首页 期刊概况 编委会 期刊内容 特邀审稿 投稿指南 出版发行 269~274.hSulf-1过表达提高乳腺癌MCF-7细胞对PARP抑制剂AZD2281的敏感性[J].徐高亚,季卫丹,严妍,包龙龙,沈舒文,顾蕾,傅晓辉,姜小清,苏长青,吴孟超.中国肿瘤生物治疗杂志,2014,21(3) hSulf-1过表达提高乳腺癌MCF-7细胞对PARP抑制剂AZD2281的敏感性 点此下载全文 ## 徐高亚 季卫丹 严妍 包龙龙 沈舒文 顾蕾 傅晓辉 姜小清 苏长青 吴孟超 苏州大学 基础医学与生物科学学院 病原生物学系,江苏 苏州 215123; 第二军医大学 东方肝胆外科医院 国家肝癌研究中心 分子肿瘤研究室,上海 200438;第二军医大学 200438 基金项目: 国家自然科学基金资助项目(No. 81370552, No. 81172303, No. 81172019) DOI: 10.3872/j.issn.1007-385X.2014.03.006 摘要: 探讨人硫酸酯酶-1 (human sulfatase 1,hSulf-1)基因过表达是否提高乳腺癌MCF-7细胞对PARP抑制剂AZD2281的敏感性。方法:采用不同浓度AZD228 1处理细胞,并筛选AZD2281处理的最佳浓度。将携hSulf-1基因的重组腺病毒Ad5-hSulf1感染MCF-7细胞,以Ad-hSulf1和AZD2281单独或联合处理MCF-7细胞,以Ad5-EGFP处理为对照。采用流式细胞术检测细胞周期,克隆形成实验检测细胞克隆形成率,Western blotting检测细胞周期蛋白依赖性激酶4(cyclin dependent kinase 4,CDK4)及磷酸化蛋白激酶B(phosphorylated protein kinase B,p-AKT)的表达,Transwell法、MTT法分别检测细胞的迁移及增殖。结果:AZD2281浓度为7 μmol/L时对MCF-7细胞的抑制作用趋于峰值,用于后续实验。Ad5-hSulf1+AZD2281联合处理与AZD2281单独处理相比,MCF-7细胞的2/M期细胞比例明显增多[(22.15±0.17)% vs(17.44±0.57)%,P<0 01],细胞克隆形成率[(21.43±1.52)% vs(49.43±1.44)%,P<0.01]及细胞周期蛋白CDK4的表达[(0.67±0.02)vs(0.72±0.02),P<0.05]、AKT的磷酸化水平[(0.17±0.003)vs(0.42±0.02),P<0.01]均明显降低,同时细胞的增殖率和迁移能力也有明显下降[(57.69±4.83)% vs(79.35±5.44)%;(10.33±1.53)个vs(50.67±2.31)个,均P<0.01]。结论:hSulf-1过表达可明显提高乳腺癌细胞MCF-7对AZD2281的化疗敏感性,阻滞细胞周期于G2/M期,并更明显地抑制乳腺癌细胞的增殖和迁移能力,这一效应可能是通过调节细胞周期蛋白CDK4及AKT通路产生的。 关键词: 硫酸酯酶-1基因 乳腺癌 MCF-7细胞 周期蛋白 增殖 迁移 化疗敏感性 hSulf-1overexpression enhance the sensitivity of breast cancer MCF-7 cells to the PARP inhibitor AZD2281 Download Fulltext ## Xu Gaoya Ji Weidan Yan Yan Bao Longlong Shen Shuwen Gu Lei Fu Xiaohui Jiang Xiaoqing Su Changqing Wu Mengchao Department of Pathogen Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Suzhou 215123, Jiangsu, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Department of Molecular Oncology, Eastern Hepatobiliary Surgery Fund Project: Project supported by the National Natural Scientific Foundation of China (No. 81370552, No. 81172303, No. 81172019) ## Abstract: To investigate the possibility of enhance the sensitivity of breast cancer MCF-7 cells to the PARP inhibitor AZD2281 by up-regulate the expression of hSulf-1. Methods: MCF-7 cells were infected with Ad5-hSulf1 or Ad5-EGFP. Transfectants were treated with different concentrations of AZD2281 and the most optimal concentration was determined. In further experiments, both Ad5-hSulf-1-overexpressing MCF-7 cells and Ad5-EGFP-expressing control MCF-7 cells were treated with AZD2281 at the optimal concentration determined. After treatment for 24 h, cell cycle progression was assessed by flow cytometry (FCM), formation ability of MCF-7 cells by colony formation assay, protein levels of cyclin dependent kinase 4 (CDK4) and phosphorylated protein kinase B (p-AKT) Western blotting, cell migration by Transwell assay, and proliferative ability by MTT assay. Results: AZD2281 showed the peak inhibitory activity at a concentration of 7 μ mol/L. When this concentration was used, Ad5-EGFP-expressing MCF-7 cells showed significant increased in the proportion of G2/M phase cells ([22.15±0.17]% vs [17.44±0.57]%, P<0.01), the colony formation ability ([21.43±1.52]% vs [49.43±1.44]%, P<0.01), levels of cell cycle protein CDK4 (0.67±0.02 vs 0.72±0 02, P<0.01) and p-AKT (0.17±0.003 vs 0.42±0.02, P<0.01), and the rateof migration ([57.69±4 83]% vs [79.35±5.44]%, P<0.01) and proliferation (10.33±1.53 vs 50.67±2.31, P<0.01), as compared with MCF-7 cells expression Ad5-hSulf-1. Conclusion: The overexpression of hSulf-1 may significantly increase the chemosensitivity of MCF-7 cells to AZD2281, induce ell cycle arrest at G2/M-phase and inhibit cell proliferation and migration capacities, possibly through regulation of CDK4 expression and AKT phosphorylation. Keywords: human sulfatase-1 (hSulf-1) gene breast cancer MCF-7 cell cycle protein proliferation migration chemosensitivity Copyright © Biother.Org™ All Rights Reserved; ISSN: 1007-385X CN 31-1725 主管单位:中国科学技术协会 主办单位:中国免疫学会、中国抗癌学会地址:上海市杨浦区翔殷路800号 邮政编码: 200433 京ICP备06011393号-2本系统由北京勤云科技发展有限公司设计