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Abstract

Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The 
computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive 
acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic 
memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the 
conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides 
both projection data and reconstructed image volume into subsets according to geometric symmetries in circular 
cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the 
subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and 
combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-
simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original 
precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared 

to traditional CPU implementation. 

1. Introduction

Computed Tomography (CT) has become one of the most popular diagnostic modalities since its invention thirty 
years ago. Compared with 2D parallel-beam and fan-beam CT, 3D cone-beam CT system is able to achieve higher 
special resolution and better utilization of photons [1]. With the rapid development of detector technology, the 
single detector unit is getting smaller and smaller while the number of detector units is becoming larger and 
larger. This means that there will be larger amount of projection data needed to be processed in 3D cone-beam 
CT system. For example, PaxScan2520, a flat panel detector made by Varian, has  detector units. The 

output of each detector unit is 16 bits. The size of projection data is about 4 GB for a 720-view CT scan. The 

size of reconstruction image is about 512 MB for a 5123 image array and is 4 GB for a 10243 image array. The 
gigabyte data size is huge even for a graphic workstation. Currently, image reconstruction speed is still a 
bottleneck for the development of 3D cone-beam CT. The study of fast and efficient reconstruction algorithms for 
large volume image and their implementation on hardware or software will have important significance both 
theoretically and practically [2, 3].  

The Graphics Processing Unit (GPU) can process volume data in parallel when working in single instruction 
multiple data (SIMD) mode [4]. Because of the increasing demand of computer game market and engineering 
design, the development of GPU has been much faster than CPU. Nowadays the processing capability of GPU is 
increasing dramatically. The increasing programmability of GPU has made it possible that certain general purpose 
computing based on CPU can be implemented on GPU with a much faster computation speed, and general 
purpose GPU computing has become another hot research topic, which includes its application on CT image 
reconstruction [3, 5].  

Back to 1990s, only high-end workstations, such as the SGI Octane or Onyx, had the level of graphics hardware 
necessary for CT image reconstruction. Cabral et al. were the first to employ this hardware for the acceleration of 
CT reconstruction [6]. With the fast development of the low-cost PC-based graphics hardware of similar 
capabilities than that of the SGI, many researchers recently have tried to implement both iterative and analytic CT 
image reconstruction using GPU-acceleration [5, 7–10]. Usually the size of graphics card memory is much less 

than system memory, which imposes a big constraint on the GPU-based image reconstruction. The size of the 

volume image array for most GPU-accelerated CT reconstruction is generally limited to 5123. Muller and Xu have 
studied the CT image reconstruction for large volume data [8]. They divided the target volume using a method 
similar to Octree and proposed to reconstruction those small bricks one by one for large volume data. Schiwietz 
et al. also presented a memory management strategy that decreases the bus transfer between main memory 
and GPU memory for reconstructing large volume [9]. In this paper, we study how to partition the data to fit them 
into the graphics card memory. A new method of the projection data partition for large volume data is proposed. 
According to rotational symmetry and vertical symmetry in circular cone-beam projection layout, the method 
divides both projection data and reconstructed image volume into subsets. By packing the subsets of data into 
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the RGBA channels of GPU, a fast reconstruction for large data volume can be implemented.  

This paper is organized as follows. In Section 2, our GPU-accelerated backward-projection for FDK algorithm is 
introduced, and then the utilization of geometric symmetries is described. In Section 3, the partition scheme for 
reconstructing large data volume is presented. In Section 4, numerical experiments on various datasets are 
presented to evaluate the speedups with our method. In Section 5, relevant issues are discussed. 

2. Methods

The filtered back-projection algorithm proposed by Feldkamp, Davis and Kress (FDK) for 3D volume reconstruction 
from circular cone-beam projections still remains one of the most widely used approach [11]. In this algorithm, 

the most time-consuming part is the back-projection procedure, which has a complexity of  in the spatial 

domain and constitutes the bottleneck for all software solutions [8]. So here we purposely concentrate on using 
GPU to accelerate the backward-projection of the reconstruction program. Because the backward-projection is 
very similar for different CT image reconstruction algorithms, it will be easy to adapt our scheme into different 
reconstruction algorithms. 

2.1. GPU Accelerated Backward-Projection for FDK Algorithm 

Current GPUs can be used either as a graphical pipeline or as a multiprocessor chip thanks to the CUDA interface 
from Nvidia. For both options, the acceleration factor of GPU is high. Xu and Mueller have observed that an 
implementation of the cone beam back-projection using the graphics pipeline is 3 times faster than the one made 
with CUDA interface [12]. Hence we use the graphics pipeline to accelerate CT reconstruction in this paper. In 
order to harness GPU to provide acceleration of 3D volume image reconstruction, we represent reconstructed 
volume as an axis-aligned stack of 2D-textured slices. The volume may be represented by three kinds of proxy 
geometries as shown in Figure 1. If the stack of 2D-textured slices aligned along the rotation axis  (Figure 1(c)) 

is adopted, only one data set is enough for circular cone-beam reconstruction. Otherwise, two copies of the data 
set should be used simultaneously in GPU memory for decreasing the inconsistent sampling rate of volume. This 
can cause bottlenecks when the memory bandwidth is less than the compute bandwidth, and also needs to 
merge the two textured slices stacks in each backward-projection loop [13]. Hence, we choose the model shown 
in Figure 1(c) as reconstructed volume model. 

Figure 2 shows the geometry between the X-ray source, the reconstructed volume and the detector of cone-
beam CT. The source-to-rotation center distance is d, the source-to-detector distance is D, and the rotation axis 
of reconstructed volume is . The target volume is represented as a stack of 2D slices (textures) perpendicularly 

aligned along  axis. The key for the GPU-accelerated backward-projection is to calculate the projection positions 

of the vertices of every slice on the X-ray detector of cone-beam CT system. If the projection positions of the four 
vertices of a slice on the X-ray detector are produced, we can generate the projection coordinate of each voxel of 
the slice by interpolating the coordinates of the vertices in GPU rasterizer, and achieve the backward-projection 
from a projection image to the slice in GPU fragment shader.  

Here is our detailed algorithm for backward-projecting a projection image to a volume slice based on GPU. As 
shown in Figure 2, the slice under reconstruction has four vertices  , and , whose projection positions 

in detector space are , and , respectively. According to projective-texture mapping theory [14, 15], we 

decompose and express the full coordinate transformation from volume space to detector space as a series of 
matrices, as shown in formula (1). As compared with the method presented in [12], formula (1) focuses on 
calculating the projection coordinates of any one vertex of a slice in circular cone-beam projection layout. The 
coordinates in detector space of the four projection positions may be computed in parallel in GPU according to 
this formula:  

In formula (1), the coordinate of a slice vertex in volume coordinate system is expressed as a 4D homogenous 

vector . A  rotation matrix  rotates the volume coordinate system by  degrees in counter-

clockwise direction. Another  translation matrix  translates the volume coordinate system a distance of d 

along the negative axis. The two matrices  and  jointly map the vertex coordinate  from volume coordinate 

system ( ) into source coordinate system ( ). A  perspective projection matrix , 

determined by the source location and the detector dimensions  and , defines a frustum for cone-beam 

projection. The parameters  and  of the matrix  denote the distances from x-ray source to the near and far 

clipping planes of the frustum, respectively. The matrix  implements the subsequent perspective projection that 

maps the frustum into a cube clip space, whose Cartesian coordinates are between  and 1. Then a texture 

 

Figure 1: Axis-aligned stack of 2D-textured slices for representing reconstructed volume. (a) 
along  axis aligned stack,  (b) along Zv axis aligned stack, and (c) along the rotation axis 

 aligned stack.

 

Figure 2: Geometry of back projection. The slice under reconstruction has each filtered x-ray 
image projected onto it by projective texture mapping.

  

(1)



coordinate conversion matrix , defined by the horizontal and vertical numbers of detector units, produces the 
homogeneous coordinates  in detector space for the vertex .  

By implementing the calculation of formula (1) in SIMD way in the vertex shader of GPU, the rectangle texture 
homogeneous coordinates of the four projection positions , and  in detector space are obtained. Then 

the fragments corresponding to the voxels of slice are generated in orthographic viewing mode in GPU rasterizer, 
and the texture homogeneous coordinate of each fragment is produced by the linear interpolation of the texture 
homogeneous coordinates of , and . To compensate for the perspective distortion effects, the texture 

coordinate ( ) of each fragment is divided by its 4th component wp to derive correct coordinate in the 

fragment shader of GPU. At last, these texture coordinates are used to sample the projection image of this 
projection view, and the obtained sample values are accumulated into the corresponding voxels of the output 
texture representing the slice. These calculations finish the backward-projection to the slice from one projection 
view. Note that the sample positions usually do not coincide with the detector units, the final values of the 
sample positions are produced by nearest-neighbor interpolation or bilinear interpolation.  

The above procedure is executed repeatedly until every volume slice is processed from every projection view, 
thus the entire reconstructed volume is updated. 

2.2. Utilization of Rotational Symmetry in Projection Layout

In circular cone-beam volume reconstruction, there are two types of geometric symmetries, which are referred to 
as the rotational symmetry [2, 7] and vertical symmetry. The rotational symmetry, or 90-degree symmetry, is 
shown in Figure 3. That is, the pair of the x-ray source S 1 and the voxel position  can be replicated by rotating 

it across 90°, 180°, and 270° intervals respectively to produce the other three pairs of (S 2, v 2), (S 3, v 3), and 
(S 4, v 4). This means that they share the same geometric relation in projection layout. The backward-projection 

can be significantly speeded up by the utilization of rotational symmetry, since the geometry transform matrix 
described in formula (1) and sample positions in projection images are calculated only once for four symmetric 
projection views. There is still another kind of rotational symmetry, that is, two pairs of source and pixel positions 
are symmetric with respect to a diagonal line, which is also called complement symmetry [2]. Constrained by the 
inherent parallelism offered by the four color channels of GPU, we only utilize the 90-degree symmetry to 
accelerate back-projection by packing four rotational symmetric projections into four color channels. Our GPU-
based backward-projection algorithm using the 90-degree symmetry is as following. 

Step 1. Arrange the projection images in the four rotational symmetric views of , and  

as one group, and pack them into the four color channels (red/green/blue/alpha or RGBA) of a 2D-texture ProjTex, 
one projection image per channel.  

Step 2. Employ four textures SliceTex1, SliceTex2, SliceTex3 and SliceTex4 to save the backward-projected values 
for four slices, respectively. Each of the four textures has individual  four color channels, and each channel is 
used to save the backward-projected values from one projection view.  

Step 3. In GPU vertex shader, the computation described in formula (1) is only done once from projection view  

for each slice by using the algorithm presented at Section 2.1, to produce the projection texture coordinates that 
are identical for the four symmetric projection images.  

Step 4. In GPU fragment shader, the projection images in the four symmetric views are backward-projected and 
accumulated to the four slice textures, respectively, according to the projection texture coordinates produced by 
the vertex shader and the succeeding rasterizer of GPU. The four slice textures are then rendered to GPU frame 
buffer in the same pass by the Multiple Render Targets (MRT) technique of OpenGL.  

Step 5. The above procedures are repeated with Ping-Pong technique, until the projection images of all views are 
backward-projected and accumulated to the four slices. The effort of backward-projection from full 360° arc is 
reduced to one 90° arc by using the rotational symmetry.  

Step 6. A new rendering pass is appended in the end. In this pass, as shown in Figure 4, the texture coordinates 
in the  and  channels of the four slice textures are rotated by 90°,180°, and 270°, respectively, and the 

data in the RGBA channels of each slice texture are respectively accumulated and packed into an output texture 
with four channels, one slice per channel, which is then downloaded to system memory. Now the four slices have 
been updated by the projection data from all the views on circular trajectory. The method increases the speed of 
downloading data by taking advantage of the 4-channel RGBA parallelism, and avoids the calculation of slices 
accumulating in CPU.  

Step 7. The above processes are repeated for every volume slice from every projection view, and then the entire 
reconstructed volume is updated.  

2.3. Utilization of Vertical Symmetry in Circular Cone-Beam Projection Layout

Another type of symmetry is known as vertical symmetry in circular cone-beam projection layout. As shown in 
Figure 5, the vertices  and  of the reconstructed volume are vertical symmetric with respect to the central 

scanning plane ( ), that means when the coordinate of  is ( ), the coordinate of  is ( ). 

According to formula (1), if the projection coordinate of  in detector space is ( ), then that of  is ( ) 

in the circular cone-beam scanning case. That is, their  coordinates stay the same, while their  coordinates 

are opposite.  

 

Figure 3: Rotational symmetry in projection layout.

 

Figure 4: Strategies for slices accumulating and packing.



We use the property of vertical symmetry to decrease the amount of backward-projection positions calculation. 
When loading a projection image into GPU memory, we read the data in the upper half of the projection image 
along  axis, but read the data in the lower half in the opposite order of  axis, that is, fold the projection 

image. Then we pack the two halves of the projection image into two color channels of a 2D-texture, respectively. 
Thus the projection positions of the vertices of two vertical symmetrical slices in the projection image are 
identical, consequently only half of projection positions are needed to calculate for backward-projecting a 
projection image to the reconstructed volume. 

3. Support for Large Data Volume

As for GPU-accelerated algorithms, the projection data should be firstly loaded into graphic card memory so as to 
be called by GPU, which required expensive data transfers between graphic card memory and system memory 
due to bandwidth limit. Since the reconstruction of each slice needs the projection images from all projection 
views, we try to load all the projection images into graphics card memory at one time for saving data transfer 
time. Currently, graphics cards have typically 512 MB or 768 MB of RAM. If the amount of projection data 
exceeds the graphic card memory capacity, the projection data have to be partitioned into blocks to fit into the 
graphic card. A new partitioning scheme is employed in our program. As shown in Figure 6, the reconstructed 
volume is divided into several chunks, each of which is a stack of the slices of volume. The projection data for 
reconstructing a chunk do not require complete full sized projection images, but only the blocks contained in a 
rectangular shape. The height of the rectangle is greatest when the diagonal of volume slices is perpendicular to 
the detector plane. Considering these properties, we divide projection images into the same number of blocks as 
volume chunks. The size of each block may be calculated by the following formulas (2)–(4). 

Let d be source-to-rotation center distance, D be source-to-detector distance, and HD be detector height, then 

we can get the maximum height of the reconstructed volume: 

If the reconstruction volume is divided into N chunks, then the height of each chunk is HV/N, and the top 

coordinate and bottom coordinate of the nth chunk along the  axis can be calculated according to the formula 

(3):  

The corresponding top projection position Tn and the bottom projection position Bn of the nth chunk along  axis 

in detector may then be calculated by formula (4), as shown in Figure 6: 

According to the obtained parameters Tn and Bn, we can know how to divide each projection image into blocks. 

Only one related projection data block is uploaded into graphics card memory each time for reconstructing one 
chunk, and backward-projected to all slices of the chunk. The actual number of partitions in the program will 
depend on the size of projection data and the size of graphic memory. Different from the partitioning scheme 
simply introduced in [8], our method decomposes projections into blocks by utilizing vertical symmetry and 
rotational symmetry, and reconstructs the volume slices at the vertical symmetrical positions in the meanwhile. 
The reconstructed volume slices are assembled in the end. The partitioning scheme can avoid repeated data 
transfer and speed up volume reconstruction.  

In conjunction with the geometric symmetries presented in Sections 2.2 and 2.3, the cone-beam CT image 
reconstruction method for large data volume is summarized as follows. 

Step 1. The projection at each view is divided into blocks according to our partitioning scheme, and each block is 
further decomposed into two vertical symmetric subblocks for utilizing vertical symmetry, that is, an upper sub-
block and a lower sub-block.  

Step 2. The data in the upper sub-block of current block are packed into a texture with RGBA color channels every 
four rotational symmetric views, and the data in the lower sub-block are also packed into another texture with 
RGBA color channels every four rotational symmetric views. All data in the current block are transferred into 
graphic card memory from system memory by these textures for subsequent image reconstruction.  

Step 3. According to the algorithms presented in Sections 2.2 and 2.3, four vertical symmetric slices are 
reconstructed in parallel each time using the current projection data block from four rotational symmetric views. 
The process is repeated until all slices in current data chunk are reconstructed.  

 

Figure 5: The vertical symmetry in circular cone-beam projection layout.

 

Figure 6: The partitioning scheme of the reconstructed volume and projections.
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(3)

  

(4)



Step 4. Once the image reconstruction for every four slices is achieved, they are packed into an output texture 
with four channels, one slice per channel, and downloaded into system memory.  

Step 5. The above 2nd to 4th steps are executed repeatedly until every volume slice in every chunk is processed 
from all projection views, then the image reconstruction for entire volume is achieved.  

4. Numerical Experiments

To test the gain of our GPU-based acceleration scheme, we have used the FDK algorithm that applies the GPU-
based backward-projection to reconstruct images from computer simulated data and real mouse data acquired 
with a microcone-beam CT system. The PC used has a 1.83 GHz Intel Xeon 5120 dual-core CPU with 8 GB of 
system memory. The graphics card is NVIDIA Qurdro FX4600 model with 768 MB of memory. For the simulated 
data, the source-to-rotation center (SOD) is set to 1660.0 mm, the source-to-detector distance (SDD) is 1900.0 
mm, and the size of each detector bin is 0.127 mm  0.127 mm. These parameters are set according to a real 
industry CT system in our laboratory. The micro-CT source-to-detector distance is 570.0 mm and source-to-
rotation center is 390.0 mm. Its detector bin is 0.049 mm  0.049 mm.  

We have performed reconstructions for Shepp-Logan phantom volumes with 5123 and 10243 voxels by use of 
the FDK algorithm with a GPU-based backward-projection. In this reconstruction, the detector array sizes are 

5122 and 10242, and the numbers of projection views are 360 and 720, respectively. The programmable pipeline 
of FX4600 GPU supports 32-bit float precision calculation, and our GPU-based reconstructions show the 
equivalent image quality as our CPU-based implementations, as shown in Figure 7. 

Since our graphics card memory is 768 MB, the projections for reconstructing the volume with 5123 voxels can 
be uploaded into graphics card memory at one time, and the backward-projection takes 7.2–7.7 seconds. While 

the projections in 32-bit float precision for reconstructing the volume with 10243 voxels are too large to be 
transferred to graphics card memory at one time. The projections need to be partitioned to fit into the graphics 
card memory on the basis of our partitioning scheme presented in Section 3. We decompose the reconstruction 
volume into 4 chunks, and correspondingly the projection data are also divided into 4 blocks. Since the height of 
each detector unit is 0.127 mm, the height of the detector HD is  mm = 130.038 mm. According to 

formulas (2)–(4), we can know the maximal size of reconstruction volume  mm, and the top 

projection coordinates and bottom projection coordinates of these 4 chunks are:  mm,  

mm;  mm,  mm;  mm,  mm, respectively. That is, 

about 279 rows of projection data at each view are needed for reconstructing the 0th chunk of volume, 256 rows 
for the 1th chunk, also 256 rows for the 2th chunk, and 279 rows for the 3th chunk. Altogether (

 times projection data are needed to transfer from system memory to 

graphics card memory for reconstructing the whole volume. Hence, as compared to the methods presented in 
papers [5, 9], the amount of transferred data is greatly reduced by our division scheme, and the backward-
projection time is only 101.9–104.8 seconds.  

We have also applied the GPU-accelerated FDK algorithm to the real mouse data acquired with a microcone-beam 
CT scanner. The projection size for each projection view is , and data were collected at a total number 

of 360 views. The reconstructed image array is 5123. Again, this system is too large for one shot reconstruction, 
and the projection data needs to be partitioned. The backward-projection time is about 14.5–15.2 seconds given 

by 3 partitions of the projection data. Figure 8 shows the sagittal slice and the middle transverse slice of the 
reconstruction image. As compared to our CPU-based implementation of the FDK algorithm on the same 
computer, the backward-projection time is reduced by about a factor of 110–120 without compromising image 

quality. 

5. Conclusion

In the work, we have investigated and implemented a GPU-based 3D cone-beam CT image reconstruction 
algorithm for large data volume, and evaluated the GPU-based implementations by use of computer-simulation 
data and real micro-CT data. The GPU-based implementation using geometric symmetries has speeded up the 
backward-projection process by about 110–120 times for a circular cone-beam scan, as compared to the CPU-

based implementation on the same PC. The volumes reconstructed by GPU and CPU have virtually identical image 
quality. Further work is in progress to apply our algorithms to the iterative image reconstruction methods of cone-
beam CT. 
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Figure 7: Shepp-Logan phantom reconstruction (middle slice): (a) is the true image, and (v) 
is the reconstruction by use of GPU-accelerated FDK program, (c) is a line profile along 

 pixel. The dotted line corresponds to GPU reconstructed image profile and the solid 
line corresponds to the true phantom profile. Little difference is shown in the line profiles.

 

Figure 8: A mouse reconstructed by use of GPU-accelerated FDK program from the micro-CT 
data: (a) the sagittal slice of the mouse, (b) the middle transverse slice of the mouse.
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