

TOP > Available Issues > Table of Contents > Abstract

ONLINE ISSN: 1881-1361 PRINT ISSN: 0287-4547

Dental Materials Journal

Vol. 28 (2009), No. 2 p.185-193

[PDF (1852K)] [References]

Effect of hybridization on bond strength and adhesive interface after acid-base challenge using 4-META/MMA-TBB resin

Tomohiro TAKAGAKI¹⁾, Toru NIKAIDO¹⁾, Satoko TSUCHIYA¹⁾, Masaomi IKEDA¹⁾, Richard M. FOXTON²⁾ and Junji TAGAMI¹⁾³⁾

- 1) Cariology and Operative Dentistry, Department of Restorative Sciences, Graduate School, Tokyo Medical and Dental University
- 2) Department of Conservative Dentistry, King's College London Dental Institute at Guy's, King's College and St. Thomas' Hospitals
- 3) Center of Excellence (COE) Program for Frontier Research of Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University

(Received January 8, 2008) (Accepted July 28, 2008)

Abstract:

The purposes of this study were twofold, namely to evaluate: (1) the effect of hybridization on microtensile bond strength (µTBS) to dentin, and (2) the ultrastructure of the dentinadhesive interface with 4-META/MMA-TBB resin after acid-base challenge. Dentin surfaces, which received no treatment (NT), 65% phosphoric acid (PA), or 10% citric acid-3% ferric chloride (10-3), were bonded with a 4-META/MMA-TBB resin. To evaluate dentin bond strength, µTBS test was performed at a crosshead speed of 1 mm/min. For ultrastructural evaluation of the adhesive interfaces, SEM was used to examine the interfaces of the bonded specimens after acid-base challenge. The μTBS of NT was not determined, while that of 10-3 was significantly higher than that of PA (p<0.05). With PA and 10-3, the hybrid layer was clearly observed, but no so for the acid-base resistant zone. Wall lesion was found in NT only.

In conclusion, hybridization is vital to improving µTBS to dentin and enhancing resistance at the adhesive interface against acid-base challenge.

Key words:

Acid-base resistant zone, 4-META/MMA-TBB, Bond strength

[PDF (1852K)] [References]

Download Meta of Article[Help]

RIS

 \underline{BibTeX}

To cite this article:

Tomohiro TAKAGAKI, Toru NIKAIDO, Satoko TSUCHIYA, Masaomi IKEDA, Richard M. FOXTON and Junji TAGAMI. Effect of hybridization on bond strength and adhesive interface after acid-base challenge using 4-META/MMA-TBB resin . Dent. Mater. J. 2009; 28: 185-193 .

doi:10.4012/dmj.28.185

JOI JST.JSTAGE/dmj/28.185

Copyright (c) 2009 The Japanese Society for Dental Materials and Devices

Japan Science and Technology Information Aggregator, Electronic

