

	Plant P		tion Sc op Science Soc	
Available Issues Japanese			>>	Publisher Site
Author:	ADVANCED	Volume P	age	
Keyword:	Search			Go
Add Fav Arti	l to orite/Citation cles Alerts	Add to Favorite Publications	Register Alerts	My J-STAGE HELP

TOP > Available Issues > Table of Contents > Abstract

ONLINE ISSN: 1349-1008 PRINT ISSN: 1343-943X

Plant Production Science

Vol. 7 (2004), No. 4 421-426

[PDF (494K)] [References]

Changes in Freezing Tolerance and its Relationship with the Contents of Carbohydrates and Proline in Overwintering Centipedegrass (Eremochloa ophiuroides (Munro) Hack.)

Qingsheng Cai¹⁾, Shizhen Wang¹⁾, Zhaoping Cui¹⁾, Juhua Sun¹⁾ and Yasuyuki Ishii²⁾

- 1) Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University
- 2) Division of Grassland Science, Faculty of Agriculture, University of Miyazaki

(Received: January 21, 2004)

Abstract: The objective of this study was to clarify the changes in the contents of endogenous carbohydrates and proline in the stolons and leaves of centipedegrass (Eremochloa ophiuroides (Munro) Hack.), during the natural cold acclimation (hardening) and de-acclimation (dehardening) in relation to freezing tolerance in the field at the transition zone between temperate and subtropical areas in China. The contents of carbohydrates and proline, and freezing tolerance estimated by LT₅₀, which is the temperature at which 50% of the electrolytes in the organ was measured in the leachate, were determined at 10-day intervals from October 1, 2001 to April 18, 2002. It was indicated that the freezing tolerance of stolons increased (LT₅₀ of stolons decreased) quickly, as temperature dropped before winter, but that of leaves which senesced along with the drop in temperature did not. The freezing tolerance of stolons decreased gradually along with the rise in temperature above 5 °C in spring, when the overwintered plants started to grow. The contents of proline and soluble carbohydrates, including sucrose, fructose and glucose, increased as LT₅₀ decreased when temperature dropped below 5 °C before winter, and decreased as LT₅₀ increased in early spring. Correlation analysis revealed that the freezing tolerance of stolons of centipedegrass significantly and positively correlated with the contents of proline and soluble carbohydrates, and the ratio of the soluble carbohydrates to starch. Thus, the

freezing tolerance of stolons, which are critical organs that determine the winter surviving ability, largely depended on the content of soluble carbohydrates and the ratio of soluble carbohydrates to starch in centipedegrass. The possible relationship between freezing tolerance and carbohydrate metabolism was also discussed.

Keywords: Carbohydrates, Centipedegrass, Freezing tolerance, LT₅₀, Overwintering, Proline, Stolon

[PDF (494K)] [References]

Download Meta of Article[Help]

RIS

BibTeX

To cite this article:

Qingsheng Cai, Shizhen Wang, Zhaoping Cui, Juhua Sun and Yasuyuki Ishii: "Changes in Freezing Tolerance and its Relationship with the Contents of Carbohydrates and Proline in Overwintering Centipedegrass (*Eremochloa ophiuroides* (Munro) Hack.)". Plant Production Science, Vol. 7, pp.421-426 (2004).

doi:10.1626/pps.7.421 JOI JST.JSTAGE/pps/7.421

Copyright (c) 2005 by The Crop Science Society of Japan

Japan Science and Technology Information Aggregator, Electronic

