

首页 期刊概况 编委会 期刊内容 特邀审稿 投稿指南

353~357.PUMA基因对胰腺癌细胞BxPC-3的促调亡作用及其可能机制[J].莫小恒,李 军,张克君,李德春,中国肿瘤生物治疗杂志,2009,16(4)

PUMA基因对胰腺癌细胞BxPC-3的促凋亡作用及其可能机制 点此下载全文

莫小恒 李 军 张克君 李德春

海南省农垦八一总医院 消化内科,海南 儋州 571727;海南医学院 附属医院 普外科,海南 海口 527000;苏州大学 第一附属医院 普外科,江苏 苏州 215006;海南医学院 附属医院 普外科,海南 海口 527000

基金项目: 卫生部科学研究基金项目(No. WKJ 2006 01 010)

DOI: 10.3872/j.issn.1007-385X.2009.4.007

摘要:

目的:研究P53正向凋亡调节因子基因(P53 up regulate modulator of apoptosis, PUMA)对胰腺癌细胞株BxPC 3凋亡的影响及其可能的作用机制。方法:以100 MOI的携 PUMA 基因重组腺病毒(Ad PUMA)感染BxPC 3细胞O~96 h,流式细胞术检测BxPC 3细胞凋亡率,Western blotting检测BxPC 3细胞中PUMA、Bcl 2、Bax、Cytochrome C和Caspase 3蛋白的表达,Western blotting检测BxPC 3细胞中细胞质和线粒体内Bax的表达及Bax寡聚体。结果:随着Ad PUMA感染时间的延长,BxPC 3细胞凋亡率逐渐增加,48 h时最高。Ad PUMA感染促进BxPC 3细胞中PUMA、Cytochrome C和Caspase 3蛋白的表达,抑制BxPC 3细胞中Bcl 2蛋白的表达。Ad PUMA感染后BxPC 3细胞的凋亡率与BxPC 3细胞中PUMA蛋白的表达具有明显的相关性。Ad PUMA感染不影响BxPC 3细胞中Bax蛋白的总表达量,但细胞质中的Bax几乎完全消失,而线粒体中的Bax表达明显增加,Ad PUMA感染诱导BxPC 3细胞中Bax蛋白的寡聚化。结论:PUMA基因通过线粒体途径促进胰腺癌细胞凋亡。

关键词: 胰腺肿瘤 P53正向凋亡调节因子基因(PUMA) 凋亡 线粒体

PUMA promotes apoptosis of pancreatic carcinoma BxPC-3 cells and the possible mechanism Download Fulltext

MO Xiao heng Ll Jun ZHANG Ke jun Ll De chun

Department of Gastroenterology, General Hospital of "81" Reclamation District in Hainan Province, Zhanzhou 571727, Hainan, China; Department of General Surgery, Affiliated Hospital of Hainan Medical College, Haikou 527000, Hainan, China; Department of General Surgery, First Affiliated Hospital of Suzhou University, Suzhou 215006, Jiangsu, China; Department of General Surgery, Affiliated Hospital of Hainan Medical College, Haikou 527000, Hainan, China

Fund Project: Supported by the Scientific Research Foundation from Ministry of Health (No. WKJ 2006 01 010)

Abstract:

Objective: To investigate the effect of P53 up regulate modulator of apoptosis (PUMA) on the apoptosis of pancreatic carcinoma BxPC 3 cells and the possible mechanism. Methods: BxPC 3 cells were infected with recombinant adenovirus containing PUMA gene (Ad PUMA) at 100 MOI for 0 96 h. Apoptosis of BxPC 3 cells was examined by FCM. Expressions of PUMA, Bcl 2, Bax, Cytochrome C and Caspase 3 proteins in BxPC 3 cells were detected by Western blotting. Bax expression in the cytoplasm and mitochondrion and Bax oligomer expression expression in BxPC 3 cells were determined by Western blotting. Results: Apoptosis rates of BxPC 3 cells were significantly increased with the time of Ad PUMA infection, and peaked after 48 h. Ad PUMA infection increased the expressions of PUMA, Cytochrome C and Caspase 3 proteins in BxPC 3 cells, and decreased the expression of Bcl 2 protein. Apoptosis rate of BxPC 3 cells after Ad PUMA infection was correlated with PUMA expression. Ad PUMA did not affect the expression of total Bax protein in BxPC 3 cells, but Bax expression in cytoplasm was dramatically decreased after infection, and Bax expression in mitochondrion was markedly increased. Furthermore, Ad PUMA infection induced Bax oligomerization in BxPC 3 cells. Conclusion: PUMA can promote apoptosis of pancreatic carcinoma cells through mitochondrion pathway.

Keywords: pancreatic neoplasms P53 up regulate modulator of apoptosis (PUMA) apoptosis mitochondrion

查看全文 查看/发表评论 下载PDF阅读器

Copyright © Biother.Org™ All Rights Reserved; ISSN: 1007-385X CN 31-1725 主管单位: 中国科学技术协会 主办单位: 中国免疫学会、中国抗癌学会 地址: 上海市杨浦区翔股路800号 邮政编码: 200433 京ICP备06011393号-2 本系统由北京勤云科技发展有限公司设计