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Abstract

Image reconstruction of fluorescent molecular tomography (FMT) often involves repeatedly solving large-
dimensional matrix equations, which are computationally expensive, especially for the case where there are 
large deviations in the optical properties between the target and the reference medium. In this paper, a wavelet-
based multiresolution reconstruction approach is proposed for the FMT reconstruction in combination with a 
parallel forward computing strategy, in which both the forward and the inverse problems of FMT are solved in the 
wavelet domain. Simulation results demonstrate that the proposed approach can significantly speed up the 
reconstruction process and improve the image quality of FMT. 

1. Introduction

The use of near-infrared (NIR) light in biomedical research has made significant progress over the past few years 
[1]. It has been shown that light with wavelengths in the near-infrared range can propagate through tissue for 
distances on the order of multiple centimeters, because of low tissue absorption in the “near-infrared window.” 

This finding has encouraged the development of fluorescence techniques to visualize specific biochemical events 
inside living subjects (in vivo molecular imaging) [2]. Fluorescence techniques have played a critical role in the 
description of biological processes at the molecular and cellular levels [3]. One particular example is fluorescent 
molecular tomography (FMT), which is an emerging tool for molecularly based medical imaging [1]. In this imaging 
modality, a fluorescent biochemical marker used as contrast agent is injected into the biological system and 
consequently accumulates in diseased tissue as a result of the increased vascular density or by means of 
selective targeting [4]. During the imaging process, light at the fluorophore’s excitation wavelength is launched 

into the tissue, and then it is absorbed by fluorophore that presents in the tissue, and the fluorophore is 
elevated to an excited state and remains there for some period of time (the fluorescence lifetime). Some 
proportion of the excited molecules will ultimately release their excess energy by emitting a photon as they drop 
back to the ground state. This creates fluorescence which can be separated from the excitation light via 
interference filters [5]. Volume images of the fluorescent yield and lifetime parameters are reconstructed from 
several optical measurements on the surface of the tissue [4].  

Reconstruction of tomographic data from diffusing sources involves the generation of a forward model that 
predicts the photon distribution striking the detectors for a given source location and medium [6]. One 
challenging problem in the reconstruction process is that the computational complexity is very high due to an 
extremely large dimension of the matrix, which is not only in the inverse problem but also in the forward problem. 
Multiresolution approach is an effective way to speed up the process of solving the above problem. It is well 
known that the most important feature of the wavelet transforms lies in the fact that most information of the 
signal is contained in a small number of entries with other entries being very small and therefore can be 
neglected. In [7], an efficient pyramidal algorithm was proposed for the multiresolution representation of the 
signal with wavelets using orthogonal basis functions and quadrature mirror filters to compute it. Unser et al. 
extended these ideas to the case of nonorthogonal basis functions using splines [8]. Because the forward 
problem should be repeatedly solved during the process of solving the inverse problem especially for the case 
where there are large deviations in the optical properties between the target and the reference medium, the 
speed and accuracy of the forward computation are of critical importance determining the performance of the 
reconstruction algorithm. In order to speed up the forward computation process, we propose to generalize the 
strategy in [9] for solving the forward problem of FMT in the wavelet domain in combination with a parallel 
computing strategy [10]. Simulation results demonstrated that the proposed algorithm can significantly improve 
the efficiency of reconstruction for FMT. The main contribution of this paper is the extension of the multiresolution 
reconstruction approach originally developed for the diffuse optical tomographic reconstruction to the case of 
fluorescent molecular tomographic reconstruction suitable for the case where there are large deviations in the 
optical properties between the target and the reference medium. The forward problem of FMT is solved in 

Home Books Journals About Us  

Open Special Issues

Published Special Issues

Special Issue Guidelines

Abstracting and Indexing

Aims and Scope

Article Processing Charges

Articles in Press

Author Guidelines

Bibliographic Information

Contact Information

Editorial Board

Editorial Workflow

Reviewers Acknowledgment

Subscription Information

Call for Proposals for 
Special Issues

Abstract

Full-Text PDF 

Full-Text HTML 

Linked References

How to Cite this Article

Hindawi Publishing Corporation    Go

Advanced Search

 

About this Journal Submit a Manuscript Table of Contents

Journal Menu



wavelet domain in combination with a parallel computing strategy originally developed by our group, which 
decouple the two originally coupled differential equations corresponding to the excitation and the emission light, 
making the forward problem suitable for parallel implementation [10]. 

2. Forward Problem

2.1. Governing Equations

The generation and propagation of the excitation and fluorescence (emission) light in random highly scattering 
media can be described by two coupled diffusion equations which are the P 1 approximation to the radiative 

transport equation (RTE). In the frequency domain, the diffusion equations become elliptic and can be expressed 
as 

subjecting to the Robin boundary conditions on the boundary of the tissue 

where (1) describes the propagation of the excitation light, and (2) models the generation and propagation of 
fluorescently emitted light. The subscripts  and  denote the excitation and emission light wavelengths, 

respectively.  is the gradient operator,  is the excitation light source, and  is the photon fluence.  is a 

vector normal to the boundary  and  are the Robin boundary coefficients which are governed by the 

reflection coefficients ( , ). The values of  and  are 1/2 (no reflection). In addition, the diffusion 

coefficients , decay coefficients , and emission source coefficients  are, respectively, defined as 

where  and  are the absorption coefficients due to nonfluorescing chromophore;  

and  are the absorption coefficients due to fluorophore;  and  are the isotropic 

scattering coefficients;  is the fluorescence quantum efficiency;  is the fluorescence lifetime;  is the 

speed of light in the media and . 

2.2. Finite Element Formulation

The solutions to (1) and (2) can be obtained using the finite element method (FEM) which is a completely general 
numerical technique applied to any geometry [11]. The FEM is one of the most popular methods for numerically 
solving partial differential equations (PDEs) because of its applicability to a range of problems and the existing 
large body of mathematical theory [12]. In the FEM framework, the domain is divided into  elements, joined at N 

vertex nodes. The solution  is approximated by the piecewise function , with  

being basis functions [13].  

Suppose  [14], , we have

 

Let , where  stands for both  and . In order to obtain the weak solutions of (1) and (2) 

under the boundary conditions of (3), (1) and (2) are written as the following sesquilinear form: 

where 

where  and  are, respectively, the bounded domain and its boundary. Equation (6) can be further rewritten 

in a more compact matrix form as 

(1)

(2)

(3)

(4)

  
(5)

(6)

  

(7)

(8)

(9)



where 

The elements of finite element matrix  can be obtained from the following formula: 

2.3. Forward Computation

The accuracy and speed of solving the forward problem as discussed in Section 1 are of critical importance 
determining the performance of the reconstruction algorithm. A multiresolution iterative perturbation 
reconstruction method for the optical tomographic image reconstruction based on the wavelet transform is 
presented in [9]. By computing the Jacobian matrix, which is a measure of the rate of changes in measurement 
with respect to the optical parameters, at a reference medium whose optical properties are similar to those of 
the target medium, the reconstruction problem is reduced to a system of linear equations. As a result, there is no 
need for repeated solving of the forward differential equations. However, this method would not be valid for the 
case where there are large deviations in the optical properties between the target and the reference medium. In 
such a case, the forward problem should be repeatedly solved during the process of solving the inverse problem. 
In order to speed up the forward computing process so as to speed up the whole process of reconstruction, we 
propose to generalize the strategy proposed in [9] originally developed for the inverse reconstruction of the 
diffuse optical tomography to the case of the forward problem of FMT and solve it in the wavelet domain. 
Furthermore, in order to decouple the forward problem of FMT, a parallel strategy previously developed by our 
group [10] will be used in combination with the aforementioned strategy for solving the forward problem. Our 
innovations are especially suitable for the case where there are large deviations in the optical properties 
between the target and the reference medium. 

2.3.1. Brief Introduction of Wavelets

For the convenience of the following discussion, a brief introduction of the theory of wavelet transform is 
presented here. The wavelet transform is a tool that cups up data of functions or operators into different 
frequency components and then studies each component with a resolution matched to its scale. By a proper 
design of the basis, the wavelet can project the signal onto a chain of embedded approximations and details at 
various levels of resolutions, and, as a result, the wavelet transform is usually referred to as the multiresolution 
analysis. For example, the two-level wavelet-based multiresolution representation of one dimensional discrete 
signal  with  components can be described as 

where  is the wavelet transform of the original signal . It can be seen from this equation 

that the original signal can be decomposed into two parts of the detail component  and the 

approximation component . 

Similarly, the two-level wavelet-based multiresolution representation of a 2D image  sized  can be 

expressed with the following formula: 

Four elements in the matrix of the right-hand side of (13) are, respectively, the approximation image  

and three detail images , and . 

2.3.2. Multiresolution Computing of the Forward Problem for the Excitation Light in Wavelet Domain

In order to exploit the multiresolution property of the wavelet and reduce the forward computational time, the 
forward problem is first represented in the wavelet domain. For such a purpose, multiplying both sides of (8) from 
the left by  and assuming the orthonormality of , we have 

where  and  are, respectively, the wavelet transform matrix of  and Φ.  

It is well known that the most important feature of the wavelet transforms lies in the fact that most information 
of the signal is contained in a small number of entries with other entries being very small and therefore can be 
neglected. As a result, the dimension of the forward problem can be reduced level by level by using only the 
approximation components of the wavelet coefficients to describe the forward problem, that is, 

(10)

  

(11)

(12)

(13)

(14)

(15)



where  denotes the index of the scale, , and  and  are, 

respectively, the wavelet transform matrix of  and  at the th scale with  and  being, respectively, 

the approximation components of the corresponding signal at the th scale, and  is the LL components of 

the corresponding wavelet transformed stiffness matrix at the th scale.  

Using the above multiresolution representation, the forward problem can be solved in a fine-to-coarse-to-fine 
procedure which can be summarized as in Algorithm 1. 

Owing to the fact that some important features are contained in the coarse resolution solution, as a result, it will 
be very helpful for speeding up the iterative process when solving the forward problem at a higher level 
resolution with the solution obtained at a coarser resolution as an initial guess. Therefore, we can expect to 
expedite the process of solving the forward problem by using Algorithm 1 with a fine-to-coarse-to-fine strategy. 

2.3.3. Parallel Implementation of the Forward Problem for the Emission Light

After the discussion of the wavelet-based algorithm for the forward problem corresponding to the excitation light, 
the next task for us will be that of solving the forward problem for the emission photons. For the case where 
there are large deviations between the referenced and target medium, the forward equations must be solved 
repeatedly during the process of reconstruction following a model-based iterative image reconstruction scheme. 
Therefore, a rapid and accurate computational implementation of the forward problem is of critical importance for 
fluorescent molecular tomographic image reconstruction. From (8) and (9), we can see that the two forward 
models corresponding to the excitation and emission light at different wavelength coupled together because the 
solution to (8) is contained in the source term of (9). Traditionally, the forward problem of (8) and (9) are solved 
in a sequential manner, that is, (8) is first solved whose solution is then substituted to (9), which yields the 
photon fluence at the emission wavelength. That scheme will affect the computational speed of the forward 
problem, even the inverse problem. To tackle such a problem, an approximate computing strategy for decoupling 
these two forward equations was proposed in [15] and was used for the FMT reconstruction in [16]. However, 
this strategy is not valid for the case where there is a large stokes shift [15]. For a rapid implementation of the 
forward problem, we have proposed an accurate parallel implementation scheme in [10] where the following 
equation is solved instead of (9): 

In (16),  is an identity matrix. Since  is symmetric and positive definite [10], we can always obtain an inverse 

matrix  for  from (16). The matrix  can be obtained with the numerical method which can be speeded up 

when the matrix is symmetric and positive definite [17]. Combining (8) and (16) leads to a system of equations in 
discretized domain for the forward problem of FMT. Because (8) and (16) are independent, they can be solved in 
a parallel manner. Obviously, the photon fluence of  at the emission wavelength can be recovered by simple 

matrix multiplication with  contained in  obtained from Algorithm 1, that is, 

In summary, the whole forward computation process in our proposed algorithm can be realized with Algorithm 1 
in the wavelet domain for the excitation light and in a parallel manner for the emission light. It has been proved 
in our simulations that our proposed forward computing algorithm can significantly reduce the computational 
requirements. 

2.3.4. Computational Complexity Analysis of the Parallel Computing Strategy

The most important aspect of the parallel computing strategy is decoupling of the two coupled equations. In 
order to illustrate the improvement of the parallel computing strategy in computational complexity as compared 
with the sequential one quantitatively, the computing efficiency is analyzed as follows. 

Because the maximum computational complexity of solving linear equations defined by a matrix sized  with 

CGD method is ) (the maximum iteration number for such an optimization problem is  [18], and the 

complexity of each iteration is ) [19], the complexity of solving the coupled forward problem of FMT, that is, 

(8) and (9), in a sequential manner will be . On the other hand, if the forward problem is solved 

according to the parallel strategy as discussed previously, the computational complexity will be  

because the operations of matrix inversion in (16) and solving the linear equation in (8) can be implemented 

independently with two processors simultaneously whose computational complexities are , while the 

computational complexity of multiplying the matrix  by a vector in (17) is  [20]. Thus, the speed of 

forward computing can be improved in such a parallel manner. The above analysis is valid for both two-
dimensional (2D) and three-dimensional (3D) cases, because the only difference between these two cases is that 
the size  of the matrix  for 3D case is much larger than that of 2D case.  

Particularly, if we are interested only in the reconstruction of the absorption coefficient  due to the 

fluorophore, the matrix  in (16) needs to be calculated only once during the whole reconstruction process and 

hence the computational requirements are extremely reduced. 

3. Image Reconstruction of FMT

3.1. Inverse Problem

The forward and inverse problem of FMT can be, respectively, formulated as 

 

Algorithm 1 

(16)

(17)



where  is the detector readings,  is the forward operator, and x is the optical or fluorescent properties of the 

tissue. 

Generally,  is a nonlinear function of . In order to simplify the reconstruction process, we expand the function  

in the vicinity of  in a Taylor series [21]: 

where  and  are the first- and second-order Frechet derivatives of  and are usually referred to as the 

Jacobian matrix and Hessian matrix, respectively, if represented in matrix form. Keeping up to the first-order 
terms in (19) and introducing the Tikhonov regularization term for tackling the ill-posedness of the inverse 
problem, the linearized formulation for the reconstruction problem can be described by 

where  is an identity matrix,  is a regularization parameter, and  is the Jacobian matrix describing the influence 
of a voxel on a detector reading  [22]. The Jacobian matrix is obtained using the perturbation method which can 

be described as 

where  is the perturbation in the optical or fluorescent properties, and  stands for the 

corresponding residual data between the two predicted data. 

By introducing two quantities of  and  which are, respectively, the perturbation in the optical or fluorescent 

properties and residual data between the measurements and the predicted data, (20) can be rewritten in a more 
compact matrix form as [23] 

with  and  

Using (22), we can obtain the reconstructed image simply by finding a solution of  to it. In our case, both the 

matrix  and the vector  and hence the Jacobian matrix J and the residual data  are functions of  

considering the fact that there are large deviations between the target and reference medium, which is different 
from the case in [9] where  and  are irrelative to  and remain unchanged during the iteration process. 

Therefore, both  and  should be repeatedly calculated during the reconstruction process if iterative method is 

used to find a solution to (22), which means that the forward problem should also be repeatedly solved in the 
reconstruction process. As a result, the reconstruction efficiency can be significantly improved if we can expedite 
the repeated forward computation. As mentioned before, we can expect to expedite the process of the forward 
computing with an algorithm in the wavelet domain discussed in Section 2. In order to further speed up the 
reconstruction algorithm, we propose to adopt the multiresolution reconstruction scheme in the inversion 
process. For such a purpose, we perform the wavelet transform on both sides of (22) and have  

where  and  are, respectively, the wavelet transform matrix of  and , and 

 is an orthonormal matrix. As for the case of the forward problem, the wavelet transform can be successively 

performed level by level with respect to the approximation components of both sides of (23) and obtain a 
multiresolution representation of the reconstruction problem. The whole reconstruction algorithm can be 
summarized as in Algorithm 2. 

From Algorithm 2, we can see that there are actually two layers of iterations in it: one is the inner iteration where 
the Jacobian matrix is not updated which is similar to that proposed in [9], and the other is the outer iteration 
where both the Jacobian matrix and the residual vector are recomputed at the new values of the optical 
parameters obtained in the former iteration. Owing to the fact that both the Jacobian matrix and the residual 
vector are updated during the outer iterations, our algorithm can free the constraints of small deviations of the 
properties between the target and the reference medium. 

3.2. Data Correction

Actually the fluorescent measurements are used as the input to reconstruct the image for FMT according to 
Section 2. Usually the fluorescence may exist not only in the target but also in the background [24]. When the 
fluorescence image is reconstructed, it may contain the target fluorescence as well as the background 
fluorescence. Therefore, if the detector readings are directly used for image reconstruction, the performance of 
the reconstruction result will drop [25]. In order to improve the reconstruction quality in the presence of the 
background fluorescence, the data of reconstruction need to be corrected. 

In the presence of the background fluorescence, the fluorescence concentration can be formulated as follows 
[25]: 

 

Algorithm 2 

(18)

  
(19)

(20)

  
(21)

(22)

  (23)

(24)



where  is the total fluorescence concentration, and  and  denote the target and background 

fluorescence concentration, respectively. 

Furthermore, the fluorescence concentration can be described as follows [25]: 

where  is the fluorescence quantum efficiency, and  is the absorption coefficients. 

According to (24) and (25), the absorption coefficients of the fluorescence can be formulated as the sum of the 
absorption coefficients of the target and background fluorescence, that is, 

where  and  are the absorption coefficients of the target and background fluorescence, 

respectively.  

In order to improve the reconstruction quality in the presence of the background fluorescence, the reconstruction 
results can be corrected as follows [25]: 

where  is the domain of interest for the reconstruction with an area of . From (27), it can be seen that 

 can be obtained by taking the average of the reconstructed absorption coefficients especially when the 

variations of background fluorescence concentration are small. Additionally, as no negative fluorescence exits, 
any negative value of  should be set to zero. 

4. Simulation Results

4.1. Two-Dimensional Reconstruction

The algorithm proposed in this paper has been firstly tested in a 2D simulated phantom with two anomalies 
existing within it as illustrated in Figure 1. Four sources and thirty detectors equally distributed around the 
circumferences of the phantom are adopted in the simulations. The optical and fluorescent parameters in different 
regions of simulated phantom are listed in Table 1. The simulated forward data are obtained from (1) and (2), in 
which the Gaussian noise with a Signal-to-Noise Ratio of 15 dB is added for evaluating the noise robustness of 
the algorithms. Furthermore, the background fluorescence is also included in the simulated data for evaluating 
the data correction strategy according to Table 1. Since Daubechies 1 (haar wavelet) has the advantages such as 
orthogonality and symmetry, Daubechies 1 wavelet as defined in (28) is used in the simulations [26]: 

In our current implementation, we will focus on reconstructing the distributions of absorption coefficients  

due to the fluorophore. The termination criterion  in Algorithm 2 is set to 0.02. The regularization parameter  is 

set to 0.005 in the simulations for better results after a lot of simulations [27]. The uniform mesh for 
reconstruction is shown in Figure 2 with 91 vertex nodes in it. Two quantities are introduced for the quantitative 
evaluations of different algorithms. The first one is the error function  between the simulated data and the 

predicted data computed at the final reconstructed value, that is, 

where  is the number of vertex nodes,  is the detector readings,  is the forward operator,  is the 

reconstructed result of optical or fluorescent properties of tissue, and  is -norm. The second one is the 

normalized root mean squares (NRMSs) error for the reconstructed results defined as 

 
Table 1: Optical and fluorescent properties.

 

Figure 1: Model of reconstruction.

 

Figure 2: Uniform mesh.

(25)

  
(26)

  
(27)

  

(28)

  
(29)

(30)



where  is the number of vertex nodes,  and  are the original pixel and reconstructed pixel values, 

respectively, and  is the mean value of the original pixel. 

The data correction strategy is implemented after the reconstruction for improving the reconstruction quality. 
Figure 3(a) depicts the reconstructed result of absorption coefficients  without data correction, and Figure 3

(b) shows the corresponding result after data correction, both of them are based on the proposed wavelet-
based multiresolution algorithm. From these two images, it can be seen that the data correction strategy can 
improve the image quality. Hence, all reconstruction results presented in the latter part of this section are those 
after data correction. 

Figures 4(a) and 4(b) show the reconstructed images of  using the proposed algorithm and the method in 

[9], respectively. In this example, the deviation of the optical properties between the reference and the target 

medium is set to a relatively larger value (here  is set to 10 ) for an illustration of the reliabilities of the 

above two different algorithms under the circumstance with large deviations. These two algorithms are 
implemented with a same initial guess of 10. Table 2 summarizes the performance of these two algorithms in 
terms of  and NRMS. From this table it can be seen that the proposed algorithm can achieve a more accurate 

reconstructed result for the case where there are large deviations in the optical properties between the target 
and the reference medium, that is, our algorithm is more suitable for such a case. 

Recently, there has been a great amount of interest in developing multimodality imaging techniques for oncologic 
research and clinical studies with the aim of obtaining complementary information and, thus, improving the 
detection and characterization of tumors [28]. As a result, it will be helpful to incorporate the prior information 
obtained from other imaging modalities in the reconstruction process for reducing the computational 
requirements while achieving a relatively better reconstructed result. In our case, we proposed to use the prior 
information to generate a nonuniform mesh for the fluorescent image reconstruction according to an adaptively 
refinement scheme. The basic idea of this scheme is that, for areas in the prior image with large variations of the 
pixel values, the mesh at this position should be locally refined, and hence the image will be reconstructed with 
higher resolutions, whereas for regions with small variations, the mesh at this position should be left unchanged, 
and hence the image will be reconstructed with low resolutions locally at this position correspondingly. Obviously, 
this idea is plausible because flat regions contain little information and therefore low resolution reconstruction will 
not lead to serious degradation of the reconstructed results. However, this nonuniform reconstruction will 
significantly reduce the computational requirements as compared with the uniform fine reconstruction. To 
simulate such an idea in fluorescent image reconstruction, we use the image shown in Figure 5 with a resolution 
of  pixels as a prior image. Figure 6 shows the adaptively refined mesh with 148 vertex nodes in it which 

is generated based on the above idea. All of the following reconstructed results of this section are obtained 
based on this adaptively refined mesh. 

Furthermore, in order to demonstrate the advantage of the proposed algorithm as compared with the traditional 
single resolution method without wavelet transform, Figures 7(a) and 7(b) depict the reconstructed images using 
the proposed wavelet-based multiresolution reconstruction algorithm and the single resolution method, 
respectively, both of which are implemented in combination with the parallel forward computing strategy for 
further speeding up the process of the reconstruction. Table 3 summarizes the performance of the different 
algorithms in terms of the computation time, NRMS and , from which we can see that our wavelet-based 

algorithm outperforms the single resolution algorithm in both the reconstruction accuracy and the computational 
requirements.  

 

Figure 3: Reconstructed image of absorption coefficient due to fluorophore  (a) without 

data correction, and (b) with data correction.

 Table 2: Performance comparison of reconstruction algorithms.

 

Figure 4: Reconstructed image of absorption coefficient due to fluorophore  with (a) 

proposed algorithm, and (b) method in [9].

 

Figure 5: Model of prior image.

 

Figure 6: Adaptively refined mesh.

 
Table 3: Performance comparison of reconstruction algorithms.



4.2. Three-Dimensional Reconstruction

To further validate the proposed algorithm for 3D reconstruction, we extend the methods previously defined for 
triangular elements to tetrahedral elements. Therefore, the shape functions in the local coordinate system 

 is defined as 

The integration of products of shape functions over the volume of the elements, and surface integrals over a side 
of the element, as required for the computation of element stiffness and mass matrices, is performed by a 
numerical integration rules. Once the element matrices are computed, the FEM model can be solved as in the 2D 
case without needs for any further alteration. 

In the 3D case, a phantom of radius 10 mm and height 40 mm with a uniform background  as 

illustrated schematically in Figure 8 is used for simulations. Within this phantom, a small cylindrical object of radius 

2 mm and height 6 mm with  is suspended. In Figure 8, the dashed curves represent the 

planes of measurement, 5 mm apart with  coordinates of 15, 20, and 25 mm. Four sources and sixteen 

measurements are used for each plane in the simulations. The mesh for reconstructing the 3D image as shown in 
Figure 9 is a cylindrical mesh of radius of 10 mm and height 40 mm. It contains 858 nodes and 3208 
tetrahedral elements. The data are collected in all three measurement planes, as shown in Figure 8. Figures 10 
and 11 depict the 3D reconstructed images using the proposed algorithm and the single resolution method, 
respectively. These are 2D cross sections through the reconstructed 3D images. The right-hand side corresponds 
to the top of the cylinder ( ), and the left corresponds to the bottom of the cylinder ( ), with each 

slice corresponding to a 10 mm increment in the z coordinates.  

Table 4 lists the performance of the above two methods for a quantitative comparison in detail. It can be seen 
that the proposed algorithm can significantly speed up the process of reconstruction and improve the 
reconstructed image quality. Therefore we can conclude that our proposed algorithm also outperforms the single 
resolution reconstruction algorithm without wavelet transform for the 3D case.  

Furthermore, the proposed algorithm decouples the two coupled equations for the forward problem of FMT, and 
thus it is quite suitable for parallel computing of the two independent equations with two processors. Table 5 
summarizes the computation time and rate of speedup with different number of processors used to validate the 

 

Figure 7: Reconstructed image of absorption coefficient due to fluorophore  based on 

adaptively refined mesh with (a) wavelet-based algorithm, and (b) single resolution method.

 

Figure 8: Schematic diagram of the phantom of radius 10 mm and height 40 mm with a 
uniform background of , which is positioned at  and 

. The small cylindrical anomaly has a radius of 2 mm and height 6 mm with 
. The anomaly is positioned at  and . The dashed 

curves represent the measurement planes, at , each 
containing four sources and sixteen measurements.

 

Figure 9: 3D mesh for image reconstruction with 858 nodes and 3208 tetrahedral elements.

 

Figure 10: Reconstructed images using the proposed algorithm, which are 2D cross sections 
through the reconstructed 3D volume. The right-hand side corresponds to the top of the 
cylinder , whereas the left corresponds to the bottom of the cylinder , 
with each slice representing a 10 mm increment.

 

Figure 11: Reconstructed images using the single resolution method, which are 2D cross 
sections through the reconstructed 3D volume. The right-hand side corresponds to the top 
of the cylinder , whereas the left corresponds to the bottom of the cylinder 

, with each slice representing a 10 mm increment.

 
Table 4: Performance comparison of reconstruction methods.

  

(31)



superiority of the proposed parallel computing strategy. From Table 5, it can be seen that the parallel computing 
strategy can speed up the reconstruction process both in the 2D and 3D reconstruction. The rate of speedup for 
the 3D case is a little higher than that for the 2D case, which indicates that the superiority of parallel computing 
strategy is more prominent in 3D reconstruction than in 2D case. 

5. Conclusion

In summary, a wavelet-based multiresolution reconstruction algorithm is proposed in combination with the 
parallel forward computation strategy for the purpose of speeding up the reconstruction process with an 
improved reconstruction accuracy. The most important contribution of this paper is the novel extension of the 
multiresolution reconstruction approach originally developed for the diffuse optical tomographic reconstruction to 
the case of fluorescent molecular tomographic reconstruction and for the case where there are large deviations 
of the optical parameters between the target and the reference medium. Different from the algorithm proposed in 
[9], the forward problem of FMT is solved in wavelet domain in combination with a parallel computing strategy for 
speeding up the forward computing process which is especially suitable for the case where there are large 
deviations in the optical properties between the target and the reference medium, and thus the forward problem 
should be computed repeatedly. Simulation results demonstrate that the proposed algorithm can significantly 
reduce the computational complexity and achieve a higher reconstruction quality. 
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