

农业工程学报

Transactions of the Chinese Society of Agricultural Engineering

首页 中文首页 政策法规 学会概况 学会动态 学会出版物 学术交流 行业信息 科普之窗 表彰奖励 专家库 咨询服务 会议论坛

首页 | 简介 | 作者 | 编者 | 读者 | Ei收录本刊数据 | 网络预印版 | 点击排行前100篇

猕猴桃低乙烯气调库的性能和贮藏效果

Effects of Storing Kiwifruits and Properties of the Low Ethylene Controlled Atmosphere Cold Store

投稿时间: 1997-12-9

最后修改时间: 1998-2-15

稿件编号: 19980145

中文关键词: 猕猴桃, 乙烯, 气调库, 贮藏

英文关键词: kiwifruit, ethylene, controlled atmosphere cold store, storage

基金项目: 联合国粮农组织(FAO)项目,河南省自然科学基金

作者	1,08			单位		100	1,00	1,05	1,00	1,000
王兰菊				河南农业大学						
杨德兴	4	4	- 16	河南省科学院	16	1	7. 4	70	4	· ·
胡莎	1 (18)		6.	河南省科学院		(16)	(16)	166.	1,66	1,06
邢红花	-40	-	- 15	河南省科学院	-10	- 40	-19		-10	- 10
宋尚伟	W 7	16	16	河南农业大学	nd I	N 196	N 10	7	16	100

摘要点击次数:5

全文下载次数:9

中文摘要:

介绍了猕猴桃低乙烯气调库。测定了库体的性能,研究了贮藏方式对猕猴桃贮藏性状的影响。结果表明:库体密封性能达良好级,乙烯浓度脱至 0.02 μ L / L 以下;低乙烯气调可延缓果实后熟软化。在两年 180000 kg果实商业贮藏中,果实贮期可达 180天以上,果肉硬度为 6.8 kg/cm²,好果率大于 98%,货架期大于 15天。低乙烯气调是猕猴桃的最佳贮藏方式

英文摘要:

This paper introduces a low ethylene controlled atmosphere cold store for kiwifruits. The properties were measure d, including the tightness and ethylene removal and ventilative velocity in the store. The effects of the various methods were investigated for the characteristics of kiwifruit storage. The results indicate that the tightness is good and the e thylene content is less than 0.02 μ L/L in the low ethylene CA room. The fruits can keep fresh over 180 days. The ratio of sound fruits is 98 %. The fruit firmness is 6.8 kg/cm². The shelf life is over 15 days. The low ethylene controlled atmosphere is an optimum method for kiwifruit storage.

查看全文 关闭 下载PDF阅读器

您是第607236位访问者

主办单位:中国农业工程学会 单位地址:北京朝阳区麦子店街41号

服务热线: 010-65929451 传真: 010-65929451 邮编: 100026 Email: tcsae@tcsae.org

本系统由北京勤云科技发展有限公司设计