Current Issue
Browse Issues
Search
$\xrightarrow{\infty}$
About this Journal
Instruction to Authors
Online Submission
Subscription
Contact Us

-

RSS Feed

Acta Medica I ranica

2009;47(4): 109-115
Comparison of microleakage in high copper spherical amalgam restorations using three different dentin
bondin systems
Yasini E., Mirzaei M., Pahlavan A., Ghavam M., Hasani Tabatabaie M., Arami S., Kermanshah H., Tabatabaie Sh.

Abstract

: Background and Aim: Amalgam is one of the mostly used restorative materials, but has some disadvantages. Microleakage is one of the short comings of amalgam which may lead to sensitivity and recurrent caries. The aim of this study was to evaluate the effect of three dentin bonding systems on reduction of microleakage in amalgam restorations.

Materials and Methods: Class II amalgam restorations were made in 40 noncarious molar and premolar teeth. Then the specimens were divided into four equal groups. Scotch Bond Multi Purpose, Single bond, iBond, were used as liner in groups one to three respectively and in group four no liner was used. The teeth were restored with high copper spherical amalgam. After thermocycling for 500 cycles at $5^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$, the specimens were immersed in basic fuchsin for 24 hours, bisectioned mesiodistally and evaluated under stereomicroscope at X25 for dye penetration. The data were analyzed by Kruskal-wallis and Scheffe. $\mathrm{P}<0.05$ was considered as the level of significance.

Results: The groups showed significant difference ($p=0.003$). The group four had significantly less microleakage than the first and second groups ($\mathrm{p}<0.05$). The second and third groups showed significantly different microleakage ($p=0.038$).

Conclusion: Based on the results of this investigation applying dentin bonding agents has no effect on reducing microleakage in amalgam restorations, however more studies are recommended.

Keywords:

Microleakage ، Dentin Bonding ، Amalgam
TUMS ID: 12130

Best view with Internet Explorer 6 or Later at 1024*768 Resolutions

