
International Journal of Biomedical Imaging 
Volume 2008 (2008), Article ID 427989, 6 pages
doi:10.1155/2008/427989

Research Article

Exact Interior Reconstruction from Truncated 
Limited-Angle Projection Data

Yangbo Ye,1 Hengyong Yu,2 and Ge Wang2
 

1Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
 

2CT Laboratory, Biomedical Imaging Division, VT-WFU School of Biomedical Engineering, Virginia Tech, Blacksburg, 
VA 24061, USA

Received 6 December 2007; Accepted 24 January 2008

Academic Editor: Lizhi Sun 

Copyright © 2008 Yangbo Ye et al. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Abstract

Using filtered backprojection (FBP) and an analytic continuation approach, we prove that exact interior 
reconstruction is possible and unique from truncated limited-angle projection data, if we assume a prior 
knowledge on a subregion or subvolume within an object to be reconstructed. Our results show that (i) the 
interior region-of-interest (ROI) problem and interior volume-of-interest (VOI) problem can be exactly 
reconstructed from a limited-angle scan of the ROI/VOI and a 180 degree PI-scan of the subregion or subvolume 
and (ii) the whole object function can be exactly reconstructed from nontruncated projections from a limited-angle 
scan. These results improve the classical theory of Hamaker et al. (1980). 

1. Introduction

The importance of performing exact image reconstruction from the minimum amount of data has been recognized 
for a long time. The first landmark achievement is the well-known fan-beam half-scan formula [1]. A recent 
milestone is the two-step Hilbert transform method developed by Noo et al. [2] in 2004 In their framework, an 
object image on a PI-line/chord can be exactly reconstructed if the intersection between the chord and the object 
is completely covered by a field of view (FOV). In 2006, Defrise et al. [3] proposed an enhanced data 
completeness condition that the image on a chord in the FOV can be exactly reconstructed if one end of the chord 
in the object is covered by the FOV. Inspired by the tremendous biomedical implications including local cardiac CT 
at minimum dose, local dental CT with high accuracy, CT guided procedures, and nano-CT using analytic 
continuation we recently proved that the interior problem can be exactly and stably solved if a subregion in an 
ROI/VOI in the FOV is known [4–7] from fan-beam/cone-beam projection datasets, while the conventional 

wisdom that the interior problem does not have a unique solution [8] remains correct. 

Using the analytic continuation technique, here we further extend our exact interior reconstruction results to the 
case of a truncated limited-angle scan. The paper is organized as follows. In the next section, we summarize the 
relevant notations and key theorem. In the third section, we prove our theorem in the filtering backprojection 
(FBP) framework. In the fourth section, we will discuss relevant ideas and conclude the paper. 

2. Notations and Key Theorem

The basic setting of our previous work is cone-beam scanning along a general smooth trajectory 

As shown in Figure 1, a generalized PI-line of  is defined as the line through  and across the scanning 

trajectory at two points  and  on  with , where  and  are the parameter values 

corresponding to these two points. At the same time, the generalized PI-segment (also referred to as a chord)  

is defined as the segment of the PI-line between  and , the PI-arc the part of the trajectory between 

 and , and the PI-interval . Suppose that an object function  is constrained in a compact 

support . For any unit vector , let us define a cone-beam projection of  from a source point  on the 

trajectory  by 

Then we define a unit vector  as the one pointing to  from  on the trajectory: 
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We also need a unit vector along the chord: 

Note that the unit vector  is the same for all . Our main finding can be summarized as the following theorem. 

Theorem 1. Assume that there are three points  on the chord  with  situating between  and  . Suppose that 

(i) projection data  are known and  , both for any  and for any  on the line-

segment  and a small neighborhood; (ii) projection data  are known and  , both for 

any  with  and for any  on the line-segment  and a small neighborhood; and (iii)  is 

known on the line-segment  . Then the function  can be exactly reconstructed on the line-segment  .  

Let us remark on the conditions for Theorem 1 Our conditions (i) and (ii) imply that the cone-beam projection data 

are both longitudinally and transversely truncated but the derivative  is available for any 

 and any  on line-segment , which we define as data from a PI-scan, and for any  and any  

on line-segment . Because the amount of data  is less than a PI-scan for  on line-

segment , we have the limited-angle problem. Our condition (iii) demands a priori information for the exact 

interior reconstruction. We may also assume that the known data are on subintervals of the line-segment . In 

practice, the function  can be often known inside a subregion of the VOI, such as air around a tooth, water in 

a chamber, or calibrated metal in a semiconductor. 

3. Proof of Theorem 1 

Based on Katsevich's work [9, 10], early 2005 Ye and Wang proved a generalized FBP method that performs 
filtering along a generalized PI-line direction [11]. They also derived a generalized filtering condition for exact FBP 
reconstruction [11], which is special case of Katsevich's general weighting condition [10]. For an arbitrary smooth 

scanning curve  on the generalized PI-interval  and any point  on the chord  from  to , the 

exact FBP reconstruction formula can be expressed as [11] follows: 

where “PV” represents a principal value integral, and  the filtering direction which is taken in the PI-

segment direction and defined as  with the unit directions  and 

 supposes a clockwise rotation in the plane determined by  and , 

centered at  with  (see Figure 1). 

For a fixed point , the filtering plane remains unchanged for all . Following the same steps as in our 

previous work [6], we can change the variable  to  so that the direction for  now points to the direction , 

and the filtering direction is still specified clockwise (see Figure 2). Let  denote the angle from  ( ) to 

. Then (5) can be rewritten as 

Note that  now is changed to  which is independent of , and the value of  is negative. 

From (6) with PI-line filtering, we have 

 

Figure 1: Basic setting for exact 3D interior reconstruction from truncated limited-angle 
datasets.

 

Figure 2: Variable change from  to .
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Here (7) and (9)) are known for the given truncated projection data from our conditions (i) and (ii). As in [6], we 
can rewritten (8) as 

Here  is the point on  such that  is perpendicular to . We set up a complex plane  with its origin 

at  and real axis from  to  (see Figure 3). Using this complex plane, we rename  as ,  as ,  

as ,  as , and so on, on the real axis. We note that when , the  integrals in (11) are actually 

ordinary integrals and hence integrals of Cauchy’s type. By the Cauchy integral theorem, (11) and (8) represent 

an analytic function on the complex plane  with cuts  and  on the real axis. 

Now we return to (10) and rewrite it as 

Equation (12) defines an analytic function  in the complex plane with a cut  along the real axis, because 

for , the inner integral in (12) is an ordinary integral and an integral of Cauchy type. If ,  is not 

analytic. The values of  on , however, can still be determined uniquely by the analytic function  on 

. Indeed, for , 

Back to (6), now we have 

Recall that (7) and (9) are known for any  from our projection data, (8) is an analytic function on the complex 

plane with cuts  and , and (12) is a single-valued analytic function on the complex plane  with cuts 

 along the real axis. Therefore, (8) + (12) is an analytic function on . Since  is known on 

, (8) + (12) is known on . This uniquely determines the analytic function (8) + (12). Denote this analytic 

function as by  for  In order to reconstruct  for , however, we need to know 

 for . This can be done using (13). Equation (13) obviously holds for (8) too, because it is analytic on 

. Consequently, 

Using (15) to compute the value of (8) + (12) at , and using the known values of (7) and (9) at , 

we finally can reconstruct  on  exactly. 

4. Discussions and Conclusion

Because the exact interior reconstruction is unique from truncated limited-angle data according to Theorem 1, 
there are many interesting applications we should work on for exact reconstruction, including but not limited to 
traditional limited-angle tomography, circular cone-beam tomography, and reconstruction of a flat or plate-like 
object from data collected along a planer curve below or above the flat object [12]. Clearly, for practical 
applications we may stabilize the exact reconstruction process using various means such as penalty measures 
and knowledge-based constraints. We emphasize that other types of knowledge may also be incorporated in our 
exact interior reconstruction; for example, a digital atlas of the family of object under study As long as we use 
sufficient constraints, the theoretically exact reconstruction nature will surely be enhanced by numerical stability. 
We also acknowledge that the resolution or image quality with the truncated limited-angle scan could be affected 
by the scanning angle, sampling rate, detector resolution, and so on. Major efforts on research analysis, 
numerical simulation, and physical experiment are needed along this more promising direction. 

As an inspiring case, let us consider the 2D ROI-focused scan illustrated in Figure 4(a) Assume that there is a 
subregion  (white region) inside the compact support  that is half-scanned; namely,  satisfies the half-scan 

reconstruction condition if  for  in the gray region. Although the projection data is generally 

truncated in this setting, it can still be scanned by a limited-angle for any . Our theorem implies that 

we can exactly reconstruct the object function  on the whole support  if we have known the object function 

 in . Based on our previous results [4–6], the prior information can be reduced to a measurable subregion 

 

Figure 3: Complex coordinate system for the analytic continuity.
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in . This result can also be proved in the backprojection filtration (BPF) framework. Let us consider an X-ray 

path from any source  on the scanning trajectory and going through both  and . We can set up a 1D 

coordinate system along this X-ray path (see Figure 4(b)). Denote the 1D coordinate of  as , the 

coordinates of the intersections with  as  and , the coordinates of the intersections with  as  and , 

and . In this 1D case,  is supported on  and  is known on . According to the 

results of Pack et al. [13], the 1D Hilbert transform  of  can be exactly obtained on the interval . 

Based on the inverse Hilbert Transform [2, 14], we have 

Note that (16) is known for any , (17) is an analytic function with cuts on  and . Because 

 is known on , (17) is also known on . By the same argument as for (13), we can extend the 

values of (17) from  to . Hence  can be exactly reconstructed on the whole interval . 

Furthermore, let us revisit the so-called nontruncated limited-angle scanning problem. For clarity, we only 
consider the 2D case as illustrated in Figure 5(a). We assume that it can form a measurable region  by 

connecting two endpoints of the limited-angle scanning trajectory. Again, let us consider an X-ray path from any 

source  on the scanning trajectory and through the compact support . We can set up a 1D coordinate 

system along this X-ray path. Denote the 1D coordinate of  as , the coordinates of the other intersection 

with  as , the coordinates of the intersections with  as  and , with . In this 1D case,  is 

supported on  and  for  According to the results of Pack et al. [13], the 1D Hilbert 

transform  of  can be exactly obtained on the interval . Based on the inverse Hilbert Transform [2, 

14], we have 

While (18) is known for , (19) is an analytic function with a cut on . Because  is known on 

, (19) is also known on . Following the same argument as for (13), we can extend the values of (19) 

from  to . Thus,  can be exactly reconstructed on . This result is consistent with Theorem 

5.1 by Hamaker et al. in [15]. 

Although our work has been done within the X-ray CT framework, our results can be directly applied to other 
tomographic modalities that share similar imaging models such as MRI, ultrasound imaging, PET, and SPECT. By 
similarity between imaging models, we underline that the exponential Radon transform is a particular attractive 
area since ageneralized Hilbert transform theory has been reported for exact reconstruction from transversely 
truncated data [16, 17]. Clearly, extensions into higher dimensions and time-varying cases are theoretically 
possible as well. In all these cases, iterative algorithms can always be adapted or developed to produce optimal 
results, which can be stabilized or regularized subject to various constraints [18–23]. 

In conclusion, we have proved that the exact interior reconstruction is theoretically solvable. Theorem 1 and key 
techniques in its proof have numerous practical implications. Hopefully, our results have opened a new direction 
to advance the local reconstruction area. We are actively working on exciting possibilities discussed above. 
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