JSTAGE				My J-STAGE Sign in
Japanese Journal of				earch
Japanese Society of	f Farm Wor	rk Resea	arch	112
<u>Available Issues</u> <u>Japanese</u>			>> <u>P</u>	ublisher Site
Author: ADVANCED Keyword: Search	Volume I	Page	_	Go
Add to Favorite/Citation Articles Alerts	Add to Favorite Publications		gister rts	
<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract				

ONLINE ISSN : 1883-2261 PRINT ISSN : 0389-1763

Japanese Journal of Farm Work Research

Vol. 44 (2009), No. 4 pp.201-210

[PDF (879K)] [References]

Nitrogen Uptake by Cover Crops and Inorganic Nitrogen Dynamics in *Andisol* Paddy Rice Field

Masakazu KOMATSUZAKI¹⁾

1) Ibaraki University, College of Agriculture

(Received June 2, 2009) (Accepted August 22, 2009)

Abstract

Paddy field rice can conserve N in the soil under flooded conditions. However, residual soil N represents a potential environment concern when fields are no longer flooded. Winter annual grass cover crops may provide an alternative means to conserve residual soil N following rice harvest. A two years field experiment was conducted at the Ibaraki University of Experimental Farm, to compare dry matter and N uptake by rye (*Secale cereale* L.), oat (*Avena sativa* L.), triticale (*Triticum secale* L), wheat (*Triticum aestivum* L.) and fallow (no cover) in relation to soil residual N level.

Dry matter and N accumulation by the following April were in the descending order of rye>triticale>wheat=oat>fallow, while residual soil N levels followed the reverse order. Residual soil N level exerted the greatest influence on cover crop DM accumulation, with differences in N levels becoming more pronounced by the April sampling date. On 17 April, DM differences between the low and high residual soil N levels were 3.45 vs 6.82Mgha⁻¹ for rye (98% increase), 1.15 vs 1.45Mgha⁻¹ for oat (26% increase), 1.49 vs 1.99Mgha⁻¹ for wheat (34% increase), and 1.70 vs 2.98Mgha⁻¹ for triticale (75% increase), respectively.

Cover crop N accumulation followed patterns similar to those for DM, but was mainly influenced by main effect factors. Residual soil N level again exerted the greatest influence on N accumulation. Between species, N accumulation for rye was greater than oat and wheat across all planting dates. By 8 March, the greatest N accumulation occurred with rye (14.0kgNha⁻¹), with other species accumulating 5.4 to 7.5kgNha⁻¹. Cover crop N

accumulation increased appreciably from 10 March to 17 April.

These results demonstrated that grass cover crops have a great potential for controlling soil residual N. However, additional research will be needed to determine the contribution of cover crop N to subsequent rice growth.

Key words

Cover crop, Paddy field, Nitrogen, Rye, Wheat, Triticale, Oat

[PDF (879K)] [References]

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Masakazu KOMATSUZAKI (2009): Nitrogen Uptake by Cover Crops and Inorganic Nitrogen Dynamics in *Andisol* Paddy Rice Field . Japanese Journal of Farm Work Research 44: 4 201-210 .

doi:10.4035/jsfwr.44.201 JOI JST.JSTAGE/jsfwr/44.201

Copyright (c) 2010 Japanese Society of Farm Work Research

