本期封面	
	栏目:
	DOI:
论文题目:	生物医用多孔Ti-Ni形状记忆合金的研究进展
作者姓名:	李丙运(1), 戎利建(1), 李依依(1), V.E.Gjunter(2)
工作单位:	1. 中国科学院金属研究所, 2. 医用材料与开关记忆植入物研究所, 俄罗斯托姆斯克市
通信作者:	戏利建
通信作者Email	:
文章摘要:	综述了多孔Ti-Ni形状记忆合金的发展历史、制备技术、生物相容性、力学性能及其应用等方面的研究进展. 一种用于人体硬组织修复和替换的新型生物医用材料-多孔Ti-Ni形状记忆合金,由于其多孔结构及独特的形状记忆与伪弹性、优良的生物相容性和力学性能等特点,伴随其制备工艺的改进,已经引起世界各国科学家的极大关注.
关键词:	多孔Ti-Ni形状记忆合金,自蔓延高温合成
分类号:	