研究报告 ## 白菜 Ogu CMS相关 MYB 家族新基因 BcMYB ogu的 克隆与特征分析 向 珣1, 曹家树1, 叶纨芝 1 , 崔辉梅 2 , 俞建浓 1 - 1. 浙江大学蔬菜研究所, 农业部重点实验室园艺植物生长与发育调控实验室, 杭州 310029; - 2. 新疆石河子大学园艺系, 新疆 832003 收稿日期 2006-9-18 修回日期 2006-11-27 网络版发布日期 2007-4-12 接受日期 为研究CMS核质互作的分子机理,将甘蓝型油菜(Brassica napus L.)和白菜(B. campestris L. ssp. chinensis Makino)杂交并连续回交6代获得白菜 OguCMS,在与保持系花药细胞学比较的基础上,运用cDNA-AFLP筛选得到白菜 ▶ Email Alert OguCMS早、中期花蕾提早表达的MYB-like差异片断,利用RACE克隆得到该片断的cDNA全长,命名为BcMYBogu (GenBank 登录号: EF127861),对其氨基酸序列和表达特征进行研究。结果表明,白菜OguCMS绒毡层在四分体后 增生,高度液泡化,导致小孢子花粉外壁异常,细胞质同外壁分离并降解;花药变白;BcMYBogu具有典型的MYB DNA结合域—W残基和SH[AL]QKY[RF]基序;系统进化分析显示BcMYBogu与AtMYB26,AtMYB32和AtMYB4等聚类在同一 分枝:RT-PCR分析表明BcMYBogu在莲座叶、花茎和花蕾中均有表达,但在*OguCMS*花蕾中表达量显著上升。由此推 测*BcMYBogu*是一个新的与白菜*OguCMS*相关的MYB家族新成员。 关键词 白菜(Brassica campestris ssp. chinensis) OguCMS BcMYBogu 绒毡层 分类号 ## Molecular cloning and characterization of BcMYBogu, a novel member of the MYB family involved in OguCMS in Brassica campestris ssp. chinensis XIANG Xun¹, CAO Jia-Shu¹, YE Wan-Zhi¹, CUI Hui-Mei², YU Jian-Nong¹ - 1. Institute of Vegetable Science, Zhejiang University, Key Laboratory on Growth and Development of Horticulture and Biotechnology of - the Ministry of Agriculture, Hangzhou 310029, China; - 2. Department of Horticulture, Shihezi University, Xinjiang 832003, China ## **Abstract** - <P>In the attempt to elucidate the molecular mechanism of CMS. Ogura cytoplasmic male sterile (OguCMS) lines were obtained in Chinese cabbage after interspecific hybridization between Brassica. napus L. - OguCMS and B. campestris ssp. - chinensis followed by recurrent backcross with B. campestris ssp. chinensis as the pollen donor. The CMS lines were significantly characterized by the whitish anther and indehiscence of anther. The tapetal hypertrophy with excess vacuola-tion was the first observed defective soon after the tetrad stage, subsequently the microspores defected in pollen wall forma-tion, and later the cytoplasm detached from the exine wall and underwent degeneration. With aid of cDNA-AFLP and RACE approaches, we cloned the - BcMYBogu(GenBank accession No: EF127861) in Chinese cabbage, - which is premature expressed in early and middle stage floral buds of DguCMS lines, and predicted to encode a novel protein with a DNA binding domain: SH[AL]QKY[RF] motif at the N-terminus. Phylogenetic comparison revealed that the BcMYBogu was clustered with AtMYB32, AtMYB26 and AtMYB4, which were indicated to be involved in male sterility in Arabidopsis thaliana. The BcMYBogu transcript was detected in rosette leaves, floral buds and stems by RT-PCR analysis. Compared with the maintainer, the expression level of BcMYBogu was increased in these organs, especially in floral buds of OguCMS lines. Our investigation suggests ## 扩展功能 本文信息 - ▶ Supporting info - **PDF**(0KB) - ▶[HTML全文](0KB) - ▶参考文献 服务与反馈 - ▶把本文推荐给朋友 - ▶加入我的书架 - ▶加入引用管理器 - ▶复制索引 - ▶文章反馈 - ▶浏览反馈信息 相关信息 ▶本刊中 包含"白菜(Brassica campestris ssp. chinensis)"的 相关文章 本文作者相关文章 - 向 珣 - 曹家树 - 叶纨芝 - 崔辉梅 - <u>俞建浓</u> that BcMYBogu is a new member of the MYB family involved in male sterility in Chinese cabbage.</P> Key words Chinese cabbage (Brassica campestris ssp. chinensis) OguCMS BcMYBogu Tapetum DOI: 10.1360/yc-007-0621 通讯作者 曹家树 jshcao@zju.edu.cn