

Β

Agricultural Journals

Research in AGRICULTURAL ENGENEERING

home page about us contact

	US
able of Contents	
N PRESS	
RAE 2013	
RAE 2012	
RAE 2011	
RAE 2010	
RAE 2009	
RAE 2008	
RAE 2007	
RAE 2006	
RAE 2005	
RAE 2004	
RAE 2003	
RAE Home	
Editorial	
oard	

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Res. Agr. Eng.

Mirzaee E., Rafiee S., Keyhani A., Emam-Djomeh Z.: Determining of

moisture diffusivity and activation energy in drying of apricots

Res. Agr. Eng., 55 (2009): 114-120

In this study, Fick' s second law was used as a major equation to calculate the moisture diffusivity for apricot fruit with some simplification. Drying experiments were carried out at the air temperatures of 40, 50, 60, 70, and 80° C and the drying air velocity of 1, 1.5 and 2 m/s. The experimental drying curves showed only a falling drying rate period. The calculated value of the moisture diffusivity varied from $1.7 \times 10-10$ to $1.15 \times$ 10-9 m2/s for apricot fruit, and the value of activation energy ranged from 29.35 to 33.78 kJ/mol at different velocities of air.

Keywords:

apricots; drying; effective moisture diffusivity; activation energy

[fulltext]

© 2011 Czech Academy of Agricultural

Sciences

XHTML11 VALID