

农业工程学报

Transactions of the Chinese Society of Agricultural Engineering

首页 中文首页 政策法规 学会概况 学会动态 学会出版物 学术交流 行业信息 科普之窗 表彰奖励 专家库 咨询服务 会议论坛

首页 | 简介 | 作者 | 编者 | 读者 | Ei收录本刊数据 | 网络预印版 | 点击排行前100篇

超临界CO2连续浓缩鱼油EPA和DHA的研究

Continuous concentration of EPA and DHA from fish oil by supercritical CO_2

投稿时间: 2002-7-30

稿件编号: 20030239

中文关键词: 超临界CO,萃取; 填料塔; 连续浓缩; 鱼油; EPA; DHA

英文关键词: supercritical CO₂ extraction; packed-tower; continuous concentration; fish oil; EPA; DHA

基金项目: 江苏省科技兴海专项基金项目(BL98302)

作者	16	1.6	-4	-6	单位		A.		4		d		4	
刘伟民		× -	× -	A	江苏大学	3.		3.		>		3.		>.
马海乐	15	1.0	A. W.	4	江苏大学	i di	35.	d	35	i di	35.	i di	35.	i di
李国文	100	-6	100	0.46)	江苏大学		of.		d		od.		A.	

摘要点击次数:5

全文下载次数:6

中文摘要:

为了克服鱼油有效组分超临界 CO_2 间歇萃取方法的缺点,设计建造了超临界 CO_2 在内径 $14\,$ mm、填料高 $1.8\,$ m的填料塔中连续萃取浓缩鱼油有效组分的流程。根据单因素试验的结果,对工艺参数进行优化。设计了4因素3水平并考虑部分交互作用的正交试验方案,以综合指标进行评价,得到了优化工艺参数为:填料塔压为 $12.5\,$ MPa; CO_2 流量为5 L/min;鱼油进料流量为 $0.8\,$ mL/min;塔的温度分布为 $40\sim8\,$ 5℃。经方差分析得知,温度分布的影响对综合指标高度显著,鱼油进料流量对综合指标的影响显著,试验范围内的压力、 CO_2 流量、压力和温度分布交互作用、温度分布和 CO_2 流量交互作用以及压力和 CO_2 流量交互作用对综合指标没有显著影响。

英文摘要:

In order to overcome the disadvantages of a batch flow, a continuous flow was designed to concentrate EPA and DHA f rom fish oil by supercritical $\rm CO_2$ extraction technology in packed-tower with a diameter of 14 mm and a padding height of 1.8 m. Then, on the basis of single-fact experiments, the technological parameters were optimized by orthogonal tests whi ch include 3 factors and 4 levels, with the consideration of interaction among 3 factors, in which a comprehensive index was used as a test target. The results showed that the optimum column pressure was 12.5 MPa, temperature distribution was $40{\sim}85^{\circ}\mathrm{C}$, $\mathrm{CO_2}$ flow 5 L/min, and fish oil feed flow was 0.8 mL/min. It was found that the temperature distribution factor was very prominent, followed by the factor of fish oil feed flow. The effects of pressure and $\mathrm{CO_2}$ flow, as well as the in teractive effects among pressure and temperature distribution, temperature distribution and $\mathrm{CO_2}$ flow, and pressure and $\mathrm{CO_2}$ flow were not prominent.

查看全文 关闭 下载PDF阅读器

您是第607235位访问者

主办单位:中国农业工程学会 单位地址:北京朝阳区麦子店街41号

服务热线: 010-65929451 传真: 010-65929451 邮编: 100026 Email: tcsae@tcsae.org