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Abstract

MIYAHARA M., MATSUMOTO T., SAKURAI H., PIPEK P. (2002): The conformability of two equations for bacterial
growth in pork. Czech J. Food Sci., 20: 69-73.

Pork is now distributed as cut meat, which increases the chance of contamination with bacteria. The rate of bacterial growth can
be expressed by an exponential function. In order to find how the number of contaminating bacteriaincreases, we compared two
functional equations for a growth curve. They are logistic: Y, = K (1 + me™@) (1) and Gompertz: log Y, = log K + (log a) b' (2)
equations (where Y; = the number of bacteriaat thetimetin min, mand a = coefficient, e= natural logarithm, K maximum number
of bacteria). 90 ml of physiological salt solution was added to 10 g of pork. It was homogenized for 3 min, then incubated at 35°C
for 13 hrs. The number of bacteria was counted every hour. We found from these data that the above two equations can be
expressed asfollows: Y, = 23535 (1 + 16269 € 1608 and log Y, = 8.9940 + (-3.1124) x 0.7839". Thetheoretical and actual values
matched well in equation (1), and the number of bacteria can be predicted accurately using this equation at a given time after
incubation. Thetheoretical and actual values did not match well in equation (2) and its accuracy to predict the number of bacteria

was very low except theinitial number of bacteriawas high.
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There are models for the mathematical estimation of
bacterial growth (OLLEY & RATKOWSKY 1973). The con-
cept of Hazard Analysis Critical Control Point (HACCP)
isgenerally accepted in food hygiene. The ability to esti-
mate bacterial growthinfood isimportant in studying the
occurrence of food poisoning aswell asin general prac-
ticein food hygiene.

Itiswell known that bacteria grow exponentially with
time under ideal conditions. Their growth rate increases
proportionally to the concentration of nutrients (OLLEY
& RATKOWSKY 1973; GENIGEORGIS et al. 1971). These
mathematical models are concerned only with a certain
phase of bacterial growth. We tried to determine in this
report how well the two theoretical equations, Verhulst's
logistic curve (MCMEEKIN et al. 1992) and Gompertz curve
(VINIEGRA-GONZALEZ et al. 1993; WHITING & BUCHA-
NAN 1994), fit bacteria growth.

MATERIAL AND METHODS

Material: Pork was obtained at a store in Tokyo. Ten
grams of meat were prepared and put in a sterilised ho-

mogenizer cup with 90 ml of 0.85% physiological salt so-
[ution. The meat was homogenised at 8 000—10 000 rpm
for 2 min. The sampleswere then kept in an incubator at
3B°C.

Methods: The number of bacteria was counted by a
conventional method immediately after the meat was ho-
mogenized. The homogenized samples were then incu-
bated in the homogeniser-cup. Bacteria were counted
once every hour for 13 hours.

Themeat waswell mixed before asamplewastaken for
bacterial counts. The sample was diluted to adjust the
number of colonies on the plate to 30-300. They were
thenincubated for 48 + 3hrsat 35°C in agar culture by the
diluted plate culture method. The number of colonies af-
ter incubation is the number of bacteria.

RESULTS AND DISCUSSION

Growth of Bacteria

As shown in Fig. 1, the growth pattern showed three
phases of growth, the induction, exponential and maxi-
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Fig. 1. The growth of bacteria (total count) in pork meat
homogenate — measured data

mum stationary phases, which is the same pattern asin
the growth of a colony with one species of bacteria. In
general the number of bacteriaafter t minutesin the expo-
nential phase can be derived by Kimata's equation:

b=B2"... @
It can be transformed into the following two equations:
n=(logb-logB)/log 2 %)
g=tlog 2/(logb—logB) ®

where: B — number of bacteria at the beginning
b — number of bacteria after # minutes
¢t — time in minutes
n — number of divisions in # minutes
g —time in minutes needed for one division

Using the numbers of bacteria Fig. 1, the number of
divisions per unit period and the time (t) needed for a
division can be derived from equations (2) and (3). The
maximum numbers of cell divisionswere 1-2in 3-9 hrs
after the start of incubation. Thefastest division timewas
23-54 min. Therateincreased rapidly in 3-9 hrs after the
start of incubation. The meat contained various species
of bacteria, so the division time was unstable. It appears,
however, that the induction phase lasted 4 hrs, followed
by 5 hrs of exponential phase. Therest of the period was
the maximum stationary phase.

Conformity with Logistic Curve

The logistic curve is based on an assumption that a
certain long-term variation goes through the growth pat-
ternthat consists of initial, developmental, saturation and
stable phases. It can be shown in the following equation.
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_ —at
Y =K/(1+me™) @
where: ¥, — number of bacteria after £ minutes
K — maximum number of bacteria
T - time in minutes

m, a— coefficients

The coefficients m and a, and the maximum bacteria
counts (K) in eguation (4) can be derived by the least
squares method.

(i) Calculation of logarithm of theinitial number of bacte-
riaP=aandq.

>R=nP+qgz¥Y

> AY=pZY +gzY? )

Using the simultaneous equationsin (5) we calcul ated
thevalues of p and q as 1.2818 and —0.000056, respective-
ly, asshownin Table 1.

(i) Calculation of K, the maximum number of bacteria

K =—g/P, so K=22879 using thevaluesin Table 1.

Table 1. The coefficients of logistic curve equality

No. P=a q K m t
1 0.7164 —-0.000025 28 725 308 8
2 1.2818 —0.000056 22897 28407 8
3 0.5282 —0.000036 14 680 68 8
4 1.9638 —0.000089 22053 18380 5
5 2.278 —0.000099 23088 88434 5
6 1.0875 —0.000045 24183 6143 8
7 1.0443 —0.000036 29253 4249 8
8 0.8449 —0.000042 20135 159 6
9 0.702 —-0.000026 26 806 275 8
Mean  1.608 —0.00005 23535 16269 7.1

(iii) Calculation of the point of inflection (t,).

The time needed to reach 1/2 of K or Y, = 0.5K is ex-
pressed ast . Using the values on averageweget t = 7.1.

(iv) Calculation of m, which the point of inflection over
time in the growth curves of bacteria

t =1/alogex m (6)

Equation (6) gives m = 28 407. Therefore, the logistic
curveis

Y,=22897/(1 + 2 840e" 1)

Fig. 2 showsitsactua curve. Table 1 showsthe values
for logistic curvesthat were derived from the averages of
actual valuesin the experiments.

Based on the average of 10 values, we obtained the
following equation.
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Fig. 2. The logistic curve that was defined from the averages of
actual values in the experiment

Y, = 23535/(1 + 16 269 16%8)

Table 2 shows the process to obtain theoretical values.
The actual theoretical values are shownin Fig. 3.

Ascan beseeninFigs. 2 and 3, the maximum bacterial
number was reached in 9-10 hrs in the culture, and the
averagetheoretical valuewas 23 x 107 derived from equa-
tion (5). Their actual number ranged between 20 x 107 and
28 x 107, and it conforms to the theoretical vaue. The
theoretical timefor the other growth periods also matches
those of actual time. Therefore, we can use the logistic
curve for estimating the number of bacteria at a certain

25 F 23 535

1+ 16 26914608
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Fig. 3. The logistic curve that was defined from actual theoretical
values

time. This logistic curve is strongly influenced by the
time to reach the point of inflection. This causesthefluc-
tuation as affected by the storage conditions.

Gompertz Curve

Thevaluesof coefficientsK, aand bintheeguationlog
Y =log K + (log a)b* were calculated using the following
equations in which the entire growth period was equally
divided into three and the sum of the actual bacterial counts
ineach period, 1, 2and 3, isexpressed as S, log Y, S, log Y
and S;log Y, respectively.

Table 2. The progress derived logistic curve equality from the experimental values by Expt. Mean

Time (h) log ¥ e me 1+ me™ Y,
0 0 1 16269 16270 1
1 0.5041 5.3192 3 058.6 3 059.6 8
2 1.0082 10.191 1596.4 1 597.4 15
3 1.5123 32.534 500.07 501.07 47
4 2.0164 103.86 156.65 157.65 149
5 2.5206 331.55 49.07 50.07 470
6 3.0247 1 058.4 15.372 16.372 1438
7 3.5288 33789 4.815 5.815 4047
8 4.0329 10787 1.5082 2.5082 9333
9 4.5370 34435 0.4725 1.4725 15983
10 5.0411 109 930 0.148 1.148 20501
11 5.5452 350 930 0.0464 1.0464 22493
12 6.0493 1120 300 0.0145 1.0145 23199
13 6.5534 3576 400 0.0045 1.0045 23429

log Y =9.2801 — 4.0702 x 0.8664’
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b,=(Z;logY-2,log Y)/(Z,logY-Z,log )
loga=(,logY-Z, logY) x (b-1)/(b —1)*

logK = (Z, log Y—((b~1)/(b-1)) log a)/n

®
©
(10)

Table 3 showsthe cal culation proceduresfor the coeffi-
cients K, aand b using the valuesin Tables 1 and 4 and

Fig. 4 show the results of calculations using equations
(8), (9) and (10). The equation used for Table 3is

log Y,=9.2801—4.0702 x 0.7839'

Fig. 5 shows Gompertz curve derived by thefollowing
equation using the valuesin Table 4.

log Y=28.9940—3.1124 x 0.7839"

11)

Table 3.The theoretical values and the progress derived the Gompertz curve equality from the experimental values Expt. No. 3

Time (h) Y (x10°) logY AlogY b’ (loga)b' logY Y
1 3.175 5.5017 0.4173 0.8664 -3.5262 5.7539 6
2 8.3 5.9191 0.4972 0.7506 —3.0549 6.2252 17
3 9.975 5.9989 0.4039 0.6503 -2.6467 6.6335 43
4 25.28 6.4028 0.6319 0.5633 -2.2929 6.9872 97
Zl logY 23.823 25.6
5 108.3 7.0348 0.233 0.4881 -1.9865 7.2937 197
6 185.3 7.2678 0.2641 0.4228 -1.721 7.5592 362
7 340.3 7.5318 0.263 0.3663 —1.491 7.7892 615
8 623.5 7.7948 0.4331 0.3174 -1.2917 7.9884 974
22 logY 26.629 30.63
9 1690 8.2279 -0.0013 0.2749 -1.1191 8.1611 1449
10 1685 8.2266 —0.1852 0.2382 —0.9695 8.3106 2045
11 1100 8.0414 0.363 0.2064 —0.8399 8.4402 2756
12 2538 8.4044 0.1788 -0.7277 8.5525 3568
23 logY 32.9 33.464
log ¥ = 9.2801 — 4.0702 x 0.8664"
r
350
log ¥; = 9.2801 — 4.0702 x 0.8664 B log Y, = 8.9940 — 3.1124 x 0.7839"
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Fig. 4. The result of calculations using the equations (8), (9)

nad (10) from the experimental values
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Fig. 5. The Gompertz curve derived using the values in Table 4
by the equation (11)
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Table 4. The coefficients of Gompertz curve reliable except for the casewhen theinitial bacterial counts
are very high. Therefore we concluded that it is difficult

Experiment No. b loga logK to estimate the number of bacteria using Gompertz curve.

1 0.7975 -1.7702 8.5712 References

2 0.8664 —4.0702 9.2801

3 09138 56086 10.8428 GEN.I(.}E(.)RGIS C.,MARTIN S., FRANT.I C.E.,RIEMAN H: (1971):
Initiation of staphylococcal growth in laboratory media. Appl.

4 0.5921 2759 8.3473 Microbiol., 21: 934-939.

5 0.5889 —2.8516 8.4141 MCMEEKIN T.A., ROSS T., OLLEY J. (1992): Application of

6 0.8763 -3.7166 9.3976 predictive microbiology to assure the quality and safety of

7 0.8366 -3.0508 9.0061 fish and fish products. Int. J. Food Microbiol., 15: 13-32.

] 0.7825 21774 8.5264 OLLEY J., RATKOWSKY D.A. (1973): Temperature function

9 0.8008 2.0073 8.5608 integration and its importance in the storage and distribution

Mean 0.7839 31124 2,994 of fresh foods above the freezing point. Food Technol. Aust.,
25: 66-73.

log ¥ = 8.9940 — 3.1124 x 0.7839" VINIEGRA-GONZALEZ G., SANCEDO-CASTANEDA G., LOPEZ-

ISUNZA F., FAVELA-TORRES E. (1993): Symmetric branch-
ing model for the kinetics of mycelial growth. Biotech. Bioeng.,

Theoretical values obtained from Figs. 4 and 5 indicat- 42:1-9.
ed arapid bacterial growth in the period when the actual WHITING R.C., BUCHANAN R.L. (1994): Microbial modelling.
bacterial growth had already reached the maximum sta= ~ Food Technol., 48: 113-120.
tionary phase. This shows that this equation is not very Received for publication December 21, 2001
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Abstrakt

MIYAHARA M., MATSUMOTO T., SAKURAI H., PIPEK P. (2002): Shoda dvou rovnic popisujicich bakterialni riist ve
vepiovém mase. Czech J. Food Sci., 20: 69-73.

Distribuované mélnéné maso mize byt znacné kontaminovano bakteriemi. Rychlost bakterialniho rustu lze vyjadtit jako
exponencialni funkci. Pfi sledovani tohoto ristu byly srovnany dvé funkéni rovnice popisujici bakterialni rist. Byl to logisticky
model Y, = K (1 + me™) a Gompertzova rovnice log ¥, = log K + (log a)b". Celkové pocty mikroorganismi byly m&feny
v hodinovych intervalech. Z naméfenych dat byly vypocteny koeficienty obou rovnic ¥, =23 535 (1 + 16 269¢ 116084y 4 Jog Y, =
8.9940 + (-3.1124) x 0.7839’. Naméfené hodnoty se dobfe shodovaly s hodnotami vypoétenymi podle prvni rovnice a Cetnost
bakterii mtize byt pfesné piedpovédéna s pouzitim této rovnice v daném Case inkubace. Aktualni hodnoty se jiz dobie neshodovaly
s hodnotami vypoc¢tenymi podle druhé rovnice. Presnost predpovédi bakterialnich Cetnosti zde byla velmi nizka s vyjimkou
ptipadu, kdy vychozi koncentrace mikroorganismi byla vysoka.

Klicova slova: logisticka rovnice; matematicky model; mikroorganismy; Gompertzova rovnice
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