

Agricultural Journals

Research in

AGRICULTURAL ENGENEERING

home page about us contact

us

Table of Contents

IN PRESS

RAE 2014

RAE 2013

RAE 2012

RAE 2011

RAE 2010

RAE 2009

RAE 2008

RAE 2007

RAE 2006

RAE 2005

RAE 2004

RAE 2003

RAE Home

Editorial

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Res. Agr. Eng.

Šima T., Nozdrovický L., Krištof K., Krupička

J.

Impact of the size of nitrogen fertiliser application rate on N₂O flux

Res. Agr. Eng., 60 (2014): 24-29

The application rate of a nitrogen fertiliser is one of the most important factors that affect the nitrous oxide (N₂O) flux. Calk ammonium nitrate with 27% nitrogen content was spread by a fertiliser spreader VICON RS-L connected with a tractor Zetor 16145 and incorporated into the soil by a power harrow Pöttinger Lion 301 six hours after spreading. Monitoring points were selected based on the size of application rate 0, 100, 200 and 300 kg/ha and were measured 7, 14, 21 and 28 days after fertiliser application and incorporation into the soil. Nitrous oxide emissions were measured by a photoacoustic field gas monitor INNOVA 1412 with a multipoint sampler INNOVA 1309. Based on the data obtained, there were found statistically significant differences among time intervals and among the size of the application rate at a 95.0% confidence level. Results have shown impacts of the size of fertiliser application rate and time interval after fertilisation on nitrous oxide flux.

Keywords:

nitrous oxide; soil emissions; fertilising; fertiliser spreader

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

