcement (in a different context
- see related work in the introduction). In this way, when using our leakage-deterring primitives,
if the owner releases any implementation of the cryptographic functionality, any recipient of the
implementation will become privy to the hidden information. This property “self-enforces” the
owner to keep the functionality to herself and solves the problem of how to deter the sharing of
software or hardware devices that implement cryptographic functionalities.

All-or-nothing sharing of cryptographic functionalities. In this scenario, the owner is obliged
to embed the secret key of the cryptographic primitive itself into the enhanced public-key (in
practice this can be done e.g., by a trusted key generator algorithm which will be running the
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embedding algorithm that is executed by the authority in our model). Using our techniques this
means that any working implementation of the cryptographic functionality would leak the whole
secret-key. In this sense, the cryptographic functionality becomes “unobfuscatable”, any program
that partially implements it, say for some types of inputs, can be transformed to a program that
implements it perfectly. Leakage-deterring primitives used in this way suggest a type of all-or-
nothing property for cryptographic keys: owners of a cryptographic functionality cannot partially
share it, they either have to keep it to themselves or share it fully. In practice, one can expect that
this is also a type of self-enforcing mechanism: either all information about the cryptographic key
will be leaked or none.

Anonymity revocation from implementations. In this setting, the owner of the cryptographic
functionality operates it under a pseudonym (i.e., the enhanced public-key is certified but without
openly identifying the owner). However, the embedded information is ensured by the authority to
be either the owner’s real identity or an identity credential that the owner prefers to hide. In this
setting, using our methodology, if any working implementation of the functionality is confiscated,
it will be possible to use the recovering algorithm to reveal the hidden identity credential. This
in turn, ensures some level of accountability: the owner remains pseudonymous as long as he does
not share the cryptographic functionality but can be identified in case any (even partially working)
implementation is leaked.

8 Conclusions and Open Problems

We introduced the notion of leakage-deterring cryptosystems. Our schemes have the property that
whenever an owner releases an (even partially) “functional” box for others to use instead of herself,
anyone who has access to the box can recover some private information that is embedded into the
public-key of the owner. We defined the security properties of these primitives and we provided
several constructions for public key encryption, signatures, identification.

Since this is the first step in the formal investigation of such primitives, several interesting
open questions remain. A natural question is how to combine the notion with traitor tracing and
other multi-user oriented cryptosystems. Another direction is with respect to CCA2 security: our
construction can potentially be optimized for efficiency and avoid the nesting of two encryptions.
A third direction is to see to what extent it is feasible to construct leakage-deterring signatures
and identification with black-box recoverability in the standard model or more generally explore
the tradeoff between recoverability and privacy in a comprehensive fashion. Last but not least, it
would be desirable to see how the trust to the authority can be reduced (and e.g., obviate the need
for the authority to know the secret information).

Acknowledgement: The authors thank the anonymous reviewers of this paper for their valuable
comments.
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A Identity Based Leakage-deterring Encryption

Definition of IBE: [40,5] IBE is a public key encryption mechanism that any string can be used as
a public key, while the corresponding private key of a string can be extracted by an authority. It is
composed of four algorithms:

— Setup(l’\): On input a security parameter, this algorithm generates a master key pair (mpk, msk).

— Extract(/D,msk): On input an identity I D, and the master secret key msk, this algorithm
outputs a key pair (pkrp, skrp) for this identity ;

— Enc(ID, m,mpk): On input a message m and an identity 1D, this algorithm returns a ciphertext
G

— Dec(skrp,c): On input a ciphertext ¢ and a secret key skrp, this algorithm returns the message
m.

Regarding to 2-layer hierarchical IBE (HIBE) [16], there is an extra Derive algorithm, that
given the secret key of any identity ID € {0, 1}, it derives the secret key for any identity ID||v €
{0,1}?" which has ID as a prefix. For more details about the definition of HIBE schemes, we refer
to [16].

ID-based Leakage-deterring Encryption: In identity based setting, the KeyGen algorithm and
EnKey algorithm can be merged into the EnExtract algorithm. Details are as follows:

— Setup(1?) This algorithm generates a master key pair (mpk, msk).

— EnExtract(O, A) This is a protocol between a user O and a key generator A with inputs (ID, s),
and [ID, (mpk, msk), s] respectively. The protocol terminates with both parties obtaining the
enhanced key pair (epk, esk) = ((pkip, s’), skrp) for the input identity.

— Enc(ID, m,mpk) On inputs message m and identity I D’s enhanced public key, this algorithm
returns a ciphertext c;

— Dec(skrp,c) On input ciphertext ¢ and secret key skjp, this algorithm returns the message m.

— Rec® ’D(epk‘, 0) Given oracle access to a decryption box B, and a message distribution D, which
B has §-correctness on, and with input the enhanced public key for a certain identity, this
algorithm returns s or L.

ID-IND-CPA Security (for ID-based leakage-deterring encryption): The IND-CPA security for iden-
tity based leakage-deterring encryption is slightly different with that of leakage-deterring PKE
which is defined in 3.2, as the authority is always assumed to be honest in this setting. Details are
described in the following game between the adversary and the challenger:

— The challenger runs the Setup algorithm and returns mpk to the adversary.

— The adversary adaptively chooses a sequence of identities ID1,...,ID,, and si,...,5, as the
private data for each identity, and then interacts with the challenger in the EnExtract protocol
to get enhanced public and secret keys for these identities.
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— The adversary chooses two messages mg, mi, a target identity /D which was not queried for
secret key before, and a string s*, and sends them to the challenger.

— The challenger randomly choose a bit b, and sends to the adversary ¢ = Enc(ID,my, mpk)
and epk where epk is the enhanced public-key of the user that corresponds to I D with private
information s*.

— The adversary outputs his guess b'.

We say an ID-based leakage-deterring encryption is ID-IND-CPA secure if Pr[b' = b] < 1/24-€ in the
above game, where € is a negligible function. If the adversary is required to claim the target identity
and the string in the beginning (before the secret key queries), we call it selective-ID-IND-CPA
secure. Furthermore, if decryption queries are allowed for the target identity (with the exclusion of
the challenge ciphertext) before the adversary outputs his guess, we call it ID-IND-CCA2 secure.

We note that the enhanced public-key epk will not be actually used for encryption; this is in
order to be compliant with the id-based nature of the primitive. However, the epk still carries the
private information of the user and is assumed to be a public-value that is available to anyone. The
only time that this value is relevant is in the operation of the recoverability algorithm that may
happen only after a leakage incident takes place.

As in remark 4 at the end of section 4.2, following the generic construction of leakage-deterring
PKE, we can similarly construct an identity based leakage-deterring encryption scheme by gener-
ating exponentially many secret keys for one identity, and using the “indicating string” to select
corresponding keys as in the generic construction. We omit the detailed description of the construc-
tion here.
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