News Release 17-075 # NSF funds new multidisciplinary approaches to study the brain \$16 million for cross-cutting research into neural and cognitive systems How does the brain listen and adapt in noisy scenarios? Credit and Larger Version (/news/news_images.jsp?cntn_id=242719&org=NSF) View Additional Multimedia # August 8, 2017 This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at <u>media contacts (/staff/sub_div.jsp?orq=olpa&orqId=85)</u>. The National Science Foundation (NSF) made 19 awards to cross-disciplinary teams from across the United States to conduct innovative research focused on neural and cognitive systems. Each award provides a research team with up to \$1 million over two to four years. The awards will contribute to NSF's investments in support of <u>Understanding the Brain ">https://www.nsf.gov/news/special_reports/brain/> and the BRAIN Initiative, a coordinated research effort that seeks to accelerate the development of new neurotechnologies.</u> The awards will advance frontiers in cognitive science and neuroscience with an emphasis on four themes: - Neuroengineering and brain-inspired concepts and designs. - · Individuality and variation. - Cognitive and neural processes in realistic, complex environments. - Data-intensive neuroscience and cognitive science. The projects will leverage advanced research within these themes to investigate how neural and cognitive systems interact with education, engineering and computer science, thanks to the support of the NSF : Mitra Hartmann of Northwestern University and Sarah Bergbreiter of University of Maryland, College Park - A neurally inspired, event-based computer vision pipeline https://nsf.gov/awardsearch/showAward?AWD_ID=1734980: Garrett Kenyon of the New Mexico Consortium and Michael Flynn of University of Michigan Ann Arbor - Neurobehavioral integration of visual and semantic number knowledge and its role for individual variation in the math ability of children and adults https://nsf.gov/awardsearch/showAward?AWD_ID=1734735: Melissa Libertus of University of Pittsburgh - A computational theory to model the neurobiological basis of a visuo-cognitive neuroprosthetic https://nsf.gov/awardsearch/showAward?AWD_ID=1734887: Stephen Macknik of SUNY Health Science Center at Brooklyn - Active listening and attention in 3-D natural scenes https://nsf.gov/awardsearch/showAward?AWD_ID=1734744: Cynthia Moss of Johns Hopkins University - Seizure control through state-specific manipulation of cell assemblies https://nsf.gov/awardsearch/showAward?AWD_ID=1734795: Sarah Muldoon of SUNY at Buffalo and Ethan Goldberg of The Children's Hospital of Philadelphia - Super resolution mapping of multi-scale neuronal circuits using flexible transparent arrays https://nsf.gov/awardsearch/showAward?AWD_ID=1734940: Piya Pal of University of California, San Diego - Connecting spikes to cognitive algorithms https://nsf.gov/awardsearch/showAward? AWD_ID=1734910>: II Memming Park of SUNY at Stony Brook and Alexander Huk of University of Texas at Austin - Connectome mapping algorithms with application to community services for big data neuroscience https://nsf.gov/awardsearch/showAward?AWD_ID=1734853: Franco Pestilli of Indiana University - Integrative foundations for interactions of complex neural and neuro-inspired systems with realistic environments https://nsf.gov/awardsearch/showAward? AWD ID=1735004>: Terrence Sejnowski of The Salk Institute for Biological Studies and John Doyle of California Institute of Technology - <u>Data-driven modeling of visual cortex https://nsf.gov/awardsearch/showAward?</u> <u>AWD_ID=1734854></u>: Robert Shapley of New York University - Extracting functional cortical network dynamics at high spatiotemporal resolution https://nsf.gov/awardsearch/showAward?AWD_ID=1734892: Jonathan Simon of University of Maryland, College Park - Neuroimaging to advance computer vision, NLP and A.I https://nsf.gov/awardsearch/showAward?AWD_ID=1734938 .: Jeffrey Siskind of Purdue University - Fully passive and wireless multi-channel neural recording for chronic in-vivo studies in animals https://nsf.gov/awardsearch/showAward?AWD_ID=1734851: John Volakis of Ohio State University and Junseok Chae of Arizona State University - The impact of real world stressors on problem-solving https://nsf.gov/awardsearch/showAward?AWD_ID=1734883: Ying Choon Wu of University of California, San Diego - Volitional modulation of neural activity in the visual cortex https://nsf.gov/awardsearch/showAward?AWD_ID=1734916: Byron Yu of Carnegie Mellon University and Matthew Smith of University of Pittsburgh The program also awarded supplemental funds of up to \$200,000 each to four projects to maximize the impact of basic research in computing, engineering and education on new challenges in neuroscience and cognitive science. This is the third round of brain research funding for this program. - Probing neural connectivity at multiple temporal scales https://nsf.gov/awardsearch/showAward?AWD_ID=1736390: Laleh Najafizadeh of Rutgers University-New Brunswick - <u>Scalable neuromorphic learning machines: https://nsf.gov/awardsearch/showAward?</u> <u>AWD ID=1748095> Emre Neftci of University of California, Irvine</u> - <u>Development of integrated memristive crossbar circuits for pattern classification</u> <u>applications: https://nsf.gov/awardsearch/showAward?AWD_ID=1748194 Dmitri Strukov of University of California, Santa Barbara </u> - Moving objects databases for exploration of virtual and real environments https://nsf.gov/awardsearch/showAward?AWD_ID=1213013: Ouri Wolfson of University of Illinois at Chicago To learn more about NSF investments in fundamental brain research, visit NSF.gov/brain NSF.gov/brain. -NSF- The awards will contribute to NSF's investments in support of understanding the brain. Credit and Larger Version (/news/news_images.jsp?cntn_id=242719&org=NSF) One challenge is to understand the dynamics that drive neural computation. Credit and Larger Version (/news/news_images.jsp?cntn_id=242719&org=NSF) Researchers study rat whiskers to learn how the brain combines information about movement and touch. <u>Credit and Larger Version (/news/news_images.jsp?cntn_id=242719&org=NSF)</u> Projects will advance the fields of engineering, social and behavioral sciences and education Credit and Larger Version (/news/news_images.jsp?cntn_id=242719&org=NSF) New research will explore the integration of visual and semantic number knowledge. Credit and Larger Version (/news/news_images.isp?cntn_id=242719&org=NSF) ## **Media Contacts** Sarah Bates, NSF, (703) 292-7738, sabates@nsf.gov (mailto:sabates@nsf.gov) The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2018, its budget is \$7.8 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 50,000 competitive proposals for funding and makes about 12,000 new funding awards. Get News Updates by Email http://service.govdelivery.com/service/subscribe.html? code=USNSF 51> # **Useful NSF Web Sites:** NSF Home Page: https://www.nsf.gov> NSF News: https://www.nsf.gov/news/ (/news/) For the News Media: https://www.nsf.gov/news/newsroom.jsp (/news/newsroom.jsp) Science and Engineering Statistics: https://www.nsf.gov/statistics/ (/statistics/) Awards Searches: https://www.nsf.gov/awardsearch/ (/awardsearch/) National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia 22314, USA Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749