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Abstract

Vašát R., Kodešová R., Klement A., Jakšík O. (2015): Predicting oxidizable carbon content via visible- and near-infra-
red diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil & Water Res., 10: 74–77.

Soil spectroscopy represents a low-cost alternative to routine time-consuming and expensive laboratory analyses. 
Its ability to measure a wide range of different chemical and physical soil properties was shown previously in 
many studies. Particularly, for organic carbon content, a reliable prediction accuracy is usually achieved. This 
is due to strong spectral signature of soil organic carbon and other distinct spectral implications of soil charac-
teristics strongly tied to it, e.g. soil colour. All the known studies, however, deal with situation where the study 
area is fully covered (either in the manner of design- or model-based sampling approach) with calibration points. 
But in many cases the sampling strategy was initially designed for other purposes, falling outside requirements 
of spectroscopy for proper model calibration. Hence, here we attempt to test the ability of soil spectroscopy in 
the situation when only a minor isolated part (the steepest one) of the study area was sampled for calibration 
points, and predictions were made for its several time larger surroundings. For model training we used Partial 
Least Squares Regression (PLSR) technique and four different spectra pre-treatment methods (Savitzky-Golay 
smoothing, first and second derivative, and baseline normalization via continuum removal). Results show high 
potential (R2 ≈ 0.70–0.80) of the method for rough terrain landscapes strongly affected by water erosion, even 
if the distance from calibration to prediction points is large. 
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The content of oxidizable carbon (Cox) is an impor-
tant indicator of the condition and quality of soils. It 
is routinely determined under laboratory conditions 
using e.g. the modified Tjurin method (Skjemstad 
& Baldock 2008) or other standard methods. The 
laboratory measurements, however, are often costly 
and time-consuming and hence can be usually done 
only for a limited number of soil samples. On the other 
hand, soil spectroscopy has no such constraints, and 
once the prediction model was properly calibrated it 
can be used repeatedly for infinite number of samples 
with much less effort. The ability of soil spectroscopy, 
especially in visible and near infrared region (400 to 
2500 nm), for accurate soil organic carbon predic-
tion was broadly described in scientific literature 

(e.g. Gholizadeh et al. 2013; Vašát et al. 2014). 
From possible techniques, that are suitable to relate 
the spectra measurements with oxidizable carbon 
content, especially Partial Least Square Regression 
(PLSR) is most frequently used (Visscara Rossel 
et al. 2006). The prediction accuracy may be further 
increased if spectra pre-treatment methods such as 
Savitzky-Golay smoothing, first and second order 
derivative, and baseline normalization via continuum-
removal are employed (Gholizadeh et al. 2013). 

Most studies, apparently, deal with the situation 
where the study area is covered with calibration 
points specifically for spectroscopy purposes (either 
in the manner of design- or model-based sampling 
approach), so the whole extent of the area is taken 
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into account. In praxis, however, one often faces the 
situation when the sampling scheme was initially de-
signed for other purposes falling outside requirements 
of spectroscopy for proper model calibration. For 
example, only a minor isolated part of an area might 
be chosen for calibration sampling, and predictions 
are required for the rest (several times larger) of the 
area. This is also the case with this study. Hence, 
we want to test the ability of soil spectroscopy in 
the situation where the distance from calibration 
to prediction points is rather large.

MATERIAL AND METHODS

Study site. The 100 hectare study area located in 
the south-east of the Czech Republic (South Mora-
via, Brumovice municipality) can be described as 
an intensively cultivated piece of arable land with 
coarse terrain landscape and noticeable water erosion 
impact. All the soils are developed on loess parent 
material which is rich in carbonates. Originally the 
entire area was covered with Haplic Chernozem, de-
graded mainly at steep parts (the rich humic topsoil 
horizon was eroded, partially including the parent 
substrate), while in the lower parts transported humic 
soil material possibly (depending on terrain condi-
tions) mixed with loess prevailed (Zádorová et al. 
2013). According to the World Reference Base of Soil 
Resources (FAO 2014) the main soil units were clas-
sified as Haplic Chernozem (top flat parts), Regosol 
(steep parts), colluvial Chernozem (depressions in 

the upper and middle parts), and Colluvial soil (the 
bottom-most parts). More detailed description of 
the area conditions can be found in Zádorová et 
al. (2011) and Jakšík et al. (2015).

Soil sampling. Originally, the sampling was car-
ried out to study the impact of water erosion on 
soils and to trace the fate of eroded soil material. 
Totally 202 sites were visited within this campaign 
following a judgement sampling design, which may 
be roughly described as a regular grid with varying 
spacing (Figure 1a). The goal was to cover differ-
ent conditions in the field (plateaus, slopes, basins) 
as evenly as possible. Furthermore, for even more 
detailed investigation a six-hectare sub-plot in the 
northwest part of the area was sampled with much 
higher density (Figure 1b). From this dense sample 
a subset was further detached to determine some 
specific, more demanding soil characteristics (Fig-
ure 1b, empty circles). As a result we distinguished 
three subsets to be used as independent calibration 
and test sets. Subset A of 32 samples (Figure 1b, 
open circles), subset B of 67 samples (Figure 1b, 
full circles), and subset C of 107 samples (Figure 1a, 
cross marks). For Cox analysis only topsoil samples 
(up to the depth of 20 cm) were used.

Laboratory analysis and spectra collection . 
Samples were air-dried, ground, and mixed thor-
oughly before they were sieved to particle fraction 
≤ 0.25 mm. Cox was measured using the dichromate 
redox titration method (Skjemstad & Baldock 
2008), when the wet oxidation (K2Cr2O7) was fol-

Figure 1. The study area with 
contours of altitude (graduated 
grey lines) and sampling designs: 
(a)  subset C (107 samples, cross 
marks only); (b) subset A (32 sam-
ples, open circles) and subset B 
(67 samples, full circles)

(a)

(b)



76

Original Paper Soil & Water Res., 10, 2015 (2): 74–77

doi: 10.17221/18/2015-SWR

lowed by the potentiometric titration with ferrous 
ammonium sulphate.

For soil spectra scanning purposes the samples 
were placed in Petri dishes and the surface of the 
soil was aligned. Soil spectra were collected for all 
202 samples under laboratory conditions using a 
high intensity contact probe within wavelength range 
of 350–2500 nm by FieldSpec 3 device (Analytical 
Spectral Devices Inc., Boulder, USA). The spectral 
resolution was 3 nm (region 350–1000 nm) and 10 nm 
(region 1000–2500 nm). The radiometer bandwidth 
for the region 350–1000 nm was 1.4 nm while it was 
2 nm for the region 1000–2500 nm. Calibration of 
the spectroradiometer was repeatedly done after 
each of the ten runs by spectralon standard white 
reference panel (Halon). Finally, the raw spectra were 
converted into spectral reflectance.

Spectra pre-processing. Four different types of 
the most commonly used spectra pre-treatments 
were prepared prior to model calibration. Firstly, 
the raw spectra were smoothed using the Savitzky-
Golay algorithm in order to remove artificial noise 
which is caused by the spectroradiometer instru-
ment. Secondly, for the smoothed spectra their first 
and second order derivatives were computed us-
ing the Savitzky-Golay algorithm again. And last, 
the smoothed spectra were subjected to baseline 
normalization via continuum-removal procedure. 
All four types of pre-processed spectra were used 
separately for model calibration and validation to 
see their effect on prediction accuracy.

PLSR calibration and assessment of prediction 
accuracy. PLSR models were fitted with pls R package 

(Mevik & Wehrens 2007) employing the classical 
orthogonal scores algorithm. Optimal number of 
PLSR latent variables was determined by minimizing 
the value of Root Mean Squared Error of Prediction 
(RMSEP) by leave-one-out cross-validation. Overall 
prediction accuracy measurements are given, either 
as results of leave-one-out cross-validation (re-using 
training set for validation) or independent validation 
(using external test set for validation), in the mean-
ing of coefficient of determination (R2) and RMSEP. 

We consider two different scenarios: (1) Using 
subset A as the training set for PLSR calibration, and 
subsets B and C as the test sets for model validation 
either separately (subset B only) or together (merged 
subsets B and C). (2) Using merged subsets A and B 
as the training set and subset C as the test set.

RESULTS AND DISCUSSION

The results (Table 1) show that the prediction 
accuracy gets lower, noticeably with the increasing 
distance from calibration points to prediction points. 
This is well documented by scenario 1 where the 
inclusion of more distant points (subset C) to the 
test set leads to lower prediction accuracy achieve-
ment. This decline of prediction accuracy, however, 
is not dramatic and even so the prediction can still 
be considered reasonably accurate. Such behaviour 
may be related to the fact that with increasing dis-
tance the soil variability increases too. It was further 
shown that the cross-validation gives too optimistic 
overview of the quality of prediction in comparison 
to the real state (cross-validation offers much better 

Table 1. Accuracy measurements for two scenarios and four different spectra pre-treatment methods

Smoothed spectra only 1st derivative 2nd derivative Baseline normalization
Scenario 1

R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv R2

cv RMSEPcv

Cross-validation (subset A) 0.93 0.083 0.95 0.068 0.81 0.128 0.87 0.110
R2

ev RMSEPev R2
ev RMSEPev R2

ev RMSEPev R2
ev RMSEPev

External validation (subset B) 0.74 0.169 0.75 0.160 0.59 0.220 0.79 0.158
External validation (subsets B+C) 0.69 0.204 0.70 0.201 0.62 0.231 0.71 0.204
Scenario 2

R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv R2

cv RMSEPcv

Cross-validation (subsets A+B) 0.85 0.119 0.82 0.130 0.77 0.150 0.86 0.119
R2

ev RMSEPev R2
ev RMSEPev R2

ev RMSEPev R2
ev RMSEPev

External validation (subset C) 0.76 0.198 0.74 0.190 0.60 0.241 0.70 0.238

R2
cv – index of determination in cross-validation; R2

ev – index of determination in external validation; RMSEPcv – Root Mean 
Squared Error of Prediction in cross-validation; RMSEPev – Root Mean Squared Error of Prediction in external validation
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results as compared with external validation). This 
indicates a high degree of statistical adaptation, which 
is even more pronounced in scenario 1 where fewer 
samples were used for calibration. 

Concerning the spectra pre-treatment, it is not 
clear which of the four tested methods has the most 
positive effect on accuracy of the prediction. The 
use of Savitzky-Golay smoothing, 1st derivative, and 
baseline normalization leads to similar accuracy 
achievements for both scenarios. Only in case of 
2nd derivative transformation the predictions ac-
curacy decreased rapidly. Hence, no clear positive 
effect of tested spectra pre-treatment on prediction 
quality was observed.

In overall, the accuracies (from external validation) 
vary from reliable (R2

cv ≥ 0.75) to rather less reli-
able (0.50 ≤ R2

cv < 0.75), which is entirely consistent 
with other results described in scientific literature 
(Gholizadeh et al. 2014). As such the prediction 
models can be used for direct measurement of Cox 
content, as well as a valuable source of auxiliary data 
for high resolution mapping or screaning purposes.

CONCLUSION

The study shows that soil visible- and near-infrared 
diffuse reflectance spectroscopy (400 to 2500 nm) is 
a suitable tool for estimating the content of Cox of 
arable land heavily impacted by water erosion. Using a 
proper calibration set one may achieve a fairly reliable 
prediction which is suitable for direct measurement 
of Cox. The prediction accuracy, however, decreases 
noticeably when the distance from calibration points 
to prediction increases. But despite this, even if the 
distance between calibration and prediction points 
is large, the results can still be used as a valuable 
source of auxiliary information for high resolution 
mapping or screening purposes.
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