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Abstract

An efficient postprocessing method to compensate for the scattering and blurring effects in inhomogeneous 
medium in SPECT is proposed. A two-dimensional point spread function (2D-PSF) was estimated in the image 
domain to model the combination of these two physical effects. This 2D-PSF in the inhomogeneous medium is 
fitted with an asymmetric Gaussian function based on Monte Carlo simulation results. An efficient further blurring 
and deconvolution method was used to restore images from the spatially variant 2D-PSF kernel. The 
compensation is performed using a computer-simulated NCAT phantom and a flanged Jaszczak experimental 
phantom. The preliminary results demonstrate an improvement in image quality and quantity accuracy with 
increased image contrast (25% increase compared to uncompensated image) and decreased error (40% 
decrease compared to uncompensated image). This method also offers an alternative to compensate for scatter 
and blurring in a more time efficient manner compared to the popular iterative methods. The execution time for 
this efficient postprocessing method is only a few minutes, which is within the clinically acceptable range. 

1. Introduction

Single photon emission computed tomography (SPECT) images are degraded by attenuation, collimator and 
detector blurring, and photon scatter. Several studies have shown that compensations for these degradations 
can improve the quantitative accuracy and clinical lesion detectability [1–6]. The goal of this study is to develop a 

new method that can compensate for the scatter and blurring effects and improve the quantitative and 
qualitative accuracy of clinically realistic SPECT images. Currently, the state-of-the-art compensation method is to 
model the scatter and blurring effects in the projector/backprojector pair of an iterative reconstruction algorithm 
[7–20]. The main problem with this iterative compensation method is its heavy computational burden. Also, 

preprocessing procedures have been investigated to compensate for these physical degradations. The blurring is 
compensated in a preprocessing procedure such as using the frequency-distance principle [21–24]. The scatter 
is corrected using energy-distribution-based methods [25–27]. 

Previously, we have proposed a postprocessing method to compensate for the scattering in homogeneous media 
[28]. In this paper, we extend the postprocessing method to compensate for the scatter and blurring in 
inhomogeneous scattering media. We first reconstruct a raw image using an efficient analytical or iterative 
algorithm that corrects for attenuation only. We then model the scatter and blurring using a spatially variant two-
dimensional point spread function (2D-PSF) in the inhomogeneous scattering media and parameterize the 2D-PSF 
based on Monte Carlo simulations. Finally, we use an efficient further blurring and deconvolution method to 
restore the image. 

2. Method

2.1. Monte Carlo Simulations

Monte Carlo simulations have been widely used in different areas of medical physics with the advantage of 
powerful computing systems [29, 30]. These Monte Carlo modeling techniques are ideal for SPECT because of the 
stochastic nature of radiation emission, transport, and detection processes. However, they require very long 
computational times. In this paper, we used the Monte Carlo simulation package SIMSET [31] to generate SPECT 
data with scatter contamination and detector response. The Monte Carlo data was used as a standard for 
scatter and blurring modeling. In the simulation, the collimator was modeled as a parallel hole collimator with a 
thickness of 2 cm and hole diameter of 0.14 cm. The detection energy window was centered at 140 keV with 
a width of 10%. The radius of rotation was 20 cm. For each phantom study, two sets of projection data were 
simulated. The first dataset was primary photons representing an ideal data acquisition, in which scattered 
photons were perfectly rejected. The second dataset contained scattered photons only. In each simulation, one 
billion photon histories were generated to yield low-noise projection data. 
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2.2. Computer Simulation Phantom

An NCAT phantom [32] was used in computer simulations. The attenuation map and activity distribution are 
shown in Figure 1. The intensity ratio of the activity in the myocardium versus background tissues was 5:1. The 40
 cm  40 cm object region was digitized onto a 129  129 array with a pixel size of 0.31 cm (the array size of 
129  129 was chosen to allow the placement of the point source in the center of the object). The object is 
centered on the SPECT camera's rotation axis. The projection data was collected with 300 view angles over a full 

360°. 

2.3. Experimental Phantom

A flanged Jaszczak hot-rod/cold-sphere phantom was scanned for one hour using a Philips IRIX SPECT system. 
The phantom was filled with water and 21.6 mCi of Tc-99m. Three low-energy high-resolution parallel-hole 
collimators were used during data acquisition. The rotation radius of the collimators was 24 cm. The data were 

collected with 180 view angles over a full 360°. The image was reconstructed in a 128  128 array with an image 
pixel size of 0.28 cm. 

2.4. The Postprocessing Method

Our postprocessing method consists of three steps: (1) an efficient analytical or iterative algorithm that corrects 
for attenuation only is used to reconstruct a raw image; (2) a spatially variant two-dimensional point spread 
function (2D-PSF) in the inhomogeneous scattering medium is estimated; (3) an efficient, noniterative method is 
developed to restore the image. 

2.4.1. Reconstruction Algorithm

We started with the raw SPECT projection data. They were contaminated by attenuation, scattering, and 
collimator blurring. Instead of trying to subtract the estimated scattered data from the projections, we can 
directly reconstruct the raw image from these projection data using either an analytical reconstruction algorithm 
[33–36] or an iterative ML-EM reconstruction algorithm [37–39]. Here, we used the iterative algorithm as 

follows: 

where  represents one pixel in the image space,  is the measured SPECT emission data, and  is the known 

coefficient that represents the contribution of image pixel i to projection bin j with the attenuation map . The 

summation over k is the projector, and the summation over j is the backprojector. This algorithm reconstructs a 

raw image  with attenuation compensation (AC). However, the scattering and collimator blurring are not 

corrected. Our postprocessing method was applied to this raw image . 

2.4.2. The Two-Dimensional Point Spread Function (2D-PSF)

The raw image  can be modeled as a blurred version of the original image f: 

where the blurring kernel  is what we call a 2D-PSF in the image domain, and  is a small positive 

number (i.e.,  in our study), representing half the size of the kernel h. The discrete version of this relation can 

be written as 

For each image pixel h is a 2D blurring matrix with the size of . The true image f can be 

solved if the kernel h is known. However, this 2D-PSF h contains the effects of collimator blurring and scattering 
and it is normally hard to obtain. Furthermore, the 2D-PSF is spatially variant, which means that it changes for 

every image pixel . 

This 2D-PSF models the scattering effect and collimator blurring in the 2D image domain instead of in the 
conventional 1D projection domain. It is also different from the “effective scatter source image” as proposed by 

Frey and Tsui [11]. Both being in the image domain, the effective scatter source image is different for each 
projection view and when a projection is applied to this effective image, the estimated scattered projection at 
this view is obtained; our proposed 2D-PSF is a kernel that relates the true image and the raw reconstructed 
image. Also, we can obtain any projected blurring kernel by performing an attenuated projection operator on the 
2D-PSF. 

We model the 2D-PSF h in (3) as a Gaussian function with five variables (a short explanation of the reason why 
we are able to use the simple Gaussian function is discussed in the appendix): the magnitude of the Gaussian , 

full width at half-maximum in the long-axis direction , full width at half-maximum in the short-axis direction 

, and the center  of the Gaussian: 

 

Figure 1: Two-dimensional NCAT phantoms: (a) activity distribution; (b) nonuniform 
attenuation distribution.

(1)

(2)

(3)



where  and  are the functions of the point source position . 

Here, we demonstrate a similarity comparison of a measured 2D-PSF and its corresponding Gaussian fitting 
function. Figure 2(a) is the 2D-PSF calculated from a point source at a distance of 7.5 cm to the center of the 
rotation using Monte Carlo simulation. Figure 2(b) is the Gaussian function with parameters fitted to the 2D-PSF. 
The comparison indicates that the two-dimensional Gaussian distribution is a good fit for the 2D-PSF. 

2.4.3. Parameterization of 2D-PSF

In order to observe the variations of the 2D-PSF in different locations of the object, we perform Monte Carlo 
simulations for point source at eight different locations. A uniform cylinder phantom with elliptical cross-sections is 
used. The raw reconstructed image of each point source is related to the 2D-PSF at the same location. The 
locations of the point sources are displayed in Figure 3. 

In our previous study of the 2D-PSF [40], we discovered that in homogeneous scattering media, the 2D-PSF is 
rotationally symmetric with respect to the rotation center, which means that the 2D-PSF with a constant radial 
distance has the same shape for all angles but is rotated by a certain angle. Therefore, the 2D-PSF is estimated 
only on the positive x-axis (Figure 3). Also, because of the localized character (i.e., small width) of the 2D-PSF, it 
is convenient to have this assumption in the inhomogeneous case except for the variations from the different 
attenuation coefficients. For rotationally symmetric point sources in inhomogeneous media, if the attenuation 
coefficients are the same for two different point locations, we assume that the 2D-PSFs are the same; if the 
attenuation coefficients are different, we estimate the 2D-PSF according to different attenuation factors. To 
estimate the variations of the 2D-PSF with local attenuation coefficients, three sets of Monte Carlo simulations 
have been performed. In each of these three simulations, we use uniform attenuation maps with the same 

shapes but with different coefficients:  c  representing the bone,  c  representing the 

tissue, and  c  representing the lung. All the other configurations are the same for these three 

simulations. In Figures 4–6, we show the variations of the amplitude , FWHM on the short axis, and FWHM on 

the long axis as a function of d, the distance from the point source to the rotation center. The variations of the 
amplitude  are shown in Figure 4. It decreases with d and also varies for different attenuators. The values of  

are larger in highly attenuated objects: largest in the bone and smallest in the lung. This distribution agrees with 
the scatter probability derived from the Klein-Nishima formula [41]. We fit  as a function of both d and the 

attenuation distribution 

in which 

where  is dimensionless and represents the relative magnitude increase due to scattering. The second-order 

polynomial of the attenuation factors is chosen to get reasonably well-fitting results. 

The full width at half-maximum (FWHM) of the Gaussian function is determined by the combined effects of 
collimator blurring and scatter blurring. Because the amplitude of the reconstructed image from the scattered 
data is small compared to the reconstructed image from the primary photons (see the appendix), the FWHM of 
the h is mainly determined by the FWHM of the reconstructed image from the primary photons. Therefore, the 

 

Figure 2: Comparison of a 2D-PSF of a point source located at a distance of 7.5 cm from 
the rotation center using the Monte Carlo simulation and the Gaussian model; (a) Monte 
Carlo simulation; (b) Gaussian model.

 

Figure 3: Estimation of the image domain 2D-PSF h by performing Monte Carlo simulations 
for eight different point source locations (marked by plus signs).

 

Figure 4: Variations in amplitude of the 2D-PSF as a function of d from eight-point Monte 
Carlo simulations. Solid, dotted, and dashed lines represent the simulation using a uniform 
attenuation map with coefficients of 0.04 c  (lung), 0.15 c  (soft tissue), and 0.25 c

 (bone), respectively.

 

Figure 5: Variations in FWHM on the short axis of the 2D-PSF as a function of d from eight-
point Monte Carlo simulations. Solid, dotted, and dashed lines represent the simulation 
using a uniform attenuation map with coefficients of 0.04 c  (lung), 0.15 c  (soft 
tissue), and 0.25 c  (bone), respectively.

 

Figure 6: Variations in FWHM on the long axis of the 2D-PSF as a function of d from eight-
point Monte Carlo simulations. Solid, dotted, and dashed lines represent the simulation 
using a uniform attenuation map with coefficients of 0.04 c  (lung), 0.15 c  (soft 
tissue), and 0.25 c  (bone), respectively.

(4)

(5)

(6)



blurring in the 2D-PSF is most affected by collimator blurring and is independent of the attenuators. This is 
verified by the simulation results as shown in Figures 5 and 6. As the source moves from the center of the object 
toward the edge, the value of  decreases (Figure 5). Little change is observed among three different 

objects. Figure 6 shows a plot of , the full width at half-maximum on the long axis of the Gaussian function. 

It is observed that the value of  barely changes as the source moves from the center toward the edge. 

Also, note that the largest difference is a little over one pixel. Similar variations are proposed by Zeng and Huang 
[42]. These two parameters are fitted based on a distance-dependent model [43], which will not change for 
different attenuators: 

where r is the radius of the collimator hole, l is the thickness of the collimator, d is the distance from the point 
source to the center of the object , and D represents the distance from the center of rotation to the detector in 
cm, which equals to 20 cm in our simulations. 

With (4)–(7), we can calculate the 2D-PSF for any point source inside the object. These empirical formulae 

eliminate the need for extensive Monte Carlo simulations for each point source. Also, the estimation of the 2D-
PSF using these formulae is independent of the raw image of the simulation phantom. It is derivable from the 
attenuation map and configurations of the collimator and can be calculated before reconstruction. 

2.4.4. Image Restoration

As the 2D-PSF is a spatially variant, a normal deconvolution algorithm cannot be used. In order to avoid the long 
computational time of using iterative restoration algorithms, we used a further-blurring and deconvolution 
method to restore the image [42]. This method converted the raw image with a spatially variant point spread 
function into a further blurred image with a spatially invariant point spread function, and then used an efficient 
technique (e.g., a frequency domain filtering) for deblurring. 

The further blurring was implemented by using a rotational convolution. Let the raw reconstructed image be . 

We rotated the image  counterclockwise by a small angle  about the axis of the detector rotation obtaining  

and rotated  clockwise by  obtaining . When necessary, we rotated the image  counterclockwise by  

obtaining  and rotated  clockwise by  obtaining  and so on. A weighted sum of these rotated images 

gives a further blurred image 

where the weighting factors  form a convolution kernel. The sum of  is normalized to 1 to assure the 

consistency of the image intensity. The weighting factors  are chosen empirically, so that the 2D-PSF is spatially 

invariant.  is the amplitude of 2D-PSF discussed in Section 3, which is used to normalize the amplitude of the 

raw image  with different radial distances d. 

Now, this further blurred image has an approximately spatially invariant point spread function  and this  is 

nothing but the 2D-PSF at the center of the object. Then, we perform an efficient inverse filtering (e.g., the 

Wiener Filtering) on this image  to obtain the restored image f in (1). 

2.5. Assessment of Restored Images

Several measurements were performed in the computer simulation results to evaluate the improvement of the 
image quality using the proposed compensation method. 

3. Results

3.1. Computer Simulations

The Monte Carlo simulation data for the NCAT phantom was used to reconstruct the raw image using the ML-EM 
iterative algorithm. The attenuation correction was performed in the ML-EM reconstruction using a blurred 
attenuation map. The map was blurred with a Gaussian function to match the resolution of the emission data. 
The parameters of this Gaussian function are empirically chosen to obtain the optimal reconstructed image with 
least cross-talk artifacts. Figure 7(b) demonstrates the raw reconstructed image without using the blurred 
attenuation map, in which there were cross-talk effects due to the unmatched resolution between the 
attenuation map and the emission data. Figure 7(c) shows the raw image reconstructed using the blurred 
attenuation map. The 2D-PSF was then estimated using a smeared attenuation map and collimator parameters. 
This smeared attenuation map used in the 2D-PSF estimation is different from the blurred map used in the 
reconstruction. This smearing is to integrate the influence of neighborhood pixels into the point source because 

(7)

(8)

(a)

(b)

(c)

Sum-squared error (SSE) was used to measure the average discrepancy of the restored image with 

respect to the original image. It is defined as the averaged sum of the squared pixel difference as follows: 

where  and  represent the restored value and the true value for pixel i, respectively, and N is the 

total number of pixels calculated. 

(9)

Contrast (CR) between myocardium and background is defined as 

where FG represents the average pixel value in the myocardium, and BG represents the average pixel value 
in the background. 

(10)

Noise was measured as the standard deviation of pixel counts in the uniform background, normalized 

by the mean activity of that region. 



the 2D-PSF represents the total scattered photons that originate from a point source and interact with its 

neighborhood pixels. For restoration, the further blurred image  was obtained by rotational convolution: 

where  represents the raw image, and  represents the image rotated by an angle . The weighting factors 

were determined empirically to get image  so that it has a spatially invariant point spread function. Wiener 

filtering was then performed to restore the further blurred image  Figure 7(d) shows the restored image. It is 

observed that there exists a dishing effect in the liver and boundary area. This is caused by the over filtering in 
the inverse filtering step. The tradeoff between over filtering and the effectiveness of the inverse filtering is a 
limitation of our method and needs further investigation in the future. A horizontal profile through the center of 
the images is shown in Figure 8. 

The contrast, SSE, and noise were calculated for all images to illustrate the improvement of image quality in the 
restored image (Table 1). The raw image here is reconstructed with a blurred attenuation map. It is observed 
that after compensation, the quantitative accuracy and contrast were improved, and noise was controlled from 
being elevated. 

3.2. Phantom Experiment

The ML-EM iterative algorithm with 50 iterations was used for raw image reconstruction and attenuation 
correction. The 2D-PSF was estimated based on the water-filled uniform attenuator and the low-energy high-

resolution collimator. For image restoration, the further blurred image  was obtained by rotational convolution 

as follows: 

The restored image was obtained after application of Wiener filtering. Figure 9(c) shows the restored image. It is 
observed that the restored image is less noisy than the raw image, as shown in Figure 9(c) compared to Figure 9
(b). This may be due to the fact that the Wiener filter is a band-pass filter, and the high-frequency noise is 
suppressed. 

4. Discussions

The goal of this postprocessing method is to develop a time efficient compensation method and overcome the 
heavy computational burden in the iterative reconstruction-based method. There are several issues to mention in 
this section. 

4.1. Accuracy and Generality of the 2D-PSF Estimation

The estimation of the 2D-PSF is the main challenge of the proposed method. The 2D-PSF models the scattering 
and collimator blurring in the image domain instead of the conventional projection domain. We used a Gaussian 
function to approximately model the 2D-PSF. The validity of using the Gaussian function was discussed. We 
derived empirical formulae for the parameters of the Gaussian function from the Monte Carlo simulations. As the 
2D-PSF is object-dependent, we need to pay attenuation to the generality of the estimations. As discussed in 
this study, the parameter  of the Gaussian function depends on the local attenuation coefficient, and the 

FWHMs stay the same for different attenuation distributions and only depend on collimator configurations. More 
Monte Carlo simulations for objects with various sizes and shapes are desired to further determine a more 
accurate and general 2D-PSF model. 

4.2. “further Blurring and Deconvolution” Restoration 

This method efficiently restores images with spatially variant point spread functions. The advantage of this 
approach is its fast implementation compared with the conventional iterative algorithms. However, this is an 

approximate method, and the rotation angle  and the weighting factors in (8) are currently determined 

empirically. As the goal of the postprocessing method is to cut down the computational time for the 
compensation, an efficient restoration method like this one is desired. Other efficient restoration methods with 
the capability of deblurring spatially variant point spread functions can also be used. 

 

Figure 7: (a) NCAT phantom image, the regions of interest for contrast analysis are marked; 
(b) raw reconstructed image without using blurred attenuation map; (c) raw reconstructed 
image using blurred attenuation map; (d) restored image using the proposed method.

 

Figure 8: Horizontal profiles through the center of the images.

 Table 1: Comparisons of image quality for computer simulation results.

 

Figure 9: (a) Jaszczak phantom; (b) raw reconstructed image; (c) restored image using the 
proposed method.

(11)

(12)



4.3. Computational Time

The computational time for this postprocessing compensation method was reduced compared to the iterative 
reconstruction-based method. The current time for fast implementation of the reconstruction-based method for a 

 image array is in the range of thirty minutes [1, 17]. In this proposed postprocessing method, the 

computer time for getting a two-dimensional attenuation-corrected raw image was in the order of seconds for 
fast reconstruction algorithms [34, 35, 39]. We then precalculated the 2D-PSF and stored it in the computer 
memory. In the last step, all we needed was a few more seconds for image restoration (i.e., rotational 
convolution and Wiener filtering). Therefore, the total computer time for this postprocessing compensation 
method was only few minutes and is acceptable for clinical applications. 

5. Conclusions

We have presented an efficient postprocessing method to compensate for scattering and blurring effects in 
inhomogeneous media. The major challenge of the method is to accurately estimate the 2D-PSF in the image 
domain. Empirical formulae are proposed to model the 2D-PSF variations with the various locations within 
nonuniformly attenuated objects. From the clinical aspect, the implementation of our method is faster (within 
several minutes) than the iterative reconstruction-based compensation method. One limitation of this study is 
that it is developed in two dimensions and does not consider scattered photons from out-of-plane sources. Our 
future work includes modeling the scattering with a 3D-PSF. 

Appendix

Monte Carlo simulations are performed to generate two sets of projection data: one is the primary scatter-free 
data, denoted by p, and the other is the scattered data only, denoted by s. Both datasets are contaminated by 

blurring effect. We use  and  to represent the raw reconstructed images from primary and scattered photons, 

respectively. The sum of these two images (denoted by ) is the raw image with both scatter and blurring 

contaminations. As defined in (1), the amplitude of the 2D-PSF is determined by the total volume change in the 

image  with repect to  Figure 10 shows the profiles of the  and  of a point source. Although the ratio 

of total volume from the image  over the total volume from the image  is around 2:1, the amplitude of the  is 

much larger than that of the . Therefore, the shape of the 2D-PSF is determined by the shape of point source 

image . Also in Figures 11(a) and 11(b), we demonstrate the comparison of the 2D-PSF (related to the ) with 

the fitted Gaussian function in both linear and logarithmic scales. It is observed that the Gaussian function fits the 
overall shape of the 2D-PSF very well except in the tails of the 2D-PSF. The discrepancy in the tails is magnified in 

Figure 11(b) in logarithmic scale. Compared with the amplitude and total area of , the discrepancy in the tails 

from the Gaussian fittings is very small and neglectable. Therefore, the Gaussian function is a good fit for the 2D-
PSF. 

Another point worth mentioning is the asymmetry shape along the long axis direction of the 2D-PSF. Previous 
study [9] discovered the asymmetric shape of the projection-domain scatter response function and modeled it 
with two different Gaussians on either side of the point source. In our approach, it is not necessary to model the 
scatter with two Gaussians. One reason for that is our 2D-PSF is a reconstructed image from all the asymmetric 
projections. The asymmetry in the projections is balanced out and not significant observed in the 2D-PSF. Figures 
12(a) and 12(b) show the plots of the 2D-PSF on the long axis for point sources with three different radial 
distances. The asymmetry can be barely observed even in the logarithmic scale. Furthermore, as the amplitude of 

 is much smaller than that of  as observed in Figure 10, the asymmetric distribution of the scatter image  

contributes little to the image , which represents the overall effects of both blurring and scatter. Therefore, it 

is reasonable to model the scatter and blurring with one Gaussian function in (4). 
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