核农学报 2012, 26(4) 705-709 DOI: ISSN: 1000-8551 CN: 11-2265/S 本期目录 | 下期目录 | 过刊浏览 | 高级检索页] [关闭] [打印本 #### 同位素示踪•资源环境•动植物生理 苯磺隆和2,4-D对盆栽小麦土壤微生物量碳、氮的影响 李咏玲, 张天宝, 王惟帅, 王丽玲, 杜慧玲 山西农业大学文理学院, 山西 太谷 030801 摘要: 通过盆栽小麦试验,研究了除草剂苯磺隆和2,4-D对小麦生长过程中土壤微生物量碳、氮以及碳/氮比(C_{mic}/N_{mic})的影响。结果表明,苯磺隆、2,4-D对土壤微生物量碳、氮的影响主要表现为先抑制后激活,抑制作用随着时间的延长和浓度的增大而增强,与对照相比达极显著差异水平。苯磺隆、2,4-D对微生物量碳的抑制作用第14天和第7天分别达到最大,为54.9%和45.2%;对微生物量氮的抑制作用均为第7天最大,分别为51.0%和65.4%。2种除草剂处理均在第28天微生物量碳、氮达到最大,为对照的1.09和1.33倍,呈极显著的激活作用,且激活作用随着浓度的增大而增强;对土壤微生物量碳/氮的影响主要呈增加-降低-增加的变化趋势。研究表明苯磺隆、2,4-D对土壤微生物量碳、氮的影响主要与处理的浓度和时间有关,与除草剂的种类无关。 关键词: 苯磺隆 2,4-D 土壤微生物量碳 土壤微生物量氮 # INFLUENCE OF TRIBENURON-METHYL AND 2,4-D ON SOIL MICROBIAL BIOMASS C(CARBON), N(NITROGEN) OF POTTED WHEAT LI Yong-ling, ZHANG Tian-bao, WANG Wei-shuai, WANG Li-ling, DU Hui-ling College of Arts and Science, Shanxi Agricultural University, Taigu Shanxi 030801 Abstract: In order to study influence of common herbicides on soil microbial biomass during wheat growth, we studied influences of tribenuron-methyl and 2,4-D on soil microbial biomass C, N and carbon and nitrogen ratio (C_{mic}/N_{mic}) by potted plants. The results showed that influences of tribenuron-methyl and 2,4-D on soil microbial biomass C and N were activated after the first inhibited, inhibitory action would be strengthened with increase of time and concentration, and significantly higher than the control. Inhibitory actions of tribenuron-methyl and 2,4-D on soil microbial biomass C were highest at the 14^{th} and 7^{th} day, the highest inhibitory rate were 54.9% and 45.2% respectively; Inhibitory action of tribenuron-methyl and 2,4-D on soil microbial biomass N were highest at the 7th day ,the highest inhibitory rate were 51.0% and 65.4% respectively. Soil microbial biomass C and N after treatment of the two kinds of herbicides were highest at the 28th day, activations were significantly higher than the control, the activation rate were 1.09 and 1.33 times and activation would be strengthened with increase of concentration. Influence of tribenuronmethyl and 2,4-D on soil microbial biomass $C_{\mbox{mic}}/N_{\mbox{mic}}$ mainly took on increase-decreaseincrease trend. Thus influences of tribenuron-methyl and 2,4-D on soil microbial biomass C, N had relation to concentration and time but no relation to type of herbicide. Keywords: tribenuron-methyl 2,4-D soil microbial biomass C soil microbial biomass N 收稿日期 2012-03-23 修回日期 2011-06-13 网络版发布日期 # DOI: #### 基金项目: 山西省科技攻关项目(20110311022); 横向委托项目(2010HX02); 山西农业大学博士基金(412559) 通讯作者: 杜慧玲(1966-),女,山西太谷人,博士,教授,研究方向为作物化学调控。E- mail: duhuiling66@ 163. com 作者简介: 作者Email: duhuiling66@163.com ## 扩展功能 ## 本文信息 - ▶ Supporting info - PDF(952KB) - ▶[HTML全文] - ▶参考文献[PDF] - ▶参考文献 ## 服务与反馈 - ▶把本文推荐给朋友 - ▶加入我的书架 - ▶加入引用管理器 - ▶引用本文 - Email Alert - ▶ 文章反馈 - ▶浏览反馈信息 ## 本文关键词相关文章 - ▶苯磺隆 - ▶ 2,4-D - ▶土壤微生物量碳 - ▶ 土壤微生物量氮 ## 本文作者相关文章 - ▶ 李咏玲 - ▶ 张天宝 - ▶ 王惟帅 - ▶王丽玲 - ▶杜慧玲 #### PubMed - Article by LI Yong-ling - Article by ZHANG Tian- - bao - Article by WANG Weishuai - Article by WANG Li-ling - Article by DU Hui-ling # 参考文献: - [1] Jenkinson D S, Ladd J N.Soil biochemistry[M]. New York: Marcel Dekker, 1981: 415-471 - [2] Nannipieri P, Kandler E, Ruggiero P. Enzymes in the environment[M]. New York: Marcel Dekker, 2002:1-34 - [3] Powlson D S. The soil microbial biomass: before, beyond and back[M]. Chichester UK: Wiley, 1994: 3-20 - [4] Marx M C, Wood M, Jarvis S C. A micorplate fluorimetric assay for the study of enzyme diversity in soils[J].Soil Biology& Biochemistry,2001,33:1633-1640 - [5] Trasar-cepeda C, Leiors M C, Seoane S. Limitations of soil enzymes as indicators of soil pollution [J]. Soil Biology & Biochemistry, 2000, 32:1867-1875 - [6] 徐建民,黄昌勇,安 曼.磺酰脲类除草剂对土壤质量生物学指标的影响[J].中国环境科学,2000,20 (6):491-494 - [7] EL-Ghamry A M, Xu J M, Huang C Y, Microbial response to bensulfuron-methyl treatment in soil [J]. Journal of Agriculture and Food Chemistry, 2002,50:136-139 - [8] 杜慧玲,吴济南,王丽玲,郭平毅.苯磺隆对土壤酶活性的影响[J].核农学报,2010,24(3): 585-588 - [9] 和文祥,闵 红,王 娟.2,4-D 对土壤酶活性的影响[J].农业环境科学学报,2006,25(1): 224-228 - [10] 杜慧玲,郭震宇,胡学峰,郭平毅.苯磺隆和 2,4-D 胁迫对土壤微生物影响的研究[J].土壤通报,2008,39(6):1372-1375 - [11] Joergensen R G. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the k_{FC} value[J]. Soil Biology& Biochemistry, 1996,28(1):25-31 - [12] Joergensen R G, Mueller T. The fumigation-extraction method to estimate soil microbialbiomass: Calibration of the $k_{\rm EN}$ value[J]. Soil Biology & Biochemistry, 1996,28 (1):33-37 - [13] Henrot J. Vegetation removal in two soils of the humid tropics: Effect in microbial biomass[J]. Soil Biol Biochem, 1994, 26(1):111-116 - [14] Baath E. Effects of heavy metal in soil on microbial processes and populations (a review)[J].Water Air Soil Pollution, 1989,47:335-379 - [15] 俞 慎,李 勇, 王俊华,车玉萍,潘映华,李振高. 土壤微生物生物量作为红壤质量生物指标的探讨 [J].土壤学报,1999,36 (3):413-422 - [16] 孙 波,赵其国,张桃林,俞 慎.土壤质量与持续环境:III.十壤质量评价的生物学指标[J].土壤,1997,29 (5):225-234 - [17] Bradley L, Fyles J W. A kinetic parameter describing soil available carbon and its