研究报告

不同氮素水平下二氧化碳加富对草莓叶片光抑制的影响

徐凯^{1,2},郭延平¹,张上隆¹,吴慧敏²

¹浙江大学园艺系, 杭州 310029;

²浙江林学院林业与生物技术学院, 浙江临安 311300

收稿日期 2006-1-11 修回日期 2006-11-5 网络版发布日期 接受日期

摘要 用便携式调制叶绿素荧光仪和光合仪研究了强光下不同供氮水平(12、4和0.4 mmol·L⁻¹)和不同 CO_2 浓度下(700和390 μ l·L⁻¹)丰香草莓叶片的荧光参数及净光合速率的变化. 结果表明, CO_2 和氮素对草莓叶片光抑制有明显的互作效应. 在富 CO_2 下,12 mmol·L⁻¹供氮水平的草莓叶片净光合速率升高了62. 7%,4和0.4 mmol·L⁻¹供氮水平则分别降低了7. 4%和21. 3%;12 mmol·L⁻¹供氮水平的 F_m 和 F_v/F_m 在强光胁迫时降辐减小,暗恢复时 F_m 和 F_v/F_m 恢复程度提高,而4和0.4 mmol·L⁻¹供氮水平却相反. 表明氮素供应不足时草莓叶片在富 CO_2 环境下光合作用出现适应性下调,光抑制增强.

关键词 $\overline{}$ $\overline{}$

分类号

Effects of elevated CO₂ on photoinhibition of strawberry leaves under different nitrogen levels

XU Kai^{1,2},GUO Yan-ping¹,ZHANG Shang-long¹,WU Hui-min²

¹Department of Horticulture, Zhejiang University, Hangzhou 310029, China;

²School of Forestry & Bio technoloy, Zhejiang Forestry University, Lin'an 311300, Zhejiang, China

Abstract

By using PAM-2000 portable chlorophyll fluorometer and HCM-1000 photosynthesis measurement system, this paper measured the initial fluorescence (F_0), maximal photochemical efficiency of PSII (F_v/F_m), maximal fluorescence (F_m), amount of inactive PS II reaction centers (F_i - F_0), proportion of $Q_{\rm B}$ -non-reducing PS II reaction centers [$(F_i$ - $F_0)/(F_p$ - F_0], and net photosynthetic rate (P_n) of strawberry leaves under conditions of elevated CO_2 (700 μ l·L⁻¹) and ambient CO_2 (390 μ l·L⁻¹) at three levels of nitrogen application (12, 4 and 0.4 mmol·L⁻¹). The results showed that there was a significant joint effect between CO_2 and N on the photoinhibition of strawberry leaves. Under elevated CO_2 condition, the P_n in treatment 12 mmol N·L⁻¹ increased by 62.7%, while that in treatments 4 and 0.4 mmol N·L⁻¹ decreased by 7.4% and 21.3%, respectively. When exposed to high light and subsequently recovered in dark for 4 hours, the strawberry leaves in treatment 12 mmol N·L⁻¹ showed less changes of F_m and F_v/F_m in elevated CO_2 than in ambient CO_2 , while those in treatments 4 and 0.4 mmol N·L⁻¹ were in adverse, suggesting that for the strawberry leaves in elevated CO_2 , nitrogen deficiency could result in an acclimatized decrease of photosynthesis and an increase of photoinhibition.

Key words <u>strawberry</u> <u>elevated CO₂</u> <u>nitrogen deficiency</u> <u>chlorophyll fluorescence</u> <u>photoinhibition</u>

扩展功能

本文信息

- ▶ Supporting info
- ▶ <u>PDF</u>(1208KB)
- **▶[HTML全文]**(0KB)
- **▶参考文献**


服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶ 复制索引
- ▶ Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

相关信息

- ▶ 本刊中 包含"草莓"的 相关文章
- ▶本文作者相关文章
- · <u>徐凯</u>
- .
- 郭延平
- · 张上隆
- · 吴慧敏

DOI:

