

₩ Віоме	dical Research		BIOMEDICAL RE	SEARCH PRESS
<u>Available Issues</u> <u>In</u>	structions to Authors Japanes	<u>se</u>	>>	Publisher Site
Author:	ADVANCED	Volume	Page	
Keyword:	Search			Go
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publication	ns Register Alerts	?My J-STAGE HELP

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > <u>Abstract</u>

ONLINE ISSN: 1880-313X PRINT ISSN: 0388-6107

Biomedical Research

Vol. 30 (2009), No. 3 June pp.193-198

[PDF (609K)] [References]

Effects of extracellular chloride ion on epithelial sodium channel (ENaC) in arginine vasotocin (AVT)-stimulated renal epithelial cells

Toshiki Yamada¹⁾, Naomi Niisato¹⁾ and Yoshinori Marunaka¹⁾²⁾

- 1) Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- 2) Department of Respiratory Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine

(Received March 23, 2009) (Accepted April 22, 2009)

ABSTRACT

The epithelial Na⁺ channel (ENaC) contributes to control of blood pressure by reabsorbing Na⁺ in the cortical collecting duct of the kidney. The luminal Cl⁻ concentration in the duct varies under physiological conditions. As the body Na⁺ content is lower, the luminal Cl⁻ concentration in the duct becomes lower. Thus, we hypothesized that the extracellular Cl⁻ elevates ENaC activity in AVT-stimulated renal epithelial A6 cells (a model cell line of the cortical collecting duct) leading to recovery from a low body Na⁺ content. To clarify this point, we studied effects of extracellular Cl⁻ concentration on ENaC activity using cell-attached patch clamp technique. We found that ENaC had a single-channel conductance of 4.6 ± 0.1 pS (mean \pm SE) and channel activity (open probability, Po) of 0.30 ± 0.02 at a pipette potential of 60 mV. Lowering pipette Cl⁻ concentration diminished Po to 0.23 ± 0.02 associated with a significant decrease in open time from 0.78 ± 0.03 to 0.61 ± 0.02 s with no significant change in closed time, and shifted the current-voltage relationship leftward. These results suggest that the extracellular Cl⁻ regulates the ENaC-mediated Na⁺ reabsorption by affecting ENaC properties in AVT-stimulated renal epithelial cells.

Download Meta of Article[Help]

RIS

BibTeX

To cite this article:

Toshiki Yamada, Naomi Niisato and Yoshinori Marunaka; "Effects of extracellular chloride ion on epithelial sodium channel (ENaC) in arginine vasotocin (AVT)-stimulated renal epithelial cells", *Biomedical Research*, Vol. **30**, pp.193-198 (2009) .

doi:10.2220/biomedres.30.193

JOI JST.JSTAGE/biomedres/30.193

Copyright (c) 2009 Biomedical Research Press

Japan Science and Technology Information Aggregator, Electronic

