ScholarWorks

 $\frac{\text{IUPUIScholarWorks Repository}}{\text{Dissertations}} \rightarrow \frac{\text{School of Informatics and Computing}}{\text{Dissertations}} \rightarrow \frac{\text{Informatics Theses and PhD Dissertations}}{\text{Dissertations}} \rightarrow \frac{\text{View Item}}{\text{View Item}}$

CIS REGULATORY MODULE DISCOVERY IN TH1 CELL DEVELOPMENT

Ganakammal, Satishkumar Ranganathan

Advisor: Perumal, Narayanan B

Kaplan, Mark H. Vahedi, Golnaz

Degree: M.S. Degree Year: 2011

Grantor: Indiana University

Permanent http://hdl.handle.net/1805/2678

Link:

Keywords:

cis-regulatory module, TH1 cell development, STAT4, ChIP-on-chip, ChIP-Seq

LC Subjects:

Th1 cells -- Development -- Research ; Immune response -- Research

Date: 2010

Cite As: http://portal.acm.org/citation.cfm?id=1722024.1722039

ISSN: 978-1-60558-722-6

Found At:

Proceeding ISB '10 Proceedings of the International Symposium on Biocomputing ACM New York, NY, USA ©2010 table of contents ISBN: 978-1-60558-722-6 doi>10.1145/1722024.1722039

Abstract:

Immune response enables the body to resist foreign invasions. The Inflammatory response is an important aspect in the immune response which is articulated by elements such as cytokines, APC, T-cell and B-cell, effector cell or natural killer. Of these elements, T-cells especially T-helper cells; a sub class of T-cells plays a pivotal role in stimulating the immune response by participating in various biological reactions such as, the transcription regulatory network. Transcriptional regulatory mechanisms are mediated by a set of transcription factors (TFs), that bind to a specific region (motifs or transcription factor binding sites, TFBS), on the target gene(s) controlling the expression of genes that are involved in T-helper cell mediated immune response. Eukaryotic regulatory motifs, referred to as cis regulatory modules (CRMs) or cistrome, co-occur with

My Account

Login Register

Statistics

View Usage

the regulated gene's transcription start site (TSS) thus, providing all the essential components for building the transcriptional regulatory networks that depends on the relevant TF-TFBS interactions. Here, we study IL-12 stimulated transcriptional regulators in STAT4 mediated T helper 1 (Th1) cell development by focusing on the identification of TFBS and CRMs using a set of Stat4 ChIPon-chip target genes. A region containing 2000 bases of Mus musculus sequences with the Stat4 binding site, derived from the ChIP-on-chip data, has been characterized for enrichment of other motifs and, thus CRMs. Our experiments identify some potential motifs, (such as NF-kB and PPARy/RXR) being enriched in the Stat4 binding sequences compared to neighboring background sequences. Furthermore, these predicted CRMs were observed to be associated with biologically relevant target genes in the ChIP-on-chip data set by meaningful gene ontology annotations. These analyses will enable us to comprehend the complicated transcription regulatory network and at the same time categorically analyze the IL-12 stimulated Stat4 mediated Th1 cell differentiation.

Description:

Indiana University-Purdue University Indianapolis (IUPUI)

Files in this item

Name: SATISH_Thesis_tit ... <u>View/Open</u>

Size: 165.5Kb Format: PDF

Description: Thesis_Index_Sati ...

Size: 1.664Mb Format: PDF

Description: Thesis_Satishkumar

This item appears in the following Collection(s)

Informatics Graduate Theses and PhD Dissertations

About Us | Contact Us | Send Feedback

Fulfilling the Promise

Privacy Notice

Ucopyright ©2015 The Trustees of Indiana University, Copyright Complaints